
Distributed Source Coding for Sensor Networks

Zixiang Xiong, Angelos D. Liveris, and Samuel Cheng
Dept of Electrical Engineering, Texas A&M University, College Station, TX 77843
Tel: (979) 862-8683; Fax: (979) 862-4630; Email: {zx,alive,phsamuel}@ee.tamu.edu

Submitted on October 9, 2003; Revised on May 4, 2004

A shorter version of this article appeared in the Sept.’04 issue of the IEEE Signal Processing

Magazine. This Web version has more figures/tables and a comprehensive bibliography.

1 Introduction
In recent years, sensor research has been undergoing a quiet revolution, promising to have a signifi-

cant impact throughout society that could quite possibly dwarf previous milestones in the information

revolution [1]. The MIT Technology Review ranked wireless sensor networks that consist of many tiny,

low-power and cheap wireless sensors [2, 3] as the number one emerging technology. Unlike personal

computers or the Internet, which are designed to support all types of applications, sensor networks are

usually mission-driven and application specific (be it detection of biological agents and toxic chemicals;

environmental measurement of temperature, pressure and vibration; or real-time area video surveil-

lance). Thus they must operate under a set of unique constraints and requirements. For example, in

contrast to many other wireless devices (e.g., cellular phones, PDAs, and laptops), in which energy can

be recharged from time to time, the energy provisioned for a wireless sensor node is not expected to

be renewed throughout its mission. The limited amount of energy available to wireless sensors has a

significant impact on all aspects of a wireless sensor network, from the amount of information that the

node can process, to the volume of wireless communication it can carry across large distances.

Realizing the great promise of sensor networks requires more than a mere advance in individual

technologies; it relies on many components working together in an efficient, unattended, comprehensible,

and trustworthy manner [1]. One of the enabling technologies for sensor networks is distributed source

coding (DSC), which refers to the compression of multiple correlated sensor outputs [4, 5, 6, 7] that

do not communicate with each other (hence distributed coding). These sensors send their compressed

outputs to a central point (e.g., the base station) for joint decoding.

To motivate DSC, consider a wireless video sensor network consisting of clusters of low-cost video

sensor nodes (VSNs), an aggregation node (AN) for each cluster and a base station for surveillance

applications. The lower tier VSNs are used for data acquisition and processing; the upper tier ANs are

used for data fusion and transmitting information out of the network. This type of network is expected

to operate unattended over an extended period of time. As such, VSN and AN power consumption

1



cause severe system constraints; additionally, traditional, one-to-many, video processing that is routinely

applied to sophisticated video encoders (e.g., MPEG compression) will not be suitable for use on a

VSN. This is because, under the traditional broadcast paradigm the video encoder is the computational

workhorse of the video codec; consequently, computational complexity is dominated by the motion

estimation operation. The decoder, on the other hand, is a relatively lightweight device operating in

a “slave” mode to the encoder. The severe power constraints at VSNs thus bring about the following

basic requirements: (1) an extremely low-power and low-complexity wireless video encoder, which is

critical to prolonging the lifetime of a wireless video sensor node, and (2) a high ratio of compression

efficiency, since bit rate directly impacts transmission power consumption at a node.

DSC allows a many-to-one video coding paradigm that effectively swaps encoder-decoder complexity

with respect to conventional (one-to-many) video coding, thereby representing a fundamental conceptual

shift in video processing. Under this paradigm, the encoder at each VSN is designed as simply and

efficiently as possible, while the decoder at the base station is powerful enough to perform joint decoding.

Furthermore, each VSN can operate independently of its neighbors; consequently, a receiver is not needed

for video processing at a VSN, which enables the system to save a substantial amount of hardware cost

and communication (i.e., receiver) power. In practice, depending also on the nature of the sensor

network, the VSN might still need a receiver to take care of other operations, such as routing, control,

and synchronization, but such a receiver will be significantly less sophisticated.

Under this new DSC paradigm, a challenging problem is to achieve the same efficiency (e.g., joint

entropy of correlated sources) as traditional video coding, while not requiring sensors to communicate

with each other. A moment of thought reveals that this might be possible because correlation exists

among readings from closely-placed neighboring sensors and the decoder can exploit such correlation

with DSC – this is done at the encoder with traditional video coding. As an example, suppose we

have two correlated 8-bit greyscale images X and Y whose same location pixel values x and y are

related by x ∈ {y − 3, y − 2, y − 1, y, y + 1, y + 2, y + 3, y + 4}. In other words, the correlation

of x and y is characterized by −3 ≤ x− y ≤ 4, or x assumes only eight different values around y.

Thus, joint coding of x would take three bits. But in DSC, we simply take modulo of pixel value

x with respect to eight, which also reduces the required bits to three. Specifically, let x = 121 and

y = 119. Instead of transmitting both x and y at 8 b/p without loss, we transmit y = 119 and

x′ = x (mod 8) = 1 in distributed coding. Consequently, x′ indexes the set that x belongs to, i.e.,

x ∈ {1, 8 + 1, 16 + 1, . . . , 248 + 1}, and the joint decoder picks the element x = 120 + 1 closest to

y = 119.
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The above is but one simple example showcasing the feasibility of DSC. Slepian and Wolf [4] theo-

retically showed that separate encoding (with increased complexity at the joint decoder) is as efficient

as joint encoding for lossless compression. Similar results were obtained by Wyner and Ziv [5] with

regard to lossy coding of joint Gaussian sources. Driven by applications like sensor networks, DSC

has recently become a very active research area – more than 30 years after Slepian and Wolf laid its

theoretical foundation [7].

A tutorial paper on “Distributed compression in a dense microsensor network” [8] appeared in this

magazine in 2002. Central to [8] is a practical DSC scheme called DISCUS (distributed source coding

using syndromes) [9]. This current article is intended as a sequel to [8] with the main aim of covering

our work on DSC and other relevant research efforts ignited by DISCUS.

We note that DSC is only one of the communication layers in a network, and its interaction with the

lower communication layers, such as the transport, the network, the medium access control (MAC), and

the physical layers, which is the focus of this special issue, is crucial for exploiting the promised gains

of DSC. DSC cannot be used without proper synchronization between the nodes of a sensor network,

i.e., several assumptions are made for the routing and scheduling algorithms and their connection to

the utilized DSC scheme. In addition, compared to a separate design, further gains can be obtained

by jointly designing the distributed source codes with the underlying protocols, channel codes, and

modulation schemes.

2 Slepian-Wolf Coding

Let {(Xi, Yi)}∞i=1 be a sequence of independent and identically distributed (i.i.d.) drawings of a pair of

correlated discrete random variables X and Y . For lossless compression with X̂ = X and Ŷ = Y after

decompression, we know from Shannon’s source coding theory [6] that a rate given by the joint entropy

H(X, Y ) of X and Y is sufficient if we are encoding them together (see Fig. 1 (a)). For example, we

can first compress Y into H(Y ) bits per sample, and based on the complete knowledge of Y at both

the encoder and the decoder, we then compress X into H(X|Y ) bits per sample. But what if X and Y

must be separately encoded for some user to reconstruct both of them?

Encoder 2

Encoder 1X

Y
Joint decoder

^
X̂,Y

Encoder 2

Encoder 1X

Y
Joint decoder

^
X̂,Y

(a) (b)
Figure 1: (a) Joint encoding of X and Y . The encoders collaborate and a rate H(X, Y ) is sufficient.
(b) Distributed/separate encoding of X and Y . The encoders do not collaborate. The Slepian-Wolf
theorem says that a rate H(X,Y ) is also sufficient provided that decoding of X and Y is done jointly.
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One simple way is to do separate coding with rate R = H(X) + H(Y ), which is greater than

H(X, Y ) when X and Y are correlated. In a landmark paper [4], Slepian and Wolf showed that

R = H(X,Y ) is sufficient even for separate encoding of correlated sources (see Fig. 1 (b))! Specifically,

the Slepian-Wolf theorem says that the achievable region of DSC for discrete sources X and Y is given

by R1 ≥ H(X|Y ), R2 ≥ H(Y |X) and R1 + R2 ≥ H(X, Y ), which is shown in Fig. 2. The proof of

the Slepian-Wolf theorem is based on random binning. Binning is a key concept in DSC and refers

to partitioning the space of all possible outcomes of a random source into disjoint subsets or bins.

Examples explaining the binning process are given in Box 1. The achievability of Slepian-Wolf coding

was generalized by Cover [10] to arbitrary ergodic processes, countably infinite alphabets, and arbitrary

number of correlated sources.

H(X,Y)H(X)H(X|Y)

H(X,Y)

H(Y)

H(Y|X)

1

2
R

R

achievable rates with

Slepian-Wolf coding

Joint encoding

and decoding

Compression of X with 

side information Y at 

the joint decoder C

A

B

Figure 2: The Slepian-Wolf rate region for two sources.

2.1 Slepian-Wolf Coding of Two Binary Sources

Just like in Shannon’s channel coding theorem [6], the random binning argument used in the proof of the

Slepian-Wolf theorem is asymptotic and non-constructive. For practical Slepian-Wolf coding, we can

first try to design codes to approach the blue corner point A with R1+R2 = H(X|Y )+H(Y ) = H(X, Y )

in the Slepian-Wolf rate region of Fig. 2. This is a problem of source coding of X with side information

Y at the decoder as depicted in Fig. 3 in Box 1. If this can be done, then the other corner point B

of the Slepian-Wolf rate region can be approached by swapping the roles of X and Y and all points

between these two corner points can be realized by time sharing – for example, using the two codes

designed for the corner points 50% of the time each will result in the mid-point C.

———————————————————- Begin ——————————————————————

Box 1: Slepian-Wolf coding examples

1) Assume X and Y are equiprobable binary triplets with X,Y ∈ {0, 1}3 and they differ at most in

one position1. Then H(X) = H(Y ) = 3 bits. Because the Hamming distance between X and Y is
1We first start with the same example given in [8, 9] and extend it to more general cases later.
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dH(X, Y ) ≤ 1, for a given Y , there are four equiprobable choices of X. For example, when Y = 000,

X ∈ {000, 100, 010, 001}. Hence H(X|Y ) = 2 bits. For joint encoding of X and Y , three bits are needed

to convey Y and two additional bits to index the four possible choices of X associated with Y , thus a

total of H(X, Y ) = H(Y ) + H(X|Y ) = 5 bits suffice.

X̂
(syndrome former)
Lossless encoder R    H(X|Y)

Y

Joint decoder
syndrome bits

X

Figure 3: Lossless source coding with side information at the decoder as one case of Slepian-Wolf coding.

For source coding with side information at the decoder as depicted in Fig. 3, the side information

Y is perfectly known at the decoder but not at the encoder, by the Slepian-Wolf theorem, it is still

possible to send H(X|Y )=2 bits instead of H(X)=3 bits for X and decode it without loss at the joint

decoder. This can be done by first partitioning the set of all possible outcomes of X into four bins (sets)

Z00, Z01, Z10, and Z11 with Z00 = {000, 111}, Z01 = {001, 110}, Z10 = {010, 101} and Z11 = {011, 100}
and then sending two bits for the index s of the bin (set) Zs that X belongs to. In forming the bins Zs’s,

we make sure that each of them has two elements with Hamming distance dH=3. For joint decoding

with s (hence Zs) and side information Y , we pick in bin Zs the X with dH(X, Y ) ≤ 1. Unique decoding

is guaranteed because the two elements in each bin Zs have Hamming distance dH=3. Thus we indeed

achieve the Slepian-Wolf limit of H(X, Y ) = H(Y ) + H(X|Y ) = 3 + 2 = 5 bits in this example with

lossless decoding.

To cast the above example in the framework of coset codes and syndromes [11], we form the parity-

check matrix H of rate 1
3 repetition channel code as

H =
[

1 1 0
1 0 1

]
. (1)

Then if we think of x as a length-3 binary word, the index s of the bin Zs is just the syndrome s = xHT

associated with all x ∈ Zs. Sending the 2-bit syndrome s instead of the original 3-bit x achieves a

compression ratio of 3 : 2. In partitioning the eight x’s according to their syndromes into four disjoint

bins Zs’s, we preserve the Hamming distance properties of the repetition code in each bin Zs. This

ensures the same decoding performance for different syndromes.

In channel coding, the set of the length three vectors x satisfying s = xHT is called a coset code

Cs of the linear channel code C00 defined by H (s = xHT = 00 for the linear code). It is easy to see

in this example that each coset code corresponds to a bin Zs, i.e., all the members of the bin Zs are

codewords of the coset code Cs and vice versa, i.e., all the codewords of Cs also belong to Zs. The

Hamming distance properties between the codewords of the linear rate 1
3 repetition channel code C00,
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are the same as those between the codewords of each coset code Cs. Given the index s of the bin Zs,

i.e., a specific coset code Cs, the side information Y can indicate its closest codeword in Cs, and thus,

recover X, or equivalently x, without an error.

2) We now generalize the above example to the case when X and Y are equiprobable (2m-1)-bit binary

sources. Here m ≥ 3 is a positive integer. The correlation model between X and Y is again characterized

by dH(X,Y ) ≤ 1. Let n = 2m − 1 and k = n −m, then H(X) = H(Y ) = n bits, H(X|Y ) = m bits

and H(X, Y ) = n + m bits. Assuming that H(Y ) = n bits are spent in coding Y so that it is perfectly

known at the decoder, for Slepian-Wolf coding of X, we enlist the help of the m×n parity-check matrix

H of the (n, k) binary Hamming channel code [12]. When m = 3,

H =




1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1


 . (2)

For each n bit input x, its corresponding syndrome s = xHT is coded using H(X|Y ) = m bits, achieving

the Slepian-Wolf limit with a compression ratio of n : m for X. In doing so, we again partition the

total of 2n binary words according to their syndromes into 2m disjoint bins (or Zs’s), indexed by the

syndrome s with each set containing 2k elements. With this partition, all 2k codewords of the linear

(n, k) binary Hamming channel code C0 are included in the bin Z0 and the code distance properties

(minimum Hamming distance of three) is preserved in each coset code Cs. This way X, or equivalently

x, is recovered correctly.

Again, a linear channel code with its coset codes were used to do the binning and hence to construct

a Slepian-Wolf limit achieving source code. The reason behind the use of channel codes is that the

correlation between the source X and the side information Y can be modeled with a virtual “correlation

channel”. The input of this “channel” is X and its output is Y . For a received syndrome s, the decoder

uses Y together with the correlation statistics to determine which codeword of the coset code Cs was

input to the “channel”. So if the linear channel code C0 is a good channel code for the “correlation

channel”, then the Slepian-Wolf source code defined by the coset codes Cs is also a good source code for

this type of correlation.
———————————————————– End ——————————————————————-

Although constructive approaches (e.g., [13, 14]) have been proposed to directly approach the mid-

point C in Fig. 2 and progress has recently been made in practical code designs that can approach

any point between A and B [15, 16, 17], due to the space limitation, we only consider code designs for

the corner points (or source coding with side information at the decoder) in this article. The former

approaches are referred to as symmetric and the latter as asymmetric. In asymmetric coding, our aim
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is to code X at a rate that approaches H(X|Y ) based on the conditional statistics of (or the correlation

model between) X and Y but not the specific y at the encoder. Wyner first realized the close connection

of DSC to channel coding and suggested the use of linear channel codes as a constructive approach for

Slepian-Wolf coding in his 1974 paper [11]. The basic idea was to partition the space of all possible

source outcomes into disjoint bins (sets) that are the cosets of some “good” linear channel code for the

specific correlation model (see Box 1 for examples and more detailed explanation). Consider the case of

binary symmetric sources and Hamming distance measure, with a linear (n, k) binary block code, there

are 2n−k distinct syndromes, each indexing a bin (set) of 2k binary words of length n. Each bin is a

coset code of the linear binary block code, which means that the Hamming distance properties of the

original linear code are preserved in each bin. In compressing, a sequence of n input bits is mapped into

its corresponding (n − k) syndrome bits, achieving a compression ratio of n : (n − k). This approach,

known as “Wyner’s scheme” [11] for some time, was only recently used in [9] for practical Slepian-Wolf

code designs based on conventional channel codes like block and trellis codes.

If the correlation between X and Y can be modeled by a binary channel, Wyner’s syndrome concept

can be extended to all binary linear codes; and state-of-the-art near-capacity channel codes such as

turbo [18] and LDPC codes [19, 20] can be employed to approach the Slepian-Wolf limit. A short

summary on turbo and LDPC codes is provided in Box 2. There is, however, a small probability of

loss in general at the Slepian-Wolf decoder due to channel coding (for zero-error coding of correlated

sources, see [21, 22]). In practice, the linear channel code rate and code design in Wyner’s scheme

depend on the correlation model. Toy examples like those in Box 1 are tailor-designed with correlation

models satisfying H(X) = n bits and H(X|Y ) = n − k bits so that binary (n, k) Hamming codes can

be used to exactly achieve the Slepian-Wolf limits.

———————————————————- Begin ——————————————————————

Box 2: Turbo and LDPC codes

Although Gallager discovered low-density parity-check (LDPC) codes 40 years ago [19], much of the

recent developments in near-capacity codes on graphs and iterative decoding [23], ranging from turbo

codes [18] to the rediscovery of LDPC codes [19, 20] only happened in the last decade.

Turbo codes [18] and more generally concatenated codes are a class of near-capacity channel codes

that involve concatenation of encoders via random interleaving in the encoder and iterative maximum-

a-posteriori (MAP) decoding, also called Bahl-Cocke-Jelinek-Raviv (BCJR) decoding [24], for the com-

ponent codes in the decoder. A carefully designed concatenation of two or more codes performs better

than each of the component codes alone. The role of the pseudo-random interleaver is to make the
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code appear random while maintaining enough code structure to permit decoding. The BCJR decoding

algorithm allows exchange of information between decoders and thus an iterative interaction between

the decoders (hence turbo), leading to near-capacity performance.

LDPC codes [19, 20] are block codes, best described by their parity-check matrix H and the as-

sociated bipartite graph. The parity-check matrix H of a binary LDPC code has a small number of

ones (hence low density). The way these ones are spread in H is described by the degree distribution

polynomials λ̃(x) and ρ̃(x), which indicate the percentage of columns and rows of H respectively, with

different Hamming weights (number of ones). When both λ̃(x) and ρ̃(x) have only a single term, the

LDPC code is regular, otherwise it is irregular. In general, an optimized irregular LDPC code is ex-

pected to be more powerful than a regular one of the same codeword length and code rate. Given both

λ̃(x) and ρ̃(x), the code rate is exactly determined, but there are several channel codes and thus, several

H’s that can be formed. Usually one is constructed randomly.

The bipartite graph of an LDPC code is an equivalent representation of the parity-check matrix

H. Each column is represented with a variable or left node and each row with a check or right node.

All variable (left) nodes are put in one column, all check (right) nodes in a parallel column and then

wherever there is an one in H, there is an edge connecting the corresponding variable and check node.

The bipartite graph is used in the decoding procedure, allowing the application of the message-passing

algorithm [23]2. LDPC codes are the most powerful channel codes nowadays [25] and they can be

designed via density evolution [23].

Both turbo and LDPC codes exhibit near-approaching performance with reasonable complexity over

most conventional channels; and algorithms have been devised for the design of very good turbo and

LDPC codes. However, the design procedure for LDPC codes is more flexible and less complex and

therefore allows faster, easier and more precise design. This has made LDPC codes the most powerful

channel codes over both conventional and unconventional channels. But turbo and more generally

concatenated codes are still employed in many applications when short block lengths are needed or

when one of the component codes is required to satisfy additional properties (e.g., for joint source-

channel coding).
———————————————————– End ——————————————————————-

A more practical correlation model than those of Box 1 is the binary symmetric model, where

{(Xi, Yi)}∞i=1 is a sequence of i.i.d. drawings of a pair of correlated binary Bernoulli(0.5) random

variables X and Y and the correlation between X and Y is modeled by a “virtual” BSC with crossover
2Iterative decoding algorithms including the sum-product algorithm, the forward/backward algorithm in speech recog-

nition and the belief propagation algorithm in artificial intelligence are collectively called message-passing algorithms.
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probability p. In this case H(X|Y ) = H(p) = −p log2 p− (1− p) log2(1− p). Although this correlation

model looks simple, the Slepian-Wolf coding problem is not trivial. As the BSC is a well-studied

channel model in channel coding with a number of capacity-approaching code designs available [23],

through the close connection between Slepian-Wolf coding and channel coding, this progress could be

exploited to design Slepian-Wolf limit approaching codes. The first such practical designs [14, 26, 27]

borrowed concepts from channel coding, especially turbo codes, but did not establish the more direct

link with channel coding through the syndromes and the coset codes, as in Box 1. A turbo scheme with

structured component codes was used in [26] and parity bits were sent in [14, 27] instead of syndrome

bits as advocated in Wyner’s scheme. Code design that did follow Wyner’s scheme for this problem

was done in [28] for turbo and in [29] for LDPC codes, achieving performance better than in [14, 26, 27]

and very close to the Slepian-Wolf limit H(p).

Some simulation results from [28, 29] are shown in Fig. 4. The horizontal axis in Fig. 4 shows

the amount of correlation, i.e., lower H(p) means higher correlation, and the vertical axis shows the

probability of error for the decoded X. All coding schemes in Fig. 4 achieve 2:1 compression and

therefore, the Slepian-Wolf limit is shown to be 0.5 bits at almost zero error probability. The performance

limit of the more general Wyner-Ziv coding described in Box 3 and Section 3.1 is also included. The

codeword length of each Slepian-Wolf code is also given in Fig. 4. It can be seen that the higher the

correlation, the lower the probability of error for a certain Slepian-Wolf code. The more powerful the

Slepian-Wolf code, the lower the correlation needed for the code to achieve very low probability of error.

Clearly, stronger channel codes, e.g., same family of codes with longer codeword length in Fig. 4, for

the BSC result in better Slepian-Wolf codes in the binary symmetric correlation setup.

This last statement can be generalized to any correlation model: if the correlation between the source

output X and the side information Y can be modeled with a “virtual” correlation channel, then a good

channel code over this channel can provide us with a good Slepian-Wolf code through the syndromes

and the associated coset codes. Thus the seemingly source coding problem of Slepian-Wolf coding is

actually a channel coding one and near-capacity channel codes such as turbo and LDPC codes can be

used to approach the Slepian-Wolf limits.

2.2 Slepian-Wolf Coding of Multiple Sources with Arbitrary Correlation

Practical Slepian-Wolf code designs for other correlation models and more than two sources have ap-

peared recently in the literature. Considering only the approaches that employ powerful channel codes,

i.e., turbo and LDPC codes, the different practical schemes are given in Table 1. References with similar

Slepian-Wolf coding setup, i.e., similar correlation model and number of sources, are grouped together.
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Figure 4: Slepian-Wolf coding of binary X with side information Y at the decoder based on turbo/LDPC
codes. The rate for all codes is fixed at 1/2.

Table 1: References to Slepian-Wolf code designs for different memoryless sources with memoryless
correlation.

Turbo code based LDPC code based
Two binary sources [14, 16, 26, 27, 28] [15, 16, 17, 29]
More than two binary sources [16] [15, 16, 32, 33]
Two nonbinary sources [27, 30, 31] [33]

To sum up the recent developments, there is no systematic approach to general practical Slepian-

Wolf code design yet, in the sense of being able to account for an arbitrary number of sources with

nonbinary alphabets and possibly with memory in the marginal source and/or correlation statistics.

None of the approaches in Table 1 refer to sources with memory and/or the memory in the correlation

between the sources. The only approach taking into account correlation with memory is [34]. The lack

of such results is due to the fact that the channel coding analog to such a general Slepian-Wolf coding

problem is a channel code design problem over channels that resemble more involved communication

channels, and thus, has not been adequately studied yet.

Nevertheless, there has been a significant amount of work and hence, for a number of different

scenarios the available Slepian-Wolf code designs perform well. These designs are very important, as

asymmetric or symmetric Slepian-Wolf coding plays the role of conditional or joint entropy coding,

respectively. Not only can Slepian-Wolf coding be considered the analog to entropy coding in classic

10



lossless source coding, but also the extension of entropy coding to problems with side information and/or

distributed sources. In these more general problems, near-lossless compression of a source down to its

entropy is a special case of Slepian-Wolf coding when there is no correlation either between the source

and the side information (asymmetric setup) or between the different sources (symmetric setup).

So, apart from its importance as a separate problem, when combined with quantization, Slepian-Wolf

can provide a practical approach to lossy DSC problems, such as the Wyner-Ziv problem considered

next, similarly to the way quantization and entropy coding are combined in classic lossy source coding.

3 Wyner-Ziv coding

In the previous section, we focused on lossless source coding of discrete sources with side information

at the decoder as one case of Slepian-Wolf coding. In sensor network applications, we are often dealing

with continuous sources; then the problem of rate distortion with side information at the decoder arises.

The question to ask is how many bits are needed to encode X under the constraint that the average

distortion between X and the coded version X̂ is E{d(X, X̂)} ≤ D, assuming the side information Y is

available at the decoder but not at the encoder. This problem, first considered by Wyner and Ziv in [5],

is one instance of DSC with Y available uncoded as side information at the decoder. It generalizes the

setup of [4] in that coding of discrete X is with respect to a fidelity criterion rather than lossless. For

both discrete and continuous alphabet cases and general distortion metrics d(·), Wyner and Ziv [5, 35]

gave the rate-distortion function R∗
WZ(D) for this problem. We include in Box 3 the Wyner-Ziv rate

distortion functions for the binary symmetric case and the quadratic Gaussian case.

———————————————————- Begin ——————————————————————

Box 3: Wyner-Ziv coding: The binary symmetric case and the quadratic Gaussian case

Wyner-Ziv coding, as depicted in Fig. 5, generalizes the setup of Slepian-Wolf coding [4] in that

coding of X is with respect to a fidelity criterion rather than lossless.

Joint source
decoder

X̂Joint source
decoder

X̂Lossy source
encoder

X Lossy source
encoder

X R    R    (D)
WZ

YY

*

Figure 5: Wyner-Ziv coding or lossy source coding with side information.

1) The binary symmetric case: X and Y are binary symmetric sources, the correlation between them

is modeled as a BSC with crossover probability p and the distortion measure is the Hamming distance.

We can write X = Y
⊕

E, where E is a Bernouli(p) source. Then the rate-distortion function RE(D)

for E serves as the performance limit RX|Y (D) of lossy coding of X given Y at both the encoder and
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the decoder. From [6] we have

RX|Y (D) = RE(D) =
{

H(p)−H(D), 0 ≤ D ≤ min{p, 1− p},
0, D > min{p, 1− p}. (3)

On the other hand, the Wyner-Ziv rate-distortion function in this case is [5, 36, 37]

R∗
WZ(D) = l.c.e{H(p ∗D)−H(D), (p, 0)}, 0 ≤ D ≤ p, (4)

the lower convex envelope of H(p ∗D)−H(D) and the point (D = p,R = 0), where p ∗D = (1− p)D +

(1−D)p. In Fig. 6, both R∗
WZ(D) and H(p ∗D)−H(D) have been plotted to get a better idea of how

the lower convex envelope of the curve H(p ∗D)−H(D) and the point (p, 0) is determined.

For p ≤ 0.5, R∗
WZ(D) ≥ RX|Y (D) with equality only at two distortion-rate points: the zero-rate

point (p, 0) and the zero-distortion (or Slepian-Wolf) point (0,H(p)). See Fig. 6 for p = 0.27. Thus

Wyner-Ziv coding suffers rate loss in this binary symmetric case. When D = 0, the Wyner-Ziv problem

degenerates to the Slepian-Wolf problem with R∗
WZ(0) = RX|Y (0) = H(X|Y ) = H(p).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

D

R
  (

bi
ts

)

Correlation p=Pr[X≠Y]=0.27

p 

R
X |Y

 (D ) 

H(p) 

R
WZ
*  (D ) 

H(p   D) − H(D) * 

Figure 6: R∗
WZ(D) and RX|Y (D) for the binary symmetric case with p = 0.27.

2) The quadratic Gaussian case: X and Y are zero mean and stationary Gaussian memoryless sources

and the distortion metric is mean-squared error (MSE). Let the covariance matrix of X and Y be

Λ =
[

σ2
X ρσXσY

ρσXσY σ2
Y

]
with |ρ| < 1, then [5, 35]

R∗
WZ(D) = RX|Y (D) =

1
2
log+

[
σ2

X(1− ρ2)
D

]
, (5)

where log+x = max{log2x, 0}. There is no rate loss with Wyner-Ziv coding in this quadratic Gaussian

case. If Y can be written as Y = X + Z, with independent X ∼ N(0, σ2
X) and Z ∼ N(0, σ2

Z), then

R∗
WZ(D) = RX|Y (D) =

1
2
log+

[
σ2

Z

(1 + σ2
Z/σ2

X)D

]
. (6)
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On the other hand, if X = Y + Z, with independent Y ∼ N(0, σ2
Y ) and Z ∼ N(0, σ2

Z), then

R∗
WZ(D) = RX|Y (D) =

1
2
log+

(
σ2

Z

D

)
. (7)

———————————————————– End ——————————————————————-

The important thing about Wyner-Ziv coding is that it usually suffers rate loss when compared

to lossy coding of X when the side information Y is available at both the encoder and the decoder

(see the binary symmetric case in Box 3). One exception is when X and Y are jointly Gaussian with

MSE measure (the quadratic Gaussian case in Box 3). There is no rate loss with Wyner-Ziv coding

in this case, which is of special interest in practice (e.g., sensor networks) because many image and

video sources can be modeled as jointly Gaussian (after mean subtraction). Pradhan et al. [38] recently

extended the no rate loss condition for Wyner-Ziv coding to X = Y + Z, where Z is independently

Gaussian but X and Y could follow more general distributions.

From an information-theoretical perspective, according to [39], there are granular gain and boundary

gain in source coding, and packing gain and shaping gain in channel coding. Wyner-Ziv coding is

foremost a source coding (i.e., a rate-distortion) problem, one should consider the granular gain and

the boundary gain. In addition, the side information necessitates channel coding for compression (e.g.,

via Wyner’s syndrome-based binning scheme [11]), which utilizes a linear channel code together with

its coset codes. Thus channel coding in Wyner-Ziv coding is not conventional in the sense that there is

only packing gain, but no shaping gain. One needs to establish the equivalence between the boundary

gain in source coding and the packing gain in channel coding for Wyner-Ziv coding; this is feasible

because channel coding for compression in Wyner-Ziv coding can perform conditional entropy coding

to achieve the boundary gain – the same way as entropy coding achieves the boundary gain in classic

source coding [39] [40, p. 123]. Then in Wyner-Ziv coding, he/she can shoot for the granular gain via

source coding and the boundary gain via channel coding.

From a practical viewpoint, because we are introducing loss/distortion to the source with Wyner-Ziv

coding, source coding is needed to quantize X. Box 4 reviews main results in source coding (quantization

theory) regarding Gaussian sources.

———————————————————- Begin ——————————————————————

Box 4: Main results in source coding (quantization theory)

For Gaussian source X ∼ N(0, σ2
X) with MSE distortion metric, the rate-distortion function [6] is

RX(D) = 1
2 log+(σ2

X
D ) and the distortion-rate function is DX(R) = σ2

X2−2R. At high rate, the MSE

(or Lloyd-Max) scalar quantizer, which is nonuniform, performs 4.35 dB away from DX(R) [41]; and

the entropy-coded scalar quantizer (or uniform scalar quantization followed by ideal entropy coding)
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for X suffers only 1.53 dB loss with respect to DX(R) [42]. High dimensional lattice vector quantizers

[43] can be found in dimensions 2, 4, 8, 16 and 24 that perform 1.36, 1.16, 0.88, 0.67 and 0.50 dB

away, respectively, from DX(R). In addition, trellis-coded quantization (TCQ) [44] can be employed to

implement equivalent vector quantizers in even higher dimensions, achieving better results. For example,

TCQ can perform 0.46 dB away from DX(R) at 1 b/s for Gaussian sources [44] and entropy-coded TCQ

can get as close as 0.2 dB to DX(R) for any source with smooth PDF [40].

———————————————————– End ——————————————————————-

Usually there is still correlation remaining in the quantized version of X and the side information

Y , and Slepian-Wolf coding should be employed to exploit this correlation to reduce the rate. Since

Slepian-Wolf coding is based on channel coding, Wyner-Ziv coding is, in a nutshell, a source-channel

coding problem. There are quantization loss due to source coding and binning loss due to channel

coding. In order to reach the Wyner-Ziv limit, one needs to employ both source codes (e.g., TCQ

[44]) that can achieve the granular gain and channel codes (e.g., turbo and LDPC codes) that can

approach the Slepian-Wolf limit. In addition, the side information Y can be used in jointly decoding

and estimating X̂ at the decoder to help reduce the distortion d(X, X̂) for non-binary sources, especially

at low bit rate. The intuition is that in decoding X, the joint decoder should rely more on Y when the

rate is too low to make the coded version of X to be useful in terms of lowering the distortion. On the

other hand, when the rate is high, the coded version of X becomes more reliable than Y so the decoder

should put more weight on the former in estimating X̂. Fig. 7 depicts the block diagram of a generic

Wyner-Ziv coder.

syndrome Joint source-

channel decoding

X I X
~ ^

Y

DecoderEncoder

Source Estimation
encoder Slepian-Wolf encoder

X

Figure 7: Block diagram of a generic Wyner-Ziv coder.

To illustrate the basic concepts of Wyner-Ziv coding we consider nested lattice codes, which were

introduced by Zamir et al. [36, 37] as codes that can achieve the Wyner-Ziv limit asymptotically, for

large dimensions. Practical nested lattice code implementation was first done in [45]. Fig. 8 shows

1-D and 2-D nested lattices [37] based on similar sublattices [46]. The coarse lattice is nested in the

fine lattice in the sense that each point of the coarse lattice is also a point of the fine lattice but not

vice versa. The fine lattice code corresponds to the codewords represented by all the numbers in Fig.
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8, while the coarse lattice code includes only the codewords indexed by zero. All codewords indexed

by the same number correspond to a single coset code of the coarse lattice code. The fine code in

the nested pair plays the role of source coding while each coset coarse code does channel coding. To

encode, x is first quantized with respect to the fine source code, resulting in quantization loss. However,

only the index identifying the bin (coset channel code) that contains the quantized x is coded to save

rate. Using this coded index, the decoder finds in the bin (coset code) the codeword closest to the

side information y as the best estimate of x. Due to the binning process employed in nested coding,

the Wyner-Ziv decoder suffers a small probability of error. To reduce this decoding error probability,

the coarse channel code has to be strong with large minimum distance between its codewords. This

means that the dimensionality of the coarse linear/lattice code needs to be high. It is proven in [37]

that infinite dimensional source and channel codes are needed to reach the Wyner-Ziv limit. This result

is only asymptotical and not practical. Implemented code designs for the binary symmetric and the

quadratic Gaussian cases are discussed next.
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Figure 8: 1-D and 2-D nested lattices based on similar sublattices. The coarse lattice is nested in the
fine lattice in the sense that each point of the coarse lattice is also a point of the fine lattice but not
vice versa.

3.1 The binary symmetric case

Recall that in Wyner’s scheme [11] for lossless Slepian-Wolf coding, a linear (n, k) binary block code is

used. There are 2n−k distinct syndromes, each indexing a set (bin) of 2k binary words of length n that

preserve the Hamming distance properties of the original code. In compressing, a sequence of n input

bits is mapped into its corresponding (n−k) syndrome bits, achieving a compression ratio of n : (n−k).

For lossy Wyner-Ziv coding, Shamai, Verdu and Zamir generalized Wyner’s scheme using nested

linear binary block codes [37, 47]. According to this nested scheme, a linear (n, k2) binary block code

is again used to partition the space of all binary words of length n into 2n−k2 bins of 2k2 elements,

each indexed by a unique syndrome value. Out of these 2n−k2 bins only 2k1−k2 (k1 ≥ k2) are used and
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the elements of the remaining 2n−k2 − 2k1−k2 sets are “quantized” to the closest, in Hamming distance

sense, binary word of the allowable 2k1−k2 × 2k2 = 2k1 ones. This “quantization” can be viewed as a

(n, k1) binary block source code. Then the linear (n, k2) binary block code can be considered to be a

coarse channel code nested inside the (n, k1) fine source code.

To come close to the Wyner-Ziv limit, both codes in the above nested scheme should be good, i.e.,

a good fine source code is needed with a good coarse channel subcode [37, 47]. Knowing how to employ

good channel codes based on Wyner’s scheme (k1 = n) [28, 29], Liveris et al. proposed a scheme in

[48] based on concatenated codes, where from the constructions in [28] the use of good channel codes

is guaranteed. As for the source code, its operation resembles that of TCQ and hence, it is expected to

be a good source code. The scheme in [48] can come within 0.09 bit from the theoretical limit (see Fig.

9). This is the only result reported so far for the binary Wyner-Ziv problem.

The binary symmetric Wyner-Ziv problem does not seem to be practical, but due to its simplicity,

it provides useful insight into the interaction between source and channel coding. The rate loss from

the Wyner-Ziv limit in the case of binary Wyner-Ziv coding can be clearly separated into source coding

loss and channel coding loss. For example, in Fig. 9 the rate gap in bits between the simulated points

and the Wyner-Ziv limit can be separated into source coding rate loss and channel coding rate loss.

This helps us understand how to quantify and combine rate losses. in Wyner-Ziv coding.
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Figure 9: Simulated performance of the nested scheme in [48] for binary Wyner-Ziv coding for correlation
p = 0.27. The time-sharing line between the zero-rate point (p, 0) and the Slepian-Wolf point (0,H(p))
is also shown.

In the binary setup, there is no estimation involved as in the general scheme of Fig. 7. The design

process consists of two steps. First, a good classic binary quantizer is selected, i.e., a quantizer that

can minimize distortion D close to the distortion-rate function of a single Bernoulli(0.5) source at a
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given rate. The second step is to design a Slepian-Wolf encoder matched to the quantizer codebook.

The better the matching of the Slepian-Wolf code constraints (parity check equations) to the quantizer

codebook, the better the performance of the decoder. Joint source-channel decoding in Fig. 7 refers to

the fact that the decoder combines the Slepian-Wolf code constraints with the quantizer codebook to

reconstruct X. This binary design approach is very helpful in understanding the Gaussian Wyner-Ziv

code design.

3.2 The quadratic Gaussian case

For practical code design in this case, one can first consider lattice codes [49] and trellis-based codes

[44, 50] that have been used for both source and channel coding in the past and focus on finding

good nesting codes among them. Following Zamir et al.’s theoretical nested lattice coding scheme [36],

Servetto [45] proposed explicit nested lattice constructions based on similar sublattices [46] for the high

correlation case. The theoretical construction in [36] was generalized to work for lower correlation cases

and further improved in [37]. Fig. 10 shows the simplest 1-D nested lattice/scalar quantizer with N = 4

bins, where the fine source code employs a uniform scalar quantizer with stepsize q and the coarse

channel code uses a 1-D lattice code with minimum distance dmin = Nq. The distortion consists of two

parts: the “good” distortion introduced from quantization by the source code and the “bad” distortion

from decoding error of the channel code. To reduce the “good” distortion, it is desirable to choose a

small quantization stepsize q; on the other hand, to limit the “bad” distortion, dmin = Nq should be

maximized to minimize the channel decoding error probability Pe. Thus for a fixed N , there exists an

optimal q that minimizes the total distortion. The performance of nested scalar quantization is shown

later in Fig. 12.
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mind     =4q
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mind     =4q
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Figure 10: A 1-D nested lattice/uniform quantizer with four bins for the quadratic Gaussian Wyner-Ziv
problem, where Y is the side information only available at the decoder. Top: “Good” distortion only.
Bottom: “Good” and “bad” distortion.

Research on trellis-based nested codes as a way of realizing high-dimensional nested lattice codes has

just started recently [9, 48, 51, 52]. For example, in DISCUS [9], two source codes (scalar quantization

and TCQ) and two channel codes (scalar coset code and trellis-based coset code [50]) are used in
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source-channel coding for the Wyner-Ziv problem, resulting in four combinations. One of them (scalar

quantization with scalar coset code) is nested scalar quantization and another one (TCQ with trellis-

based coset code) can effectively be considered as nested TCQ.

Nested lattice or TCQ constructions in [9] might be the first approach one would attempt because

source and channel codes of about the same dimension are utilized. However, in this setup, the coarse

channel code is not strong enough. This can be seen clearly from Fig. 11, where performance bounds

[43, 53] of lattice source and channel codes are plotted together. With nested scalar quantization, the

fine source code (scalar quantization) leaves unexploited the maximum granular gain of only 1.53 dB

[42] but the coarse channel code (scalar coset code) suffers more than 6.5 dB loss with respect to the

capacity (with Pe = 10−6). On the other hand, Fig. 11 indicates that lattice channel code at dimension

250 still performs more than 1 dB away from the capacity. Following the 6-dB rule, i.e., that every 6

dB correspond to 1 bit, which is approximately true for both source and channel coding, the dB gaps

can be converted into rate losses (bits) and then combined into a single rate loss from the Wyner-Ziv

rate-distortion function.
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Figure 11: Lower bound in terms of the performance gap (in dB) of lattice source code from the
rate-distortion function of Gaussian sources and lattice channel codes from the capacity of Gaussian
channels, as a function of dimensionality.

Nested TCQ employed in DISCUS [9] can be viewed as a nested lattice vector quantizer, where

the lattice source code corresponding to TCQ has a smaller gap from the performance limit than the

lattice channel code (trellis-based coset code) of about the same dimension does. As the dimensionality

increases, lattice source codes reach the ceiling of 1.53 dB in granular gain much faster than lattice

channel codes approach the capacity. Consequently one needs channel codes of much higher dimension

than source codes to achieve the same loss, and the Wyner-Ziv limit should be approached with nesting

codes of different dimensionalities in practice. The need of strong channel codes for Wyner-Ziv coding
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was also emphasized in [37].

This leads to the second approach [54, 55] based on Slepian-Wolf coded nested quantization (SWC-

NQ), i.e., nested scheme followed by a second layer of binning. At high rate, asymptotic performance

bounds of SWC-NQ similar to those in classic source coding were established in [54, 55], showing

that ideal Slepian-Wolf coded 1-D/2-D nested lattice quantization performs 1.53/1.36 dB worse than

the Wyner-Ziv distortion-rate function D∗
WZ(R) with probability almost one. Performances close to

the corresponding theoretical limits were obtained by using 1-D and 2-D nested lattice quantization,

together with irregular LDPC codes for Slepian-Wolf coding (see Fig. 12).
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Figure 12: Wyner-Ziv coding results based on nested lattice quantization and Slepian-Wolf coding. At
high rate, ideal Slepian-Wolf coded 1-D/2-D nested lattice quantization performs 1.53/1.36 dB away
from the theoretical limit. Results with practical Slepian-Wolf coding based on irregular LDPC codes
are also included. Left: 1-D case; Right: 2-D case.

1 1.5 2 2.5 3 3.5 4
−30

−25

−20

−15

−10

−5

rate in bit per sample

M
S

E
 in

 d
B

σ2
Y
=1,σ2

Z
=0.28,X=Y+Z

Distortion−rate function for coding X alone
TCQ with practical Slepian−Wolf coding
TCQ with ideal Slepian−Wolf coding (simulation)
Wyner−Ziv distortion−rate function for coding X

1.46dB 

0.20dB 0.82dB 

1 1.5 2 2.5 3 3.5

−30

−25

−20

−15

−10

−5

rate in bit per sample

M
S

E
 in

 d
B

σ2
Y
=1,σ2

Z
=0.10,X=Y+Z

Distortion−rate function for coding X alone
TCVQ with practical Slepian−Wolf coding
TCVQ with ideal Slepian−Wolf coding (simulation)
Wyner−Ziv distortion−rate function for coding X

0.47dB 

0.20dB 

0.66dB
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The third practical nested approach to Wyner-Ziv coding involves combined source and channel

coding. The main scheme in this approach has been the combination of a classic scalar quantizer (no

binning in the quantization) and a powerful Slepian-Wolf code (see Section 2). The intuition that all

the binning should be left to the Slepian-Wolf code, allows the best possible binning (a high dimensional

channel code). This limits the performance loss of such a Wyner-Ziv code to that from source coding

alone. Some first interesting results were given in [56], where assuming ideal Slepian-Wolf coding and

high rate the use of classic quantization seemed to be sufficient, leading to a similar 1.53 dB gap for

classic scalar quantization with ideal SWC [57]. In a more general context, this approach could be

viewed as a form of nesting with fixed finite source code dimension and larger channel code dimension.

This generalized context can include the turbo-trellis Wyner-Ziv codes introduced in [52], where the

source code is a TCQ nested with a turbo channel code. However, the scheme in [52] can also be

classified as a nested one in the second approach. Wyner-Ziv coding based on TCQ and LDPC codes

was presented in [58], which shows that at high rate, TCQ with ideal Slepian-Wolf coding performs 0.2

dB away from the theoretical limit D∗
WZ(R) with probability almost one (see Fig. 13). Practical designs

with TCQ, irregular LDPC code based Slepian-Wolf coding and optimal estimation at the decoder can

perform 0.82 dB away from D∗
WZ(R) at medium bit rates (e.g., ≥ 1.5 b/s). With 2-D trellis-coded

vector quantization (TCVQ), the performance gap to D∗
WZ(R) is only 0.66 dB at 1.0 b/s and 0.47 dB

at 3.3 b/s [58]. Thus we are approaching the theoretical performance limit of Wyner-Ziv coding.

3.2.1 Comparison of different approaches to the quadratic Gaussian case

Based on scalar quantization, Fig. 14 illustrates the performance difference between classic uniform

scalar quantization (USQ), the first approach with nested scalar quantization (NSQ), the second with

SWC-NQ, and the third with ideal Slepian-Wolf coded uniform scalar quantization (SWC-USQ).

Although the last two approaches perform roughly the same [54], using nesting/binning in the

quantization step in the second approach of SWC-NQ has the advantage that even without the additional

Slepian-Wolf coding step, nested quantization (e.g., NSQ) alone performs better than the third approach

of SWC-USQ without Slepian-Wolf coding, which degenerates to just classic quantization (e.g., USQ).

At high rate, the nested quantizer asymptotically becomes almost a non-nested regular one so that

strong channel coding is guaranteed and there is a constant gain in rate at the same distortion level due

to nesting when compared with classic quantization. The role of Slepian-Wolf coding in both SWC-NQ

and SWC-USQ is to exploit the correlation between the quantized source and the side information for

further compression and in SWC-NQ, as a complementary binning layer to make the overall channel
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code stronger.
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Figure 14: Performance of Gaussian Wyner-Ziv coding with scalar quantization and Slepian-Wolf cod-
ing.

SWC-NQ generalizes the classic source coding approach of quantization (Q) and entropy coding

(EC) in the sense that the quantizer performs quite well alone and can exhibit further rate savings

by employing a powerful Slepian-Wolf code. This connection between entropy-coded quantization for

classic source coding and SWC-NQ for Wyner-Ziv coding is developed in Box 5.

———————————————————- Begin ——————————————————————

Box 5: From classic source coding to Wyner-Ziv coding

We shall start with the general case that in addition to the correlation between X and Y , {Xi}∞i=1 are

also correlated (we thus implicitly assume that {Yi}∞i=1 are correlated as well). The classic transform,

quantization, and entropy coding (T-Q-EC) paradigm for X is show in Fig. 15 (a). When the side

information Y is available at the decoder, we immediately obtain the DSC paradigm in Fig. 15 (b).

Note that Y is not available at the encoder – the dotted lines in Fig. 15 (b) only serve as a reminder

that the design of each of the T,Q, and EC components should reflect the fact that Y is available at

the decoder.

^ T -1 Q -1 -1EC

T Q EC T Q EC

^ T -1 Q -1 -1ECX

Y

Y

X X

X

(a) (b)

Figure 15: Classic source coding vs. DSC (source coding with side information at the decoder).

The equivalent encoder structure of DSC in Fig. 15 (b) is redrawn in Fig. 16. Each component in the

classic T-Q-EC paradigm is now replaced with one that takes into account the side information at the
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decoder. For example, the first component “T with side info” could be the conditional Karhunen-Loeve

transform [59], which is beyond the scope of this article.

Assuming that “T with side information” is doing a perfect job in the sense that it completely

decorrelates X conditional on Y , from this point on we will assume i.i.d. X and Y and focus on

“Q with side information” and “EC with side information” in Fig. 16. We rename the former as

nested quantization (the latter is exactly Slepian-Wolf coding) and end up with the encoder structure

of SWC-NQ for Wyner-Ziv coding of i.i.d. sources in Fig. 17.

T Q EC ==>
T with Q with EC with

side info side info side infoX
X

Y
Figure 16: Equivalent encoder structure of DSC for correlated sources.
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Figure 17: SWC-NQ for Wyner-Ziv coding of i.i.d. sources.

Nested quantization in SWC-NQ plays the role of source-channel coding, in which the source coding

component relies on the fine code and the channel coding component on the coarse code of the nested

pair of codes. The channel coding component is introduced to the nested quantizer precisely because

the side information Y is available at the decoder. It effectively implements a binning scheme to take

advantage of this fact in the quantizer. Nested quantization in Fig. 17 thus corresponds to quantization

in classic source coding.

For practical lossless source coding, conventional techniques (e.g., Huffman coding, arithmetic cod-

ing, Lempel-Ziv coding [60], PPM [61] and CTW [62]) have dominated so far. However, if one regards

lossless source coding as a special case of Slepian-Wolf coding without side information at the decoder,

then channel coding techniques can also be used for source coding based on syndromes [63, 64, 65].

In this light, the Slepian-Wolf coding component in Fig. 17 can be viewed as the counterpart of en-

tropy coding in classic source coding. Although the idea of using channel codes for source coding dates

back to the Shannon-MacMillan theorem [66, 67] and theoretical results appeared in [68, 64], practical

turbo/LDPC code based noiseless data compression schemes did not appear until very recently [69, 70].

Starting from syndrome based approaches for entropy coding, one can easily make the schematic

connection between entropy-coded quantization for classic source coding and SWC-NQ for Wyner-Ziv

coding, as syndrome based approaches can also be employed for Slepian-Wolf coding (or source coding
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with side information at the decoder) in the latter case. Performance-wise, the work in [54, 55, 58]

reveals that the performance gap of high-rate Wyner-Ziv coding (with ideal Slepian-Wolf coding) to

D∗
WZ(R) is exactly the same as that of high-rate classic source coding (with ideal entropy coding) to

the distortion-rate function DX(R). This interesting and important finding is highlighted in Table 2.

Table 2: High-rate classic source coding vs. high-rate Wyner-Ziv coding.

Classic source coding Wyner-Ziv coding
Coding scheme Gap to DX(R) Coding scheme Gap to D∗

WZ(R)
ECSQ [41] 1.53 dB SWC-NSQ [54, 55] 1.53 dB
ECLQ (2-D)[43] 1.36 dB SWC-NQ (2-D) [54, 55] 1.36 dB
ECTCQ [40] 0.2 dB SWC-TCQ [58] 0.2 dB

———————————————————– End ——————————————————————-

When referring to high rate, where there is no need for estimation, all the above results lead to

the following intuitive design for Wyner-Ziv coding in terms of source and channel coding gains [39].

The source code needs to try to maximize the granular gain which can be determined by assuming

ideal Slepian-Wolf coding (zero error probability and the rate equals the conditional entropy). This

is at most 1.53 dB or equivalently, from the 6-dB rule, 0.254 bit. Slepian-Wolf coding together with

the joint source-channel decoding, which takes into account the conditional statistics of the quantized

source output X̃ given the side information Y , plays the role of conditional entropy coding. Thus, it

yields the rest of the gain, which corresponds to the boundary gain [39]. For instance, in Figs. 12

and 13 at high rate the gap between the ideal Slepian-Wolf curve and the Wyner-Ziv rate-distortion

function is the granular loss in source coding, which is maximally 1.53 dB, and the rest of the loss of

any practical Wyner-Ziv code is the boundary loss, which can be much larger (see Figs. 12 and 13).

Since Slepian-Wolf coding is implemented via channel coding, this boundary gain also corresponds to

the packing gain [39] in channel coding.

3.3 Successive Wyner-Ziv coding

Successive or scalable image/video coding made popular by EZW [71] and SPIHT [72, 73] is attractive

in practical applications such as networked multimedia. For Wyner-Ziv coding, scalability is also a

desirable feature in applications that go beyond sensor networks. Steinberg and Merhav [74] recently

extended Equitz and Cover’s work [75] on successive refinement of information to Wyner-Ziv coding,

showing that both the doubly symmetric binary source (considered in Section 3.1) and the jointly

Gaussian source (treated in Section 3.2) are successively refinable. Cheng et al. [76] further pointed out

that the broader class of sources that satisfy the general condition of no rate loss [38] for Wyner-Ziv

coding is also successively refinable. Practical layered Wyner-Ziv code design for Gaussian sources based
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on nested scalar quantization and multi-level LDPC code for Slepian-Wolf coding was also presented in

[76]. Layered Wyner-Ziv coding of real video sources was introduced in [77].

4 Applications of DSC in Sensor Networks

In the above discussions we mainly considered lossless (Slepian-Wolf) and lossy (Wyner-Ziv) source

coding with side information only at the decoder, as most of the work so far in DSC has been focusing

on these two problems. For any network and especially a sensor network, this means that the nodes

transmitting correlated information need to cooperate in groups of two or three so that one node

provides the side information and another one can compress its information down to the Slepian-Wolf

or the Wyner-Ziv limit. This approach has been followed in [78].

As pointed out in [78], such cooperation in groups of two and three sensor nodes means that less

complex decoding algorithms should be employed to save some decoding processing power as the decoder

is also a sensor node or a data processing node of limited power [78]. This is not a big issue as several

low complexity channel decoding algorithms have been studied in the past years and so the decoding

loss for using lower complexity algorithms can be minimized.

A way to change this assumption of cooperation in small groups and the associated low complexity

decoding is to employ DSC schemes for multiple sources. Several Slepian-Wolf coding approaches for

multiple sources (lossless DSC) have been discussed in Subsection 2.2. However, theoretical performance

limits in the more general setting of lossy DSC for multiple sources still remain elusive. Even Wyner-Ziv

coding assumes perfect side information at the decoder, i.e., it cannot really be considered a two sources

problem. There are scant code designs (except [79, 80, 81]) in the literature for the case of lossy DSC

with two sources, where the side information is also coded.

The main issue for practical deployment of DSC is the correlation model. Although there has been

significant effort in DSC designs for different correlation models, in some cases even application specific

[8, 13, 78, 82], in practice it is usually hard to come up with a joint probability mass or density function

in sensor networks, especially if there is little room for training or little information about the current

network topology. In some applications, e.g., video surveillance networks, the correlation statistics can

be mainly a function of the location of the sensor nodes. In case the sensor network has a training mode

option and/or can track the varying network topology, adaptive or universal DSC that could achieve

gains for time-varying correlation could be used to follow the time-varying correlation. Such universal

DSC that can work well for a variety of correlation statistics seems to be the most appropriate approach

for sensor networks, but it is still an open and very challenging DSC problem.

Measurement noise, which is another important issue in sensor networks, can be addressed through
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DSC. Following the Wyner-Ziv coding approach presented in the previous section, the existence of

measurement noise, if not taken into account, causes some mismatch between the actual correlation

between the sources and the noiseless correlation statistics used to do the decoding, which means worse

performance. One way to resolve this issue is the robust code design discussed before. But if the noise

statistics are known, even approximately, they can be incorporated into the correlation model and thus,

considered in the code design for DSC. There is actually one specific DSC problem, the Chief Executive

Officer (CEO) problem [83], which considers such a scenario. In this problem the CEO of a company

employs a number of agents to observe an event and each of the agents provides the CEO with his/her

own (noisy) version of the event. The agents are not allowed to convene, and the goal of the CEO is

to recover as much information as possible about the actual event from the noisy observations received

from the agents, while minimizing the total information rate from the agents (sum rate). The CEO

problem can, hence, account for the measurement noise at the sensor nodes. Preliminary practical code

constructions for the CEO problem appeared in [79, 80], based on the Wyner-Ziv coding approaches,

but they are only limited to special cases.

Another issue is the cross-layer design aspect of DSC. DSC can be considered to be at the top of

the sensor networks protocol stack, the application layer [3]. Therefore, DSC sets several requirements

for the underlying layers, especially the next lower layer, the transport layer, regarding synchronization

between packets from correlated nodes.

DSC can also be designed to work together with the transport layer to make retransmissions smarter.

In that sense, scalable DSC [76] seems to be the way to implement such smart retransmissions.

One last aspect of the cross-layer design is the joint design with the lowest layer in the protocol stack,

the physical layer. In a packet transmitted through the network, the correlated compressed data can

have weaker protection than the associated header, thus saving some overhead, because the available

side information at the decoding node can make up for this weaker protection.

5 Related topics

So far we have motivated DSC with applications to sensor networks. Research on this application area

[8, 13, 78, 82] has just begun. Significant work remains to be done in order to fully harness the potential

of these next-generation sensor networks, as discussed in the last section. However, DSC is also related

to a number of different source and channel coding problems in networks.

First of all, due to the duality [38, 84] between DSC (source coding with side information) and channel

coding with side information [85, 86] (data hiding/digital watermarking), there are many application

areas related to DSC (e.g., coding for the multiple access channel [6] and the MIMO/broadcast channels
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[37, 87, 88]). Table 3 summarizes different dual problems in source and channel coding, where the

encoder for the source coding problem is the functional dual of the decoder for the corresponding

channel coding problem and vice versa. We can see that DSC only represents the starting point of a

class of related research problems.

Table 3: Dual problems in source and channel coding, where the encoder for the source coding problem
is the functional dual of the decoder for the corresponding channel coding problem and vice versa.

Source coding Channel coding
DSC [4, 5] (source coding with side informa-
tion at the decoder)

Data hiding [85, 86] (channel coding with side
information at the encoder)

Multiterminal source coding [7] Coding for MIMO/broadcast channels [37, 88]
Multiple description coding [89] Coding for multiple access channels [6]

Furthermore, a recent theoretical result [90] established multiple description coding [89] as a special

case of DSC with co-located sources, with multiple descriptions easily generated by embedded coding

[71, 72, 73] plus unequal error protection [91]. Under this context, iterative decoding approaches [14,

26, 27, 29] in DSC immediately suggest that the same iterative (turbo) technique can be employed for

decoding multiple descriptions [92]. Yet another new application example of DSC is layered coding for

video streaming, where the error drifting problem [93] in standard MPEG-4 FGS [94] coding can be

potentially eliminated with Wyner-Ziv coding [82, 95, 96].

Last but not least, DSC principles can be applied in reliable communications with uncoded side

information [97] and systematic source-channel coding [47, 96]. The latter includes embedding digital

signals into analog (e.g., TV) channels and communication over channels with unknown SNRs. Applying

DSC algorithms to these real-world problems will prove to be extremely exciting and yield the most

fruitful results.
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