
Is OptKnock a reliable strategy for desirable mutants?

Meltem Apaydin1

1Dept. of Electrical & Computer Engineering
Texas A&M University

College Station, TX, USA
ma193746@tamu.edu

Bo Zeng2

2Dept. of Industrial Engineering
University of Pittsburg

Pittsburg, PA, USA
bzeng@pitt.edu

Xiaoning Qian1,3

3Center for Bioinformatics & Genomic Systems Engineering
Texas A&M University

College Station, TX, USA
xqian@ece.tamu.edu

Abstract

Flux balance analysis (FBA) has enabled the development of computational methods for pre-
dicting optimal knockout strategies to genetically engineer microbial strains for desirable be-
havior, such as optimal biochemical overproduction for alternative energy sources. Many of
these existing methods are based on bi-level optimization formulations to maximize the desired
biochemical overproduction at the outer-level while modeling cell survival as the inner-level
optimization problem, for example, by maximizing cell growth as in the seminal OptKnock.
Nevertheless, optimal knockout strategies derived in such a bi-level optimization framework
may be heavily depending on the closeness and robustness of the inner-level optimization
model in capturing actual cell survival states. We investigate how reliable the knockout strate-
gies derived by OptKnock are, considering two critical but overlooked factors: (i) the surviving
mutant of the inner-level optimization model may not be well-defined, i.e., it is not unique; and
(ii) we cannot guarantee that the nature always cooperates with the human desire to select the
microbial strains that produce maximum biochemical products among surviving mutants. We
present our study in a core E. coli metabolic network and show that the knockout solutions
from OptKnock could be of arbitrarily poor performance. Then, we revamp OptKnock through
a novel pessimistic bi-level optimization framework, which considers the non-unique and non-
cooperative issues and potential modeling errors. Through computing pessimistic knockout
solutions and benchmarking with those from OptKnock, we observe that they are more reliable
and perform significantly better. We believe that the proposed pessimistic bi-level optimization
framework will help identify more practical and robust knockout strategies.

1 Introduction
Metabolic engineering of microbial strains has been studied extensively for targeted biochemical overproduction
that may benefit human society, for example, in different energy-related and pharmaceutical applications [6, 8, 2,
10, 9]. Due to the demanding experimental cost and time to test different microbial strains in vivo, computational
methods based on genome-scale dynamic analysis at steady states, such as Flux Balance Analysis (FBA) in
metabolic networks, have been developed for in silico prediction of useful knockout strategies for beneficial
mutants [15, 5]. Many of existing algorithms are based on bi-level optimization [13, 14, 3, 12, 7, 4], such as
OptKnock [3, 7, 4].

All these bi-level optimization formulations have inherent assumptions that the nature will always cooperate with
the human desire to select the mutants that serve the human society the best. However, in practice, it is often the
case that the knockout mutant that survives may not always fit the best with the human desire. In addition, these
computational methods always depend on certain model assumptions of cell survival, which are approximations
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to the real-world situations. Therefore, it is natural to ask how robust these derived knockout strategies are. In
this work, we investigate the robustness of the seminal OptKnock and show that it is necessary to have pessimistic
bi-level optimization in metabolic engineering to derive practical knockout strategies.

2 OptKnock: Model and Evaluation

2.1 The Bi-level OptKnock Model

FBA [15, 5] has enabled in silico genome-scale manipulation of metabolism. Based on such a steady-state
dynamic model constrained by stoichiometry for balanced production and consumption fluxes, computational
methods based on bi-level optimization have demonstrated their potential for predicting beneficial genetically en-
gineered microbial strains [13, 14, 3, 12, 7, 4]. The arguably best-known method in this category—OptKnock—
searches for potential mutations (gene or reaction knockouts for example) that can accomplish optimal biochem-
ical overproduction (the outer-level optimization) and, at the same time, optimize or maintain cellular survival
objectives (the inner-level optimization), modeled by the maximum biomass growth at steady states. The mathe-
matical programming formulation of OptKnock is as follows [3]:

max
yj

νchemical

s.t. max
νj

vbiom

s.t.
∑
j

Sijνj = 0,∀i;

νglc = νglc uptake; νbiom > νtargetbiom

νminj .yj 6 νj 6 νmaxj .yj ,∀j;∑
j

(1− yj) 6 K; yj = {0, 1} .

In this model, y and ν denotes the outer-level binary decision variables for possible knockout strategies and
inner-level continuous decision variables for resulting reaction fluxes, respectively. The goal of OptKnock is
to maximize desired biochemical production target vchemical, allowing K possible knockout reactions. The
inner-level optimization problem is to maximize the flux value for biomass production vbiom, modeling cell
survival objectives. This model is again based on steady-state analysis with FBA stoichiometry constraints that
the weighted sum of fluxes based on stoichiometric coefficients S for each metabolite is 0:

∑
j Sijvj = 0. In

addition, depending on the availability of nutrients or the maximal fluxes that can be supported by enzymatic
pathways [13], vminj and vmaxj are the lowest and highest possible reaction fluxes respectively for the reaction
vj . The glucose consumption rate vglc is often set to a fixed value vglc uptake. As the biomass growth is a linear
objective function of metabolic reaction fluxes, the strong duality of the inner-level optimization helps to convert
the original bi-level optimization problem into a Mixed Integer Linear Programming (MILP) , which can be
solved efficiently for large-scale metabolic networks [3, 7, 4].

Table 1: Knockout strains derived by OptKnock on the core E.coli metabolic network
K Knockouts Ideal Succi Biomass
3 g6p→ 6pg + nadph, mal→ pyr + co2 + nadph, nadh→

nadph
110.179 6.972

4 g6p→ 6pg + nadph, mal→ pyr + co2 + nadph, nadh→
nadph, 3pg + glu→ ser + akg + nadh

123.314 5

5 g6p→ 6pg + nadph, 3pg + glu→ ser + akg + nadh, nadh
→ nadph, glyc→ glyc(ext), ac(ext)→

129.786 5.470

Following [3], we have derived the optimal knockout strategies for a core E. coli metabolic network model [1]
with 74 chemicals and 75 reactions. Succinate is set as the targeted bioproduction, the glucose uptake rate is set
at a fixed value of 100 mmol/gDW.hr and the minimum biomass is set as 5 mmol/gDW.hr. The experiments are
based on the aerobic condition for E. coli metabolic model. We allow K =3 to 5 knockouts. Table 1 gives the
knockout strategies from OptKnock. It is clear that the predicted knockout strains give high Succinate production
rates. However, as pointed out in [12], the inner-level biomass rates of the derived mutants are very close to the
minimally allowed rate in all three cases, which implies that they may not survive easily in practice. Given that,
we are motivated to further investigate the robustness of OptKnock solutions.
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Figure 1: The ratio (%) between outer-level objective values of P-OptKnock and “optimistic” OptKnock plotted as solid
lines with increasing ε (Blue: K = 3, Black: K = 4, Red: K = 5). The ratios for pessimistic Succinate rate evaluation of
OptKnock also are given as dashed lines (Note that the rates are 0 for both K =3 and 4.)

2.2 How reliable are OptKnock strategies?

The bi-level structure in [3, 11] clearly provides an effective approach to model the interacting objectives of the
outer-level knockout implementer (i.e. human) and the inner-level microbial cells. Nevertheless, two critical
factors have been overlooked, which may seriously affect the performance of OptKnock solutions in practice:
(i) For a given outer-level knockout strategy y∗, the surviving mutant output from the inner-level optimization
model is not well-defined, i.e., it may not give unique reaction fluxes.
(ii) Given non-unique surviving mutants, we cannot guarantee that the nature always select the mutant that
produces the maximum desirable biochemical products.
To evaluate the impact of those two factors on OptKnock solutions, we have performed the following experiment:
For a given K, we compute an optimal solution y∗ to OptKnock and the corresponding inner-level optimal value
θ(y∗). Then, we formulate and solve the following Evaluation problem:

min
νj

νchemical

s.t.
∑
j

Sijνj = 0,∀i;

νglc = νglc uptake;

νbiom > νtargetbiom ;

νminj .yj 6 νj 6 νmaxj .yj ,∀j ;
vbiom > θ(y∗(1− ε)).

Obviously, this Evaluation problem computes the performance of the least favorable surviving mutant for the
given y∗. For the derived OptKnock mutants reported in Table 1, we found that: When K =3 and 4, the derived
“optimal” mutants actually have 0 Succinate rates, if the cells do not cooperate with the knockout implementer
(see Figure 1 when ε = 0). It highlights that nature may do very opposite to human desire and OptKnock
strategies may not work in practice.
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3 Pessimistic Bi-level Optimization

3.1 Pessimistic OptKnock

OptKnock is based on the regular Optimistic Bi-level Optimization (OBO), which assumes that the inner-level
decision variables are always cooperative by selecting the inner-level solutions in favor of the outer-level opti-
mization problem. However, in many practical scenarios such as designing mutant strains in metabolic engi-
neering, it is often the case that the inner-level decision variables behave non-cooperatively by taking a solution
against the desire of the outer-level optimization. For such cases, it would be more reasonable to revamp Opt-
Knock model by considering its Pessimistic Bi-level Optimization (PBO) version for modeling and computing
reliable solutions. In the following, we provide such a pessimistic formulation, i.e., P-OptKnock:

max
yj

min
νj∈S(yj)

νchemical

s.t.
∑
j

(1− yj) 6 K; yj = {0, 1}

S(yj) = argmax{vbiom :
∑
j

Sijνj = 0,∀i;

νglc = νglc uptake;

νbiom > νtargetbiom ; νminj .yj 6 νj 6 νmaxj .yj ,∀j}.
Computing a PBO problem is recognized very challenging. Nevertheless, a recent solution scheme developed
in [16] provides us a capable tool to address this challenge. Specifically, by replicating variables and constraints
in the inner-level and introducing a new constraint in the inner-level, we obtain a tight bi-level relaxation to
P-OptKnock:

max
yj ,ν

νchemical

s.t.
∑
j

(1− yj) 6 K, yj = {0, 1} ,
∑
j

Sijνj = 0,∀i

νglc = νglc uptake, νbiom > νtargetbiom , νminj .yj 6 νj 6 νmaxj .yj ,∀j,

νj ∈ argmin{νchem :
∑
j

Sijνj = 0,∀i

νglc = νglc uptake, νbiom > νtargetbiom , νminj .yj 6 νj 6 νmaxj .yj ,∀j}
νbiom > νbiom(1− ε)},

where ε is introduced to reflect the cell response or modeling error. By varying ε, we can investigate the sensi-
tivity of y with respect to such type of errors. According to [16], the last constraint ensures that (when ε = 0) νj
is an optimal solution of the inner-level, i.e. νj ∈ S(yj). The aforementioned bi-level problem can be computed
by its single-level mixed integer program (MIP) reformulation through Karush-Kuhn-Tucker (KKT) conditions.
Then, using the Relaxation-and-Correction scheme in [16], the original P-OptKnock can be readily solved.

3.2 Experimental results

We have derived P-OptKnock knockout strains on the same core E. coli network when we achieve stable knockout
solutions with increasing ε, given in Table 2. It is clear that the derived P-OptKnock mutants have much higher
biomass rates compared to OptKnock knockout strains in Table 1 when K =3 and 4, though the Succinate rates
are lower than the corresponding values if the cooperative assumption holds. This indicates that P-OptKnock
knockout mutants are more reliable and have a higher chance of surviving in practice. When K =5, we find that
both P-OptKnock and OptKnock knockout mutants are similar as the surviving mutants are more restricted with
the increasing number of knockout reactions.

Furthermore, Figure 1 shows the ratio of P-OptKnock optimal Succinate rates and the pessimistic Succinate
rate evaluations of OptKnock with respect to the “optimistic” OptKnock Succinate rates for different numbers of
knockouts and different levels of relaxation reflected by the ε value (0 6 ε < 0.4), taking care of realistic cell
responses and modeling errors.

It is clear from both the table and figure that P-OptKnock achieves Succinate overproduction with more robust
knockout solutions. Compared with OptKnock solutions, which may give arbitrarily low Succinate overproduc-
tion if the cooperative assumption is not valid, P-OptKnock can derive more practical and robust knockout strains
in practice.
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Table 2: Knockout strains derived by P-OptKnock on the core E.coli metabolic network
K Knockouts Succi Biomass
3 g6p→ 6pg + nadph, oac + accoa→ cit, ac→ ac(ext) 76.971 14.362
4 g6p → 6pg + nadph, oac + accoa → cit, suc → fum +

fadh2 , ac(ext)→
82.362 14.362

5 g6p → 6pg + nadph, mal → pyr + co2 + nadph, 3pg +
glu→ ser + akg + nadh, fadh2 + 0.5o2→ 2atp, nadh→
nadph

107.075 5

4 Conclusions

We investigate the robustness of OptKnock solutions for designing knockout mutants for biochemical overpro-
duction and observe that its knockout solutions could be of arbitrarily poor performance. Then, we propose and
compute a novel pessimistic bi-level optimization framework P-OptKnock to derive reliable knockout strains.
By benchmarking both OptKnock and P-OptKnock on a core E. coli metabolic network, we demonstrate that the
pessimistic bi-level optimization solutions are indeed more reliable and has the promising potential of identifying
practical and robust knockout strategies.
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