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Abstract In this paper, we propose a flexible noise tolerant graph clustering
formulation based on non-negative matrix factorization (NMF), which solves
graph clustering under different settings, such as community detection and
block modeling problems for either undirected or directed graphs. Compar-
ing to the existing graph clustering algorithms, many of which do not perform
robustly when graphs of interest contain high noise, we improve the noise toler-
ance in our NMF model by explicitly controlling the sparsity for every decom-
posed factor. Based on our sparsity regularized formulation, we develop a novel
alternating proximal method (APANMF) to solve the challenging optimiza-
tion problem. Furthermore, we prove that APANMF converges to a station-
ary point. Experiments on well-known synthetic networks for different graph
clustering tasks and real-world networks demonstrate that our APANMF out-
performs other state-of-the-art NMF-based graph clustering methods in terms
of flexibility and noise tolerance.

Keywords Non-negative Matrix Factorization · Community Detection ·
Block Modeling · Sparsity Regularization · Proximal Method

1 Introduction

The advanced data profiling technologies have produced a large number of
network datasets in different research areas. Without prior knowledge, an im-
portant research challenge is to extract useful information carried in those
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network datasets by graph clustering methods, which help visualize and un-
derstand the topology or structures of graphs and reduce the dimensionality
of network datasets so that further analyses can be carried out for knowledge
discovery.

Non-negative Matrix Factorization (NMF) can produce meaningful non-
negative representations of the given original datasets [1–4]. Recently, NMF
has been successfully applied for graph clustering [5–8]. The authors in [6,5]
propose to decompose the adjacency matrix of an undirected graph into sym-
metric non-negative components to identify communities under the assump-
tion that all clusters consist of highly connected vertices. Further investigation
has demonstrated its potential for detecting overlapping clusters in graphs [6,
9,10]. In order to handle more challenging directed graph clustering problems,
an asymmetric NMF formulation [7] has been proposed to allow an asymmet-
ric matrix to capture the connectivity profiles among different clusters so that
the new formulation can deal with asymmetric adjacency matrices in directed
graphs. For more general blockmodel clustering problems, where vertices with
similar interaction patterns are considered to play the same role in the graph
and hence belong to the same cluster, the authors in [8] propose to tackle the
problem with the introduction of an image graph, which presents the latent
blockmodel structures of graphs.

One important property of NMF-based graph clustering formulations is
that they usually yield a sparse representation of the original graph. With
the assumption that the multiplication of factorized components can closely
recover original adjacency matrices, when the network datasets are noise free or
the blockmodel structures in adjacency matrices are obvious under a low noise
level, sparse factorization can be obtained by the existing formulations [5–
8]. However, the real-world network datasets are often noisy and such low-
noise assumptions may not be satisfied. In fact, without the explicit control of
the sparsity of each factorized component, previously proposed methods [5–8]
often yield non-sparse results empirically when the noise of network topology is
high, which are difficult to interpret for understanding the inherent structures
in these networks.

Due to the complexity of general graph clustering problems, the corre-
sponding optimization algorithms for different NMF-based formulations may
have different convergence guarantees. For the algorithms SymNMF MU [6]
and ASymNMF [7], the denominators of the corresponding multiplicative al-
gorithms are not well-defined [11] so that SymNMF MU and ASymNMF may
not converge. Additionally, for ASymNMF, the authors in [11] point out that
merely a proof of the monotonic decreasing property of the objective function
values does not imply the convergence to a stationary point. Hence, Sym-
NMF MU and ASymNMF may not converge to a stationary point. For the
algorithm BNMF [8], there has been no convergence proof provided and the
quality of the solutions obtained by BNMF has no theoretical guarantee ei-
ther. Another algorithm SymNMF NT [5] does converge to a stationary point.
However, it may consume prohibitive amount of memory and does not scale
up well with the number of clusters.



Title Suppressed Due to Excessive Length 3

(a) (b) 

(c) (d) 

A = H ×B×HT A = H ×B×HT

A = H ×B×HT A ≈ H ×B×HT

Fig. 1: Graph clustering under different settings: (a) Toy example for community detection
for undirected graph. (b) Toy example for directed graph clustering. (c) Toy example for
block modeling clustering. (d) Toy example for overlapping graph clustering.

1.1 Main Contributions

First of all, in order to obtain robust results for noisy graphs, we propose a
new formulation by explicitly adding an L1-norm sparsity penalty to each fac-
torized component. Second, we develop a novel alternating proximal method
(APANMF) to efficiently solve noisy graph clustering based on our new for-
mulation. We prove that APNNMF converges to a stationary point without
any assumption about the convexity or existence of stationary points. To the
best of our knowledge, it is the first convergence proof of a coordinate descent
method for solving this optimization problem, whose constraint set is convex
but the objective function is non-convex and non-differentiable.

1.2 Roadmap

We briefly review the related work in Section 2, followed by the derivation
of our novel formulation in Section 3 and the alternating proximal method
(APANMF) in Section 4. The convergence-related propositions of our APANMF
(Propositions 1, 2 and 3) are also provided in Section 4. In Section 5, we demon-
strate the superiority of our APANMF by comparing with other state-of-the-
art methods (SymNMF MU [6], SymNMF NT [5], ASymNMF [7], BNMF [8])
on synthetic networks (LFR benchmarks [12] and block modeling benchmarks [13])
as well as real-world large-scale network datasets (Facebook ego network from
http://snap.stanford.edu/data/ and PIPs human protein-protein interaction
(PPI) network [14]). We draw the conclusion in Section 6.

2 Related Work

For a given graph G = (V,E) with |V | = N vertices connected by |E| = M
edges, The authors in [5,6] propose to decompose the corresponding adjacency
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matrix AN×N for a given undirected graph, with Aij = 1 denoting that vertex
i connects to vertex j and Aij = 0 otherwise, into symmetric components for
community detection:

min:
H≥0

Γ (H) =
∥∥A−HHT

∥∥2
F
, (1)

where H is a non-negative matrix of size N×K and K is the number of poten-
tial clusters. H can be naturally interpreted as the cluster assignment matrix
for graph clustering. A multiplicative updating algorithm SymNMF MU [6]
has been proposed to solve this problem (1). However, SymNMF MU may not
converge to a stationary point, which will be further discussed in Section 4.3.
SymNMF NT [5] is a Newton-like algorithm, which solves the problem (1) by
lining up the columns of H. SymNMF NT converges to a stationary point.
However, it has relatively larger memory consumption requirement [5].

In order to handle directed graphs, the authors in [7] have presented an
asymmetric NMF decomposition formulation:

min:
H≥0, S≥0

Π(H,S) =
∥∥A−HSHT

∥∥2
F
, (2)

where SK×K is a K ×K asymmetric matrix for handling the asymmetric ad-
jacency matrix A of a directed graph. A multiplicative updating algorithm
ASymNMF [7] has been developed to solve this problem (2). The objective
function values generated by ASymNMF monotonically decrease but the solu-
tion may not converge to a stationary point, which is discussed in Section 4.3.

For block modeling graph clustering, one recent algorithm—BNMF [8]—
has been derived base on the following formulation:

min:
H≥0, 0≤M≤1

∥∥A−HMHT
∥∥2
F

+ λ
∥∥M ideal −M

∥∥2
F
, (3)

where M and M ideal represent the adjacency matrices of the introduced image
graph and the “ideal image matrix”, respectively. M ideal is the function of
M , which is defined by M ideal

ij = argmin
u∈{0,1}

|u−Mij | and approximated by a

sigmoid function in the proposed projected descent algorithm. However, there
is no convergence proof provided for BNMF.

3 Flexible Graph Clustering with L1-norm Regularization

Adopting different NMF-based formulations can address different graph clus-
tering problems, such as aforementioned community detection and block mod-
eling for either undirected or directed graphs, by different formulations (1), (2),
and (3). In this section, we propose a mathematical formulation, which can
deal with all the above clustering tasks in just one flexible framework. Further-
more, we explicitly control the sparsity of factorized components by adding
L1-norm penalty terms to yield sparse and robust solutions for noisy graphs.
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3.1 A Flexible Graph Clustering Formulation

Our graph clustering formulation is based on the similar assumption that the
given adjacency matrix can be factorized by the multiplications of a clustering
assignment matrix and an adjacency matrix of the image graph capturing the
underlying topology of the given graph A ≈ HBHT [15]:

min:
∥∥A−HBHT

∥∥2
F
,

s.t. Hij ∈ {0, 1} ,∀i, j;
Brs ∈ {0, 1} ,∀r, s,

(4)

where H is the N ×K dimensional assignment matrix with Hir = 1 revealing
that vertex i belongs to cluster r and Hir = 0 otherwise. The introduced
image graph is presented by the adjacency matrix B, in which Brs indicates
the connectivity between the cluster r and the cluster s with Brs = 1 meaning
that cluster r densely interacts with the cluster s and Brs = 0 otherwise. We
note that our formulation is similar to (2), but with the binary constraints
on both H and B. Clustering by our formulation may provide better physical
interpretations for both the assignment matrix H and the image graph B.

Fig. 1 illustrates how we formulate graph clustering under different settings.
With the help of an image graph B, which captures the underlying topological
organization of the graph, clusters of vertices with similar topological proper-
ties can be successfully identified by using our flexible formulation (4) for all
four different graph clustering tasks.

By solving the optimization problem (4), we can obtain the promising
graph clustering results. However, it is challenging to find integer solutions
for this nonlinear optimization problem (4) due to the inherent NP hardness
of general network clustering as a quadratic assignment problem [13,16], es-
pecially with large-scale networks. Relaxing the constraints from integer to
continuous variables is one typical way to achieve high quality solutions [17].
In this paper, we relax our binary constraints as follows:

ϕ = {(H,B)|0 ≤ Hij ≤ 1, 0 ≤ Brs ≤ 1,∀i, j, r, s} . (5)

The relaxed search space ϕ allows the elements in H and B range from 0 to
1. After relaxation (5), our problem becomes:

min
(H,B)∈ϕ

: Ψ(H,B) =
∥∥A−HBHT

∥∥2
F
. (6)

3.2 L1-norm Regularization

For noise free networks, such as toy examples given in Fig. 1, or networks
with reasonably low noise, our proposed formulation (6) can naturally pro-
duce sparse results with original clustering structures because the assumption
A ≈ HBHT holds. However, for real-world networks, which often contain sig-
nificant amount of noise due to limitations of interaction profiling methods,
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the underlying clustering structures may be destroyed and the assumption
A ≈ HBHT may not be satisfied. Hence, we may not be able to have mean-
ingful sparse results by directly solving (6). In order to address this problem,
we add L1-norm regularization terms for both H and B to (6) to explicitly
enforce sparse structures for H and B:

min
(H,B)∈ϕ

: Ω(H,B) =
∥∥A−HBHT

∥∥2
F

+ α ‖H‖L1 + β ‖B‖L1 , (7)

in which ‖X‖L1 =
∑
i,j |Xij |. With the newly added regularization terms, we

hope for the guarantee of physically meaningful sparse results, especially for
noisy networks.

4 Alternating Proximal Algorithm

To solve this sparse NMF-based graph clustering problem, we now derive a
new set of optimization algorithms, which are different from the existing al-
gorithms, mostly based on multiplicative updating algorithms for the original
NMF algorithm [1]. Mathematically, our optimization problem (7) is more
challenging to solve with two non-differentiable terms in Ω(H,B), compared
to the optimization problems (1), (2) and (3). In order to efficiently solve this
optimization problem (7), we need to make use of the structure of the objec-
tive function, which takes the sum of a differentiable component and other
non-differentiable components. Based on this observation, we develop an al-
ternating proximal method that optimizes the cluster assignment matrix H
and the image matrix B in an alternating way. This alternating proximal al-
gorithm is guaranteed to converge to a stationary point of the optimization
problem (7).

4.1 Updating H

Let us first consider the optimization step with respect to the assignment
matrix H by fixing the image matrix at B̂. The decomposed optimization
problem aims to solve the following problem:

min :
0≤H≤1

F (H) =
∥∥∥A−HB̂HT

∥∥∥2
F

+ α ‖H‖L1 , (8)

where we define P (H) =
∥∥∥A−HB̂HT

∥∥∥2
F

and P (H) is differentiable.

Because of the structure of the problem, we apply a proximal method
to iteratively solve the optimization problem. As similarly done in [18], we
propose to compute Gk(H) for the approximation of F (H) at the kth iteration
around Hk−1:

Gk(H) = P (Hk−1)+ < ∇P (Hk−1), (H −Hk−1) >

+
Lk
2

∥∥H −Hk−1∥∥2
F

+ α ‖H‖L1 ,
(9)
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where Lk is a Lipschitz constant, which can be chosen to satisfy the following
inequality:

Gk(Hk) ≥ F (Hk). (10)

Hence, instead of finding Hk based on F (Hk−1), our proximal method solves
the following problem at the kth iteration:

Hk = arg min
0≤H≤1

: Gk(H). (11)

After some algebraic manipulations by completing the square and removing
the constant terms, the problem (11) is in fact equivalent to the following
problem:

Hk = arg min
0≤H≤1{

α ‖H‖L1 +
Lk
2

∥∥∥∥H − (Hk−1 − 1

Lk
∇P (Hk−1)

)∥∥∥∥2
F

}
.

(12)

Algorithm 1 Proximal Method for updating H (PMH(H, B̂))

1. Input: H0, B̂, k = 1, L0 > 1, η > 0 and ξ > 0;
2. Output: H∗;
3. do
4. Find the smallest non-negative integer ik such that
inequality (10) is satisfied with Lk = ηikLk−1 ;
5. Obtain Hk from (14);
6. k = k + 1;
7. while

(
F (Hk−1) − F (Hk) > ξ

)
8. H∗ = Hk.

Furthermore, we notice that this equivalent problem (12) has a closed-
form solution, which is a promising property of our proximal method. With
the closed-form solution, we can efficiently solve (12) without intensive com-
putation. The closed-from solution is provided in Proposition 1, whose proof
is given in the appendix.

Proposition 1 For the following optimization problem:

Hk = arg min
0≤H≤1

{
φ(H) = α ‖H‖L1 +

Lk
2

∥∥H − H̄∥∥2
F

}
, (13)

where H̄ = Hk−1 − 1
Lk
∇P (Hk−1), the element-wise closed-form solution is

Hk
ij = P(proxH(H̄)ij), (14)

where P(·) is the projection operator and it is defined by

P(x) =

1 x > 1
x 0 ≤ x ≤ 1
0 x < 0

, (15)
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and
proxH(H̄)

= arg min
H

{
φ(H) = α ‖H‖L1 +

Lk
2

∥∥H − H̄∥∥2
F

}
,

(16)

whose result is the solution of ∂φ(H)
∂H 3 0 and can be computed in the following

equation:

proxH(H̄)ij =

{
0 |H̄ij | ≤ α

Lk

H̄ij − α
Lk

sign(H̄ij) |H̄ij | > α
Lk

(17)

The proximal method for updating H (PMH) is described in Algorithm 1.
The convergence of PMH is guaranteed by Proposition 2 with the proof given
in the appendix.

Proposition 2 The sequence
{
F (Hk)

}
k≥0 generated by the algorithm in Al-

gorithm 1 monotonically decreases and the sequence
{
Sk(Hk) = Gk(Hk)− F (Hk)

}
k≥0

converges to zero. Furthermore, when k 7→ +∞, Hk satisfies an asymptotic
stationary point condition.

Algorithm 2 Proximal Method for updating B (PMB(Ĥ, B))

1. Input: Ĥ, B0, k = 1 and ξ > 0;
2. Output: B∗;
3. do
4. Compute Uk(B) based on (19);
5. Compute Bk based on (21);
6. k = k + 1
7. while(E(Bk−1) − E(Bk) > ξ)
8. B∗ = Bk.

4.2 Updating B

Updating B is similar as updating H because the optimization with B has
the same structure as (8). Given an assignment matrix Ĥ, the optimization
problem we want to solve is:

min
0≤B≤1

: E(B) =
∥∥∥A− ĤB(Ĥ)T

∥∥∥2
F

+ β ‖B‖L1 , (18)

where ‖B‖L1 is the non-smooth term while Φ(B) =
∥∥∥A− ĤB(Ĥ)T

∥∥∥2
F

is dif-

ferentiable with the gradient ∇Φ(B) = 2((Ĥ)T ĤB(Ĥ)T Ĥ − (Ĥ)TAĤ). Here,
the square of the largest eigenvalue of (Ĥ)T Ĥ is Φ(B)’s Lipschitz constant
LB , which can be proven with Lemma 1 in the appendix.
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We adopt a similar proximal method by approximating E(B) in (18) at
Bk−1 by an upper-bound function:

Uk(B) = Φ(Bk−1)+ < ∇Φ(Bk−1), (B −Bk−1) >

+
LB
2

∥∥B −Bk−1∥∥2
F

+ β ‖B‖L1

= β ‖B‖L1 +
LB
2

∥∥B − B̄∥∥2
F
,

(19)

where B̄ = Bk−1− 1
LB
∇Φ(Bk−1). At the kth iteration, we solve the optimiza-

tion problem:
Bk = arg min

0≤B≤1
: Uk(B). (20)

The corresponding closed-form optimal solution is derived similarly as
Proposition 1

Bkij = P(proxB(B̄)ij), (21)

where

proxB(B̄)ij =

{
0 |B̄ij | ≤ β

LB

B̄ij − β
LB

sign(B̄ij) |B̄ij | > β
LB

, (22)

Algorithm 2 details the procedure of the proximal method for updating B
(PMB). We note that E(B) is convex with respect to B and the constraint
set 0 ≤ B ≤ 1 is also convex. Therefore, the algorithm (PMB) converges to an
optimal solution for a fixed Ĥ [19].

4.3 Alternating Proximal Algorithm for NMF (APANMF)

With both the algorithms PMH and PMB in hands, we summarize the al-
ternating proximal algorithm (APANMF) in Algorithm 3. The convergence
of APANMF is guaranteed by Proposition 3, whose proof is provided in the
appendix.

Proposition 3 The sequence of {Ω(Ht, Bt)}t≥0 monotonically decreases

Ω(Ht+1, Bt+1) ≤ Ω(Ht, Bt). (23)

Furthermore, the sequence {(Ht, Bt)}t≥0 converges to an asymptotic station-
ary point.

One profound contribution of our APANMF is that APANMF has the
theoretical guarantee to converge to a stationary point, which neither Sym-
NMF MU nor ASymNMF has provided. Additionally, to the best of our knowl-
edge, this is the first convergence proof of a coordinate descent method for
solving the NMF problem, one of whose decomposed optimization problems
is non-convex and non-smooth. Therefore, our proof could provide insight-
ful guidance for the convergence proof of the NMF problems with similar
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Algorithm 3 Alternating Proximal Algorithm
1. Input: AN×N and K;
2. Output: H and B;
3. Initialization: H0

N×K > 0, B0
K×K > 0 and t = 1;

4. do
5. Ht+1 =PMH(Ht, Bt);
6. Bt+1 =PMB(Ht+1, Bt);
7. t = t+ 1;
8. while(Ω(Ht−1, Bt−1) −Ω(Ht, Bt) > ξ)
9. Compute H by normalizing each row of Ht to have the unit length.
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Fig. 2: Performance comparison for undirected graph clustering: (a) NMI comparison (non-
overlapping) with increasing mixing parameter µ. (b) GNMI comparison (overlapping) with
increasing overlapping fraction values θ when µ = 0.1. (c) GNMI comparison (overlapping)
with increasing overlapping fraction values θ when µ = 0.3.

structures. For SymNMF in general settings, the stationary points of the op-
timization problem in (1) necessarily contain zero elements: ∃i, j, H∗ij = 0
(Proposition 4 in the appendix). Meanwhile, the proposed multiplicative algo-
rithm SymNMF [5] always generates iterative updates in the positive orthant
(Proposition 6): Hk

ij > 0,∀i, j. Therefore, SymNMF may not converge in gen-
eral when ∃i, j, H∗ij = 0. Similarly for ASymNMF [7], although the authors
have shown that the sequence of objective function values during the itera-
tive procedure of ASymNMF monotonically decreases, it is not enough to say
that ASymNMF converges to a stationary point. Specifically, Proposition 7
shows that the algorithm updates in the positive orthants for both H and C
(Hk

ij > 0, Ckrs > 0, ∀i, j, r, s) while Proposition 5 indicates that the station-
ary points contain zero elements in general (∃i, j, r, s, H∗ij = 0 or C∗rs = 0
in the stationary point). Hence, no convergence properties of the sequences{
Hk
ij

}
and

{
Ckrs
}

can be established. Additionally, the denominators of the
multiplicative updating equations of both SymNMF and ASymNMF are not
well-defined when they approach zeros, which may cause numerical problems.

Through the procedure of APANMF, the dominant computational cost is
a relatively cheap matrix multiplication involving the adjacency matrix A.
Assuming that PMH and PMB respectively take k and l iterations in average
to converge, the time complexity for updating Ht and Bt are O(kN2K) and
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O(lN2K). Furthermore, if APANMF takes t iterations of PMH and PMB
steps, then the overall time complexity of APANMF is O(t(k + l)N2K).

4.4 Initialization

Our flexible graph clustering formulation is not jointly convex with respect to
H and B. Therefore, a good initial point is important to achieve high quality
solutions. In this paper, we select the initialization points (H0, B0) as follows:
First, we consider Ψ(H,B) as an unconstrained optimization problem for B
with randomly generated H. Setting ∇BΨ(H,B) = 0 to obtain

B̂0 = (HTH)−1HTAH(HTH)−1. (24)

Then for Ψ(H,B0) we set ∇HΨ(H,B0) = 0 and get

Ĥ0 = AHB̂0(B̂0HTHB̂0)−1. (25)

We project (Ĥ0, B̂0) to the non-negative orthant and choose the best (H0, B0)
that gives the minimum objective function value as our initialization point.

4.5 Selection of α and β

We explore the stochastic nature of the proposed algorithm to determine α
and β. A similar strategy has been adopted in [20]. We propose to estimate the
robustness of a specific combination of α and β by measuring the differences
and similarities of multiple realizations. For each realization, we compute a
connectivity matrix C = HIBI(HI)T , where HI and BI are binary matrices
recovered from H and B obtained from the algorithm 3. HI

ij = 1 when Hij ≥ ε
and HI

ij = 0 when Hij < ε, where ε is a user-defined threshold controlling the

number of memberships of the overlapping vertices [9]. Similarly, BIrs = 1 if
Brs ≥ 0.5 (meaning the probability of cluster r interacting with cluster s is
larger than 0.5), otherwise BIrs = 0. Then we can compute the consensus ma-
trix C̄ defined as the average connectivity matrix over many realizations. The
entry C̄ij of C̄ ranges from 0 to 1 and reveals the probability that vertex i
connects to vertex j.

After we obtain C̄, we can estimate the entropy, which measures the sta-
bility of the common network structure. Assuming C̄ij is independent of each
other, we define the entropy score as

En =
1

N2

∑
i,j

[
C̄ij log(C̄ij) + (1− C̄ij)log(1− C̄ij)

]
. (26)

For certain α and β, En = 1 means the network structure is totally unstable
(C̄ij = 0.5), while En = 0 indicates that the edges in C̄ are perfectly stable
(C̄ij = 1 or C̄ij = 0). We demonstrate that the En score can help to select α
and β in Section 5.4.
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5 Experiments

In this section, in order to show the improved noise tolerance of our new graph
clustering formulation and the effectiveness of our novel proximal algorithm
APANMF for solving noisy graph clustering, we compare our APANMF with
SymNMF MU [6], SymNMF NT [5], ASymNMF [7] and BNMF [8] on both
synthetic benchmarks under different noise levels as well as real-world large-
scale networks.

To demonstrate the robustness of our APANMF with respect to the noise,
we explicitly tune the noise level of synthetic networks. Benchmarks for undi-
rected and directed graphs are simulated by the LFR algorithm [12] with
different mixing parameters µ to control the noise level. For block modeling
benchmarks [16,13], the Maslov-Sneppen procedure [21] is applied to shuf-
fle different fractions of edges to add in noise. Both the mixing parameter
µ and the Maslov-Sneppen procedure have the same effect, which is to per-
turb the fraction of edges within the correct communities. For simplicity, we
use µ to present the noise level for all synthetic networks (undirected and
directed benchmarks [12] and block modeling benchmarks [16,13]). For exam-
ple, µ = 0.1 means that 10% of correct edges are perturbed to connect to the
wrong vertices that do not follow the underlying interaction patterns. Because
the perturbation of correct edges simulates the false positive and false negative
edges in real-world networks, the robustness of our formulation with respect to
potential noise in real-world networks can be verified by testing our APANMF
on noisy benchmarks with different µ.

For the same noise level µ, we randomly generate 20 networks. For each ran-
dom network, we implement each algorithm 10 times and choose the one with
the best objective function value as the solution for this network. For all com-
peting algorithms, we stop the algorithms when the objective function value
does not decrease more than 0.1. The regularization parameters α and β of
APANMF are determined by brute-force search in S = {(α, β)|α, β ∈ {0, ..., 5}}.
For every network, we compute the entropy score based on (26) for every com-
bination of α and β in S from 10 different realizations (initializations), and
we choose the best α and β that yield the minimum entropy score. For λ of
BNMF, we use the same procedure and set λ from 0 to 5 with an interval of
1. To quantitatively evaluate the performance of each algorithm for synthetic
networks, we use the Normalized Mutual Information (NMI) [22] as the perfor-
mance index for non-overlapping clustering comparison and the Generalized
Normalized Mutual Information (GNMI) [23] for overlapping clustering com-
parison. The evaluation criteria for real-world datasets are introduced in the
corresponding sections. All experiments are implemented on a MacBookPro
laptop with an Intel i5 dual core processor and 8 GB memory.
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Fig. 3: Performance comparison for directed graph clustering: (a) NMI comparison (non-
overlapping) with increasing mixing parameter µ. (b) GNMI comparison (overlapping) with
increasing overlapping fraction values θ when µ = 0.1. (c) GNMI comparison (overlapping)
with increasing overlapping fraction values θ when µ = 0.3.

5.1 Undirected Graph Clustering

To generate undirected graph benchmarks, we adopt the well-known LFR algo-
rithm [12], in which the distributions of vertex degree and cluster size are both
based on power laws with tunable exponents. In this paper, the benchmark
networks are randomly generated based on the similar parameters adopted
in [9]: The number of vertices N = 400; the average vertex degree is 20 and
the cluster size ranges from cmin = 40 to cmax = 80. To validate the perfor-
mance with different parameters, we further tune the mixing parameter (noise
level) µ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, which can be understood as the noise level
indicating the portion of a given vertex’s edges that connect to the vertices out-
side the community. This simulates potential noise at different levels in these
randomly generated networks. When evaluating the performance for overlap-
ping clustering, we set the overlapping fraction θ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6},
which measures the fraction of vertices belonging to more than one clusters.

The comparison among all competing algorithms is shown in Fig. 2. The
mean values and standard deviations achieved by all competing algorithms
for each parameter setting are obtained from 20 randomly generated bench-
marks. Fig. 2(a) illustrates the performance comparison on non-overlapping
benchmarks with various mixing parameters µ. From the figure, we observe
that the NMI bar from our APANMF is consistently higher than bars of all
the other state-of-the-art algorithms, which indicates that APANMF identifies
clusters that are closest to the ground truth. We also notice that our APANMF
behaves marginally better than SymNMF MU and SymNMF NT, especially
for large mixing parameters, which demonstrates that APANMF is more ro-
bust to noise than SymNMF MU and SymNMF NT since it explicitly enforces
the sparsity of B and H.

Fig. 2(b) and (c) illustrate the performance for overlapping community
detection under µ = 0.1 and µ = 0.3, respectively. With the increasing over-
lapping fraction values, the difficulty for graph clustering increases. We still
find that the GNMI bar of our APANMF is consistently higher than bars of
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the other competing algorithms with respect to different overlapping fraction
values.

Furthermore, we test the statistical significance of our APANMF by com-
paring APANMF with SymNMF MU and SymNMF NT respectively as Sym-
NMF MU and SymNMF NT are empirically the best-preforming algorithms
in addition to our APNNMF. By two-sample t-test with unequal variances,
we find that APANMF performs significantly better than SymNMF MU and
SymNMF NT at the noise level µ = 0.6 in the experiments illustrated in Fig. 2
(a) and (c) at the significant level of 0.05.

5.2 Directed Graph Clustering

We further generate directed graph benchmarks by LFR [12]. Similarly, to test
the behavior of the competing algorithms, we simulate non-overlapping and
overlapping directed benchmarks with different mixing parameters µ (noise
levels). We set the number of vertices N = 400, the average vertex degree to
20 and the cluster size from cmin = 40 to cmax = 80. For non-overlapping
directed graph benchmarks, we randomly generate benchmarks with the in-
creasing mixing parameters (noise level): µ = {0.1, 0.2, 0.3, 0.4, 0.5}. While for
overlapping directed graph benchmarks, we simulate benchmarks with the in-
creasing overlapping fraction values θ = {0.1, 0.2, 0.3, 0.4, 0.5}. We compare
our APANMF with all the other methods except SymNMF MU and Sym-
NMF NT as SymNMF MU and SymNMF NT can not handle directed graphs.

Fig. 3 shows the comparison results for non-overlapping and overlapping
clustering for directed graphs. For non-overlapping clustering comparison shown
in Fig. 3(a), APANMF and ASymNMF are competitive when the mixing pa-
rameter µ is small. However, when it reaches µ = 0.5, APANMF performs
significantly better than ASymNMF, which further validates that with high
noise level, the sparsity regularization in APANMF can help obtain better re-
sults. For overlapping clustering comparison shown in Fig. 3(b) and (c), with
the increasing overlapping fraction values at fixed µ = 0.1 and µ = 0.3 re-
spectively, the bars of GNMI values obtained by APANMF are consistently
higher than other two competing algorithms. Additionally, the GNMI values
of APANMF are the most stable one with the smallest standard deviation.
Therefore, Figs. 3(b) and (c) demonstrate that APANMF is also robust to
the overlapping fraction. In summary, obviously our APANMF outperforms
ASymNMF and BNMF for both non-overlapping and overlapping clustering
of directed graphs.

5.3 Block Modeling

Our APANMF can also solve block modeling clustering problems. We gener-
ate synthetic networks as similarly done in [16,13] with known ground truth
block structures. The generated benchmark networks have block structures
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Fig. 4: (a) Underlying blockmodel structure of synthetic blockmodel benchmarks. (b) Ex-
ample of a random network with µ = 0.4. (c) NMI comparison with the increasing noise
level for all the competing algorithms.

with two densely connected clusters and two clusters with only edges across
each other as shown in Fig. 4(a). We first simulate the noise-free networks
with the size of each block clusters set at 100. To vary the difficulty of the
block modeling clustering problem, we instill the noise to the network topol-
ogy with different levels, which can be controlled by permuting the percentage
of correct edges based on the Maslov-Sneppen algorithm [21]. In the Maslov-
Sneppen algorithm, two unconnected edges are randomly drawn and then mu-
tually rewired. The noise level µ controls the percentage of correct edges to
be permuted. Fig. 4(b) provides an example with 40% edges being permuted
(µ = 0.4).

Fig. 4(c) illustrates the comparison in terms of NMI. From the figure, we
observe that the NMI curve of our APANMF is consistently on top of all the
other competing algorithms at all noise levels. In addition, we discover that
when the noise level is low, both APANMF and ASymNMF have competitive
performance, better than the other two algorithms, since the introduction of
the image graph B in both methods. However, with the increasing noise level,
ASymNMF fails to detect the block structures, which consolidates that our
APANMF is more robust to noise with additional sparsity regularization. For
SymNMF MU and SymNMF NT, as they are designed to identify densely
connected clusters, the bipartite-like clusters in Fig. 4(a) can not be detected
even when there is no noise. Additionally, SymNMF NT performs marginally
better than SymNMF MU because SymNMF NT converges to a stationary
point. For BNMF, the approximation of M ideal may not capture the latent
structure of the graph, which influences its performance.

5.4 Effect and determination of α and β

The regularization coefficients α and β control the sparsity of H and B in
APANMF. The larger α and β are, the sparser H and B become. To discover
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the relationships among the selection of α and β, clustering accuracy and
entropy scores under a high noise level, we implement the following experiment.
We randomly generate a synthetic network with the noise level of µ = 0.4. The
underlying block structure is the same as illustrated in Fig. 4(a). We select the
(α, β) pair from S = {(α, β)|α ∈ {0, 1, 2, 3, 4, 5} and β ∈ {0, 1, 2, 3, 4, 5}}. To
demonstrate the effectiveness of the regularization terms, for each initialization
we implement our algorithm through all (α, β) pairs in set S. We apply 10
different initializations and compute the average NMI value and entropy score
of each (α, β) pair. Fig. 5(a) displays the surface of NMI values for every (α, β)
pair and Fig. 5(b) illustrates the surface of entropy scores for every (α, β)
pair. Fig. 5(a) shows that better NMI values can be achieved by appropriately
selecting (α, β), which further indicates the necessity of using regularization
terms to obtain robust results for noisy networks. Additionally, we discover
that the best average NMI values and the minimum entropy scores are attained
at the same point (α, β) = (5, 3), which demonstrates that using entropy scores
can help us choose appropriate α and β.
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Fig. 5: (a) Surface of average NMI values for every (α, β) pair. (b) Surface of entropy scores
for every (α, β) pair.

5.5 Facebook Ego Network

The Facebook ego network is obtained from the SNAP library [24]. The Face-
book ego network combines 10 ego networks with 4,039 vertices as Facebook
users and 88,234 edges denoting virtual friendship. This combined ego network
has manually labeled ground truth from Facebook circles. Our task is to de-
tect the overlapping communities within the ego network. Because we have the
ground truth, we can evaluate the performance of all competing algorithms.
The measure we applied is the geometric mean of two other measures, which
are the cluster-wise sensitivity (Sn) and the cluster-wise positive predictive
value (PPV ) [25]. Given r predicted and s reference communities, let tij de-
note the number of vertices that exist in both predicted community i and
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reference community j, and wj represent the number of vertices in reference
community j. Then Sn and PPV can be defined as

Sn =

∑s
j=1 max

i=1,...,r
tij∑s

j=1 wj
, PPV =

∑r
i=1 max

j=1,...,s
tij∑r

i=1

∑s
j=1 tij

. (27)

We use their geometric mean as our “accuracy” index to balance these two
measures (Acc =

√
Sn× PPV ) [25].

We set the number of potential communities K = 200 for all the algorithms
and choose α = 5 and β = 2 for APANMF and λ = 1 for BNMF based on the
entropy score (26). The performance comparison for this Facebook ego network
is provided in Table 1, from which it is clear that our APANMF obtains the
best Sn, PPV , andAcc scores. The results further demonstrate that APANMF
is the best graph clustering method for this application. SymNMF NT fails to
implement due to the memory limitation. Hence, SymNMF NT is not included
in Table 1.

Table 1: Comparison on Facebook ego network.

APANMF SymNMF MU ASymNMF BNMF

Sn 0.4243 0.3905 0.3978 0.2078

PPV 0.5731 0.5614 0.5070 0.2843

Acc 0.4931 0.4682 0.4491 0.2431

5.6 Human Protein-Protein Interaction Netwrok

To further illustrate the practical usage of our flexible method in computa-
tional biology, we apply all the competing algorithms and compare their perfor-
mances on a human protein-protein interaction (PPI) network extracted from
the PIPs dataset (HsaPIPs) [14]. This HsaPIPs network has 5,445 proteins
and 74,686 edges denoting whether two corresponding proteins bind with each
other. For this biological network, we do not have the clustering ground truth,
which is often the case for most of the real-world network datasets. As typically
done in computational biology, we evaluate the performance based on manual
curations of genes and/or proteins in this network, for example, based on Gene
Ontology (GO) terms [26]. GO terms annotate groups of genes representing
certain gene product properties in cells. GO term enrichment analysis [27] can
help interpret the corresponding cellular functions for the proteins in detected
clusters by statistically detecting whether they correspond to a specific GO
term. Assuming a detected cluster has n proteins with m proteins annotated
to a GO term and the whole network has N proteins with M proteins anno-
tated with the same GO term. Then the p-value of the identified cluster with
respect to the enrichment of proteins within that GO term can be calculated
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Fig. 6: GO enrichment comparison for all the competing algorithms.

as [27]

p-value =

n∑
i=m

(
m
i

)(
N−M
N−i

)(
N
n

) . (28)

In this implementation, we set K = 600 for all the competing algorithms and
choose α = 4 and β = 2 for APANMF and λ = 1 for BNMF based on the
entropy score computation (26). SymNMF NT again fails to run due to its
memory issue. For performance comparison, a GO term is considered enriched
when there is a detected cluster significantly enriched with this GO term with
the corresponding p-value less than 1e−3. For each cluster, we choose the low-
est p-value of all its enriched GO terms as the corresponding p-value of this
cluster. Fig. 6 illustrates the performance comparison in terms of the negative
logarithms of the p-values for every identified clusters in the descending order.
We find that the curve of APANMF is the longest one, which indicates that
APANMF detects the largest number of biologically meaningful clusters (420)
with the corresponding p-values lower than 1e−3. Additionally, we notice that
the curve of APANMF is on top of all the other curves, which implies that
the significant level of the clusters identified by APANMF is higher than the
others. Furthermore, we count the total number of the enriched GO terms
obtained by each competing algorithm. We find that 1637 GO terms are en-
riched by the clusters detected by APANMF. For SymNMF MU, ASymNMF,
and BNMF, 1390, 809, and 283 GO terms are significantly enriched, respec-
tively. Obviously, APANMF covers the largest number of enriched GO terms
which indicates that APANMF unearths richer biological information. It is
not surprising because many researchers [13,16] have discovered that PPI net-
works have block modeling structures and our APANMF is more powerful for
discovering the block modeling structures of noisy graphs.
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6 Conclusions

In this paper, for clustering noisy networks, we propose a flexible NMF-based
formulation with the explicit sparsity regularization of all factorized compo-
nents. Our new framework is noise tolerant and can solve graph clustering
with different settings such as both undirected graph community detection
and directed graph clustering with either overlapping or non-overlapping clus-
tering structures, and more general block modeling clustering problems as
well. Furthermore, we propose an alternating proximal method APANMF to
solve our new optimization problem with the convergence guarantee. The re-
sults on synthetic benchmarks and real-world networks demonstrate that our
method outperforms other NMF-based state-of-the-art graph clustering algo-
rithms. The proposed APANMF has the potential to derive useful knowledge
in diverse applications including social and biological network analysis.

7 Appendices

In this section, we provide the proofs for the lemma and propositions in the
paper.

7.1 Proof for Proposition 1

Proof To solve the constrained optimization problem in (13), we can first write
out the following Karush-Kuhn-Tucker (K.K.T.) conditions:

∂φ(H)

∂H
−∆+ Γ 3 0 (29.a),

Hij ≥ 0 (29.b),

Hij ≤ 1 (29.c),

∆⊗H = 0 (29.d),

Γ ⊗ (H − 1) = 0 (29.e),

(29)

where ⊗ is an element-wise multiplication operator and the first equation
is derived from the sub-gradient of the Lagrange relaxation of the original
problem

0 ∈∂L(H,∆, Γ )

∂H

=
∂
[
φ(H)− trace(∆TH) + trace(ΓT (H − 1))

]
∂H

=
∂φ(H)

∂H
−∆+ Γ.

(30)



20 Yijie Wang, Xiaoning Qian

Multiplying H ⊗ (1−H) on both sides of (29.a) and using (29.d) and (29.e),
we obtain the following important equation:(∂φ(H)

∂H
−∆+ Γ

)
⊗H ⊗ (H − 1) 3 0

∂φ(H)

∂H
⊗H ⊗ (1−H) 3 0.

(31)

With that, we now have

∂φ(H)

∂H
⊗H ⊗ (1−H) 3 0 (32.a),

Hij ≥ 0 (32.b),

Hij ≤ 1 (32.c).

(32)

Obviously, because proxH(H̄) is the solution of ∂φ(H)
∂H 3 0, the element-wise

solution to the above system is

Hk
ij = P(proxH(H̄)ij), (33)

which proves the proposition.

7.2 Proof for Proposition 2

Proof We can prove the fact that
{
F (Hk)

}
k≥0 is non-increasing and conver-

gent due to the following inequalities:

F (Hk) ≤ Gk(Hk) ≤ Gk(Hk−1) = F (Hk−1). (34)

The first inequality comes from the fact that Gk(H) is the upper bound of
F (H) (10). We have the second inequality as the proximal method solves (11).
The last equality can be obtained by substituting H with Hk−1 in (9). Be-
cause

{
F (Hk)

}
k≥0 is bounded, we define F ∗ as its limit. Based on (34) and

Sk(Hk) = Gk(Hk)− F (Hk), we have:

Sk(Hk) ≤ F (Hk−1)− F (Hk). (35)

By adding all the terms over k, we have∑
k

Sk(Hk) ≤ F (H0)− F ∗, (36)

which is also bounded. Therefore,
{
Sk(Hk)

}
k≥0 necessarily converges to zero.

Furthermore, we notice that Sk(H) is differentiable and Lipschitz contin-
uous because

Sk(H) =Gk(H)− F (H)

=P (Hk−1)− P (H) +
Lk
2

∥∥H −Hk−1∥∥2
F

+ < ∇P (Hk−1), (H −Hk−1) > .

(37)
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Therefore, for any Hk and H ′, Sk(H) satisfies the classical lemma (lemma
1.2.3 in [28]), which yields

Sk(H ′) ≤ Sk(Hk)− 1

2Lk

∥∥∇Sk(Hk)
∥∥2
F
, (38)

where we define H ′ = Hk − 1
Lk
∇Sk(Hk). From (38), we derive∥∥∇Sk(Hk)
∥∥2
F
≤ 2Lk(Sk(Hk)− Sk(H ′))

≤ 2LkSk(Hk)
k 7→+∞7→ 0,

(39)

where we take the fact that Sk(H ′) ≥ 0 because (34) and
{
Sk(Hk)

}
k≥0 con-

verges to zero.
Now, we compute the directional derivative ∇H−HkF (Hk) of F (·) at Hk

in the direction H −Hk,

∇H−HkF (Hk) =∇H−HkGk(Hk)

− < ∇Sk(Hk), H −Hk > .
(40)

Here we make a mild assumption that, for all H and Hk in the constraint
set, the directional derivative ∇H−HkF (Hk) always exists. A similar assump-
tion has been made for proving the convergence of a constrained optimization
problem [18]. Note that Hk minimizes Gk on {H|0 ≤ H ≤ 1} and therefore
∇H−HkGk(Hk) ≥ 0 [29]. With these,

∇H−HkF (Hk) ≥ −
∥∥∇Sk(Hk)

∥∥
F

∥∥H −Hk
∥∥
F
, (41)

based on Cauchy-Schwarz inequality. Then,

lim
k 7→+∞

∇H−HkF (Hk)

‖H −Hk‖F
≥ lim

k 7→+∞
−
∥∥∇Sk(Hk)

∥∥
F

= 0, (42)

which further indicates that Hk is the stationary point of F (H) when k ap-
proaches +∞ based on the definition of an asymptotic stationary point pro-
posed in [18].

7.3 Lemma 1 and Its Proof

Lemma 1 Φ(B) =
∥∥A−HBHT

∥∥2
F

is Lipschitz continuous and its Lipschitz

constant Π is equal to the square of the largest eigenvalue of HTH (LB =
δ2max(HTH)).

Proof Given two matrices X and Y , we have

‖∇Φ(X)−∇Φ(Y )‖2F
=
∥∥HTH(X − Y )HTH

∥∥2
F2

= trace(HTH(X − Y )THTHHTH(X − Y )HTH),

(43)
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where HTH is a positive semi-definite symmetric matrix. Hence, we can write
HTH = UΣUT by SVD (singular value decomposition) with UUT = In and
UTU = Ik. By straightforward algebraic manipulations, (43) is equivalent to

‖∇Φ(X)−∇Φ(Y )‖2F
= trace(UΣUT (X − Y )TUΣUTUΣUT (X − Y )UΣUT )

= trace(UT (X − Y )TUΣ2UT (X − Y )UΣ2)

≤ δ4maxtrace(UT (X − Y )TUUT (X − Y )U)

= δ4max ‖X − Y ‖
2
F ,

(44)

where δmax is the largest eigenvalue of HTH. From (44), we have the following
inequality:

‖∇Φ(X)−∇Φ(Y )‖F ≤ δ
2
max ‖X − Y ‖F . (45)

Therefore, Φ(B) is Lipschitz continuous and the Lipschitz constant LB is equal
to the square of the largest eigenvalue of HTH.

7.4 Proof for Proposition 3

Proof At the tth iteration, we have Ω(Ht, Bt). Based on Proposition 2 (34)
for a fixed Bt, we get

Ω(Ht+1, Bt) ≤ Ω(Ht, Bt). (46)

Furthermore, based on (42), we have

∇H−Ht+1F (Ht+1)

‖H −Ht+1‖F
≥ 0⇔ ∇H−H

t+1Ω(Ht+1, Bt)

‖H −Ht+1‖F
≥ 0, (47)

whereHt+1 is an asymptotic stationary point and we defineQt+1,t = [Ht+1;Bt].
Similarly, the proof in [30] demonstrates that for a fixed Ht+1 we can obtain

Bt+1 satisfying

Ω(Ht+1, Bt+1) ≤ Ω(Ht+1, Bt) (48)

asΩ(Ht+1, Bt) is convex with respect to Bt for the givenHt+1. Similar to (47),
for the asymptotic stationary point Bt+1, we have

∇B−Bt+1E(Bt+1)

‖B −Bt+1‖F
≥ 0⇔ ∇B−B

t+1Ω(Ht+1, Bt+1)

‖B −Bt+1‖F
≥ 0. (49)

From (46) and (48), we know

Ω(Ht+1, Bt+1) ≤ Ω(Ht+1, Bt) ≤ Ω(Ht, Bt) (50)

Obviously, the sequence {(Ht, Bt)} is non-increasing. {(Ht, Bt)} is also bounded
because of 0 ≤ H,B ≤ 1. Therefore, we further assume that (H̃, B̃) is a limit
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point of the sequence. Based on (47) and (49), for any (H,B) in the constraint
set, when t 7→ +∞ we obtain

lim
t7→+∞

∇H−Ht+1Ω(Ht+1, Bt)

‖H −Ht+1‖F
=
∇H−H̃Ω(H̃, B̃)∥∥∥H − H̃∥∥∥

F

≥ 0,

lim
t7→+∞

∇B−Bt+1Ω(Ht+1, Bt+1)

‖B −Bt+1‖F
=
∇B−B̃Ω(H̃, B̃)∥∥∥B − B̃∥∥∥

F

≥ 0,

(51)

which implies that (H̃, B̃) is an asymptotic stationary point of Ω(H,B) [18,
31].

7.5 Proposition 4 and Its Proof

Proposition 4 If A 6= HHT , then any stationary point of the optimization
problem (1) is on the boundary of its constraint set {H|H ≥ 0}.

Proof By definition, a stationary point of the optimization problem (1) should
satisfy the Karush-Kuhn-Tucker (KKT) optimality condition [5]:(

(A−HHT )H
)
ij
Hij = 0. (52)

With the assumption A 6= HHT in general, we find that the stationary points
of (1) necessarily contain zero elements (∃i, j,Hij = 0) in H. This implies that
the stationary points of (1) are on the boundary of {H|H ≥ 0}.

7.6 Proposition 5 and Its Proof

Proposition 5 If A 6= HCHT , then a stationary point of the optimization (2)
is on the boundary of its constraint set {(H,C)|H ≥ 0, C ≥ 0}.

Proof Based on [7], a stationary point of the optimization problem (2) should
satisfy the following Karush-Kuhn-Tucker (KKT) optimality condition:{ (

(HCHT −A)HCT + (HCTHT −AT )HC
)
ij
Hij = 0;(

HT (HCHT −A)H
)
rs
Crs = 0.

(53)

Because in general, A 6= HCHT and AT 6= HCTHT , it requires that there
exists Hij = 0 or Crs = 0 in the stationary point to satisfy the KKT condi-
tion, which implies that the stationary points of (2) are on the boundary of
{(H,C)|H ≥ 0, C ≥ 0}.
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7.7 Proposition 6 and Its Proof

Proposition 6 If A has neither zero column nor zero row, and the initializa-
tion point of SymNMF H0

ij > 0,∀i, j, then

Hk
ij > 0,∀i, j, ∀k ≥ 0. (54)

Proof From [5], we know the updating rule of SymNMF is

Hk+1
ij ← Hk

ij(
1

2
+

(AHk)ij
2(Hk(Hk)THk)ij

). (55)

When k = 0, the equation (54) holds by the assumption. By induction, if (54)
is correct at k, then it is correct at k+ 1 too. The nominator and denominator
in (55) are both strictly positive under the assumption that A has neither zero
column nor zero row. Therefore, Hk+1

ij > 0.

7.8 Proposition 7 and Its Proof

Proposition 7 If A has neither zero column nor zero row, and the initializa-
tion point of ASymNMF H0

ij > 0 and C0
rs > 0, ∀i, j, r, s, then

Hk
ij > 0, Ckrs > 0, ∀i, j, r, s, ∀k ≥ 0. (56)

Proof From [7], we know the updating rule of ASymNMF is

Hk+1
ij ← Hk

ij ·( (ATHkCk +AHk(Ck)T )ij(
Hk(Ck(Hk)THk(Ck)T + (Ck)T (Hk)THkCk)

)
ij

) 1
4

;

Ck+1
rs ← Ckrs

((Hk)TAHk)rs
((Hk)THkCk(Hk)THk)rs

.

(57)

When k = 0, the equation (56) holds by the assumption. By induction, if (56) is
correct at k, then it is correct at k + 1. Both the nominator and denominator
in (57) are strictly positive under the assumption that A has neither zero
column nor zero row. Therefore, (56) holds at k+1, and the proof is complete.
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