To Appear inProc. of IEEE INFOCOMAnNchorage, Alaska, U.S.A., April 22-26, 2001. 1

Statistical Analysis of Feedback-Synchronization
Signaling Delay for Multicast Flow Control

Xi Zhang and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, Ml 48109-2122, USA
Email: {xizhang,kgship@eecs.umich.edu

Abstract—Feedback signaling plays a crucial role in flow control because in making correct and timely flow-control decisions. However, de-
the traffic source relies on the signaling information to makecorrectand timely  signing an efficient flow-control signaling protocol is difficult be-
flow-control decisions. However, it is difficult to design an efficient signaling . . . C g -
algorithm since each signaling message can tolerate neither error nor latency. cause the S|gn§1I|ng messages, unlike dat[a Or, audio/video traffic,
Multicast flow-control signaling imposes two additional challenges:scalabil- can tolerate neither error nor latency. A signaling message could
ity and feedback synchronizationPrevious research on multicast signaling has be useless or even harmful if it is not accurate or its delay is un-
mlai”'y fohcus‘zd o the fdes@n and 'mp'emer&ta“ﬁ” %f ?'go“thms W'ghOUtI a”'d bounded. The delivery of signaling traffic must therefore be timely
alyzing their delay performances. To remedy this deficiency, we develope . ; . .

a binary-tree deterministic model [1] and an independentmarking statisti- 3“0_' re“at?'e- For example, in ATM ABR service, ﬂOW'CO_erI SIg-
cal model [2] to study the delay performance of various multicast feedback- naling relies on RM (Resource Management) cells, which convey
synchronization signaling algorithms. the rate-control and congestion information among the source rate-

In this paper, we consider the general case in which the congestion markings controller, network switches, and the receiver.
at different links are dependentincluding congestion-marking dependencies in Si i f It fl i d dditi |
the analysis is usually much harder than that under the independence assump- ignaling for multicast flow control introduces two additiona

tion. However, the analysis without assuming independent markings can more problems: scalability and feedback-synchronizationThese two
accurately capture statistical characteristics for many practical cases where the problems are closely interwoven in the signaling protocol for mul-
congestion markings are not independent. Specifically, we develop a Markov ticast flow control. First. simultaneous feedback arrivals from all
chain model defined by the link-marking state on each path in a multicast ’ ! . .
tree. The Markov chain can not only characterize link-marking dependencies, Pranches can causeedback implosiofv] at the source as well as
but also yield a tractable analytical model. We also develop a Markov-chain at branch nodes, especially when the multicast tree is large. Hence,
ﬁﬂepi”de”h‘?){'dsgfee énC’de'c‘jNhiCh can ?19 Usked to qua”t?W(e‘éa'Léaﬂ“ P%SSib'e it is important for each branahode to consolidate the congestion-
arkov-chain dependency degrees without knowinga priori the dependency- - . .
degree information. Using the Markov-chain and dependency-degree models, information feedbac|'<s from its dOWﬂStream paths and then for-
we derive the general expressions for the probability distribution of each path  ward only the consolidated feedback to its upstream node. Second,
being the multicast-tree bottleneck. Also derived are the closed-form expres- we need a feedback-synchronization signaling algorithm for each

sions for the first and second moments of multicast signaling delays. The mod- hranch node to consolidate feedbackscduse they may arrive at
eling accuracy and analytical findings have been confirmed by simulations. The

proposed Markov chain is also shown to asymptotically reach an equilibrium, S|gn|f|cantly different times.
and its limiting state distributions convergeto the link-marking marginal prob- The first_generation feedback consolidation a|gorithms [4], [5],
abilities when the Markov chain is irreducible. [6] for multicast ABR flow control employ a simple Hop-By-Hop
By applying these two models, we analyze and contrast the feedback- (HBH) mechanism to deal with the feedback-implosion problem.
delay scalability of two representative multicast signaling protocols: Soft- .
Synchronization Protoco(SSP) [1], [3] and Hop-By-Hop (HBH) signaling al- O receipt .Of one forward RM cell, each brame sends only
gorithms [4], [5], [6]. The proposed modeling techniques are generic, and thus one consolidated feedback RM cell upward ksirsglehop, ensur-
can be applied not only to the multicast signaling-delay analysis, but also to ing that at eacode, the ratio of feedback RM cells to forward
other Markov-chain-based analyses abstracted from other applications. RM cells is no Iarger than 1. To reduce the RM-cell roundtrip time
Index Terms- Multicast flow control, feedback-synchronization signaling, (RTT) and improve multicast signaling accuracy, the authors of [8],
Soft-Synchronization Protocol (SSP), scalability, REM, RED, Markov chain. [9] proposed a different feedback-synchronization a|gorithm by ac-
cumulating feedbacks fromil branches of each brandode. The
authors of [10] proposed an algorithm to speed up the transient re-
sponse by sending fast congestion feedback without waiting for all
A flow-control algorithm consists of two basic components: ratgranches’ feedback during the transient phase.

control and flow-control Signaling. These two components grem []_], [3], we proposed a feedback-synchronization signa"ng
conceptually separate from the flow-control theory’s standpoigfgorithm, called th&oft-Synchronization Protoc¢SSP), which

but are often blended together in most flow-control algorithmgerives a single consolidated RM cell at each branctie from
Rate control adjusts the source rate to the variation of bandwiggadback RM cells of different downstream branches that are not
available in the network. Flow-control signaling conveys the coRecessarily responses to the same forward RM ceflaich syn-
gestion and rate-control information between the source and ngironization cycle. The SSP is shown to not only scale well with

work/receivers. Consequently, this signaling is crucial to flow coghe multicast-tree topology, but also readily detect and remove non-
trol because the source relies solely on the signaling informatigtponsive branches.

I. INTRODUCTION

The work reported in this paper was supported in part by the U.S. Office of NavaIAII ofthe a.bove_referenced work Onl.y fo.cuse.d on .the deSIQH and
Research under Grant NOOO14-99-1-0465. Implementation of feedback-synchronization signaling algorithms,



V\{IthOUt addressing their d.EIay performance.s.. -I.—O remedy this d%BTOn receipt of a feedback RM cell from:-th branch:
ciency, we deve|0_ped a l?m_aW'tree deterministic model [1] and g it (conn_patt vec(i) # 1) { ! Only process connected branches
independentmarking statistical model [2] to study the delay pem2. respbranch_vec(i) := 1;! Mark connected and responsive branch

formance of various multicast feedback-synchronization signaliffy 1751~ Si Y E%L'SI E‘S?&g‘%g‘tfgﬁ%‘:géetzgn?mh

algorithms' 05. if (conn_pattvec @ resp_branch_vec = 1) { ! soft synchronization.
The independent-marking statistical model [2] builds on tfg@;: send R'V'g‘i”ii:Mcbgf’fvSEeﬁd-fu”i‘//_[f)ﬁst"dated Rut-cell upstream.
recently-poposed Random Early Marking (REM) [11], [12], [13],08.  no_resp_timer := Nppi; ! Reset non-responsive timer.
[14], [15] and widely-cited Random Early Detection (RED) [16§9.  resp_branch_vec := 0); ! Resetresponsive branch vector.
flow-control schemes. The REM and RED schemes — origi-10- MCI:=0; MER:= ER;}}! Reset RM-cell control variable.
nally proposed for unicasts — can also be extended to multicast Fig. 1. Pseudocode for switch feedback synchronization algorithm.
environments. Moreover, unicast and multicast transmissions u
ally co-exist in a network. In RED or REM, each router marks
packet’s ECN (Explicit Congestion Notification) bit with a proba-
bility that is exponential in REM, or proportional in RED, to the
average queue length at the output link. We briefly introduce SSPthe multicast feedback-synchroniza-
The independent-marking statistical model is suitable for sion signaling algorithm [1], [3]. At the center of SSP is a pair
naling delay analysis for multicast flow control based on REM- @f connection-update vectors: @pnn_patt_vec, the connection
RED-like schemes, where link-markings at different links/routepgittern vector, whereonn_patt_vec(i) = 0 (1) indicates thé-th
are assumed to be independent. However, there are also caségut port of the switch is (not) a downstream branch of the multi-
where link-markings are not independent. In such a case, g@&tconnection. Thusonn_patt vec(:) = 0 (1) implies thata data
independent-marking algorithm and analysis can only offer a@epy should (not) be sent to thi¢h downstream branch and a feed-
proximate results, and their performance and accuracy will back RM cell is (not) expected from thieh downstream branch;
affected by the “degree of dependency” between link-markind#) resp_branch_vec, the responsive branch vector is initialized to
This paper addresses the general castepéndenlink congestion 0 and reset t@ whenever a consolidated RM cell is sent upward
markings. Including dependence in the analysis usually is muighm the switch.resp_branch_vec(s) is set to 1 if a feedback RM
more difficult than that under the independent-marking assungigll is received from thé-th downstream branch.
tion. However, the analysis without the independence assumptio simplified pseudocode (detailed in [1], [3]) of the switch RM-
can capture more accurate delay statistical characteristics. cell processing algorithm is given in Fig. 1. On receipt of a re-
We develop a Markov chain model for the links at different levurned feedback RM-cell, the switch first marks its corresponding
els in a multicast tree, and model the dependency degree betwaiein theresp_branch_vec and then conducts RM-cell consolida-
different link congestion markings by using a dependency-degité@n operations. If the modulo-2 addition (the soft-synchronization
factor. Using the proposed Markov chain and dependency-degdgeration)conn_patt_vec @ resp_branch_vec equalsl, an all 1's
models, we derive the probability distribution for a path to be thugctor, indicating all feedback RM cells are synchronized, then a
multicast-tree bottleneck. We also derive the first and second nfiglly-consolidated feedback RM cell is generated and sent upward.
ments of a multicast-tree RTT delay. But, if the modulo-2 addition is not equal g the switch needs

The benefits of our modeling and evaluation technique are twg-await other feedback RM cells for synchronization. Notice that
fold. First, the technique enables a direct quantitative compain'c€ the synchronization algorithm allows feedback RM cells cor-
son of feedback-synchronization delays between different mufﬁ_spondlng to different forward RM cells to be consolidated, the
cast signaling schemes. Second, the proposed modeling technl§fi@Pack RM cells are “softly-synchronized” at branch nodes.

establishes a general framework for evaluating the signaling delay
of various feedback-synchronization-based multicast flow-control
algorithms. Although our evaluation focuses on ATM ABR mul-
ticast flow control, t.he modeling techn.iques can be applied t0 aRY The Binary-Tree Model

feedback-synchronization-based multicast flow-control algorithm,

and to other Markov-chain-model-based analyses as well. To simplify the analysis of RM-cell RTT, wguantizethe feed-

The paper is organized as follows. Section Il overviews S$}8ck delay by assuming each switch-hop to have an identical delay
and Section IIl presents the proposed binary-tree model and f¢luding processing and propagation delays). This assumption
deterministic signaling-delay analysis. In Section IV, we develdiin Pe readily relaxed because the difference in switch process-
the Markov-chain model and apply it to derive the multicast bott/E!9 delay and link-propagation delay of different switch-hops can
neck probability distributions. Section V proposes the dependengy: ranslated into different numbers of switch-hops with the same
degree model to measure and calculate the Markov-chain deg&f@y- e use thaop-delay 74, which is the sum of the switch-
dency. In Section VI, we derive expressions for various statigjiocessing delay and link-propagation delay taken in ¢ah as
cal and dynamic characteristics of multicast signaling delays. SEtime unitin our delay analysis. To study the worst case and en-
tion VIl explores the asymptotical behavior of the derived Markd@P!€ Performance comparison, we only consider two types of mul-

chain and its dependency-degree models. Section VIII descrifj§&st treesbalancedandunbalanced binaryrees (see Fig. 2 for
the case of tree height = 4). Since we are only concerned with

1 The analytical techniques developed in this paper are also applicable to ca: . . . S
where a link’s random congestion state is causecfby flow-control schemes othelVe briefly overview SSP here for completeness, and it is detailed in [1], [3].

than REM and RED. 3Note that the negative logic is used for convenience of implementation.

iHFnerical evaluation results. The paper concludes with Section IX.

Il. DESCRIPTION OFSSP

IIl. DETERMINISTIC PATH-DELAY ANALYSIS IN A
MULTICAST TREE
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Fig. 2. Balanced and unbalanced binanyiticast trees.

a path’s RM-cell RTT in the multicast tree which is determined by
its length, it suffices to consider binary trees only.

B. HBH and SSP Signaling Delay Properties for Each Path

Theorem 1:1f an unbalancetitree of heightn > 2, as shown
in Fig. 2, is flow-controlled by HBH with RM-cell update interval
A > 1 (m), then the RM-cell RTT, denoted bx, (4, A), of the
j-th (counting from left to right) path, denoted By, is given by:

For xj=1at Link L; : Pr{X;=1}=R
For x;j=0 at Link Lj : Pr{X=0}=1-R

For x;=1at Link L’ : Pr{X;=1} = p;
For x;=0 at Link L} : Pr{X;=0}=1-P;

Root

(a) Unbalanced Tree: Height m=4  (b) Unbalanced Tree: Height m= Infinite

Fig. 3. Dependentrandom-marking unbalanced binary-tree model.

A. The Dependent Statistical Model

To analyze the multicast feedback-synchronization signaling de-
lay with dependent marking probabilities, we introduce the follow-
ing definition.

Definition 1: A dependentandom-marking unbalanced binary

tree of heightm consists of a setf, of links which satisfy the

(5, A) =2+ 7 6(4), 1)
where®(A) émax{2, A} 1<A<L Tpge =2m;5 1< <m—1.
If the multicast tree is flow-controlled by SSP, then the following
claims hold:
Claim 1. The number ofP;’s feedback RM cells going through
initial state is determined by:

A
k; = max
ke{0717...

}{k|2(m—j—1)—kA20}; )

Claim 2. P;'s RM-cell RTT in steady state is determined by:

Tu(Jy A) = Tmae — kj A. 3)
wherel < A < Ty, =2mandl < j <m-—1.
Proof: The proofis provided in [1], [2]. ]

IV. THE MARKOV-CHAIN MODEL FORDEPENDENT
CONGESTIONMARKINGS

following four conditions:
C1. Alllinks in £ are labeled as shown in Fig. 3(a) fier< oo

(e.g.,m = 4) and Fig. 3(b) form — oo, respectively, such that

- Ll Ly}, if m < oo;
v Looy Loo }, if m — o0;

! ! ..
s é {{LlaLzaL2aL3aL3a (4)

{Lla lea L2a Léa L3a o

which containsn paths,P, P, - - -, Pp,, as shown in Fig. 3.
Denote each path by its cqranent links as:

Pe2 {1, Ly, Dy yyyh, 1<k <m—1;
Pmé{Ll,Lz,'--,Lm}, if k =m;

We defineP,, as themain-stream patlhich takes only right-
branch links at all branch nodes, and de#aehP;, for 1 <

k < m—1, as aranch-stream pattwhich consists ok right-
branch links and one left-branch link at the last branch node
(see Fig. 3). Linkd; andL;, Vi > 2, are at the same level of
the multicast tree.

(5)

In random-marking schemes like REM/RED, and any otherca. The marking state of link; (L) G = 1,2,--) is repre-

flow-control schemes, the marking/congestion state of a link is a
function of its queue length. However, the queue lengths of dif-
ferent links carrying the same flows are generally not independent
of each other. For instance, if a large (small) queue is built up
at a congested upstream link in a multicast tree, the downstream
links carrying the same flows are more likely to have large (small)
queues.

For multicast flow control witllependennarking probabilities,

we develop a Markov-chain model and a dependency-degree model

for measuring and evaluating the degree of the Markov-chain de-
pendency, in order to study the various statistical characteristics of
multicast feedback-synchronization signaling delay. The proposed
modeling techniques can not only be used to analyze the multicast
signaling delay, but are also applicable to the general algorithm de-
sign/analysis fobothmulticast and unicast flow control.

4The formulas for RM-cell RTT of the balanced-tree cases are available in [2].

5Theorem 1 still holds folA > Tmaz = 2m, butA is typically a fraction of the
maximum RM-cell RTTrp gz = 2m.

sented by a random variabk; (X/) which takes value in
{0, 1} such that (see Fig. 3)

R T forz; =1;
Pr{X; ==} = { 1—p;, forz; =0; (6)

/ ! .

T B - forz; =1;
PriX; = o} = { 1—pi, forzi=0; ()

wherep; (p;) is the marking probability fo; (L) and is
determined by

1— ¢~ if REM is used;
pi= [w]pmm if RED is used; ®)
mayp — MiNp
1— ¢=9s, if REM is used;
_ PR 9
2 [ﬂ]pﬂwm if RED is used; ©
mayp — MiNp



where0 < p;,p. < 1; 7, (¢;) is the average queue size atength is called thdominant bottleneck patalso callednulticast-
L; (L), v > 0is the step sizep > 1 for REM; pnq. IS tree bottleneck pajhand its RM-cell RTT is called theulticast-
the maximum marking probabilityraz,, (min.;,) is the high tree bottleneck RM-cell RTadr simplymulticast-tree RTT |

(low) queue threshold for RED; Based on Definitions 1 and 2, the following proposition lays a
C3. The congestion marking states of all links at differerfoundation for deriving the distribution of the dominant bottleneck
multicast-tree levels ardependenaind satisfy the following path.

properties: Proposition 1: The sequence of random marking sta{es,,
Pr{X; =z | Xic1 = 2i_1,X\_, = )_1, é(z% s Xm_l,_Xm} (for the tree helghm < o0 andm—>oo) in
, , efinition 1 defines &-state discrete-indexed Markov chain over

Xig=wi2, X]_ 3=, 5,--+, X1 =21} the links on the main-stream paft, = {L1, La,- -+, L, }, and

=Pr{X;=2; | Xic1 = z;_1}; (10) the sequence of marking statgX,, Xs, - - -, Xx, X3, } in Defi-

Pr{X;=a; | X;_1 =21, X{_; = z;_y, nition 1 oneach branch-stream pakly ={Ly, L2, -+, Lx, Ly .1 }»
X X! g X, — for k = 1,2,.---,m — 1, also define &-state discrete-indexed

iz =20, Xi 5 =25 X1 =21} (finite.sequence) Markov chain.

K

=Pr{X! =z, | Xi_1 =21} (11)

Proof: The proof follows from Definition 1. ]
C4. The congestion marking states within the same level df@marks on Proposition 1: Unlike the traditional definition of
alsodependenand satisfy the following properties: Markov chain/process where the random-variable sequence index
set is time, we define the Markov chain for every path (including
Pri{X; =2 | X; =2, Xic1 =21, X;_1 = %;_y, the main- and branch-stream paths) which is indexed by the (dis-
Xig=2i 9, Xl _,=ak 5, X1 =121} crete) link sequence number associated with that path.
= Pr{X;=2; | Xi_1 = zi_1}; (12) Since the mathematical properties/treatments and random mark-

ing definitions for both the Markov chain defined over the main-

! ! R . . _ . ! _ !
PrX;=ai| Xi =2 Xio1 = 2io1, Xiy = 2y, stream pathP,, and the Markov chain defined over the branch-

K

Xio=zi_2, X, _y=a;_5,--, X1 =21}  stream pathd, (k = 1,2,---,m — 1) are the same, except that
— Pr{X! =z} | Xi_y = z;_1}. (13) the last link's marking state differs in labeling by 4™symbol
(see Proposition 1), we will henceforth u§&;} to represent the
where2 < i < m. B Markov chain defined over both the main- and branch-stream paths,

Remarks on Definition 1 (C3 and C4): We only consider the and explicitly specify it whereveratessary.
upstreamandsame-level dependenoélink marking states as de-  Applying Proposition 1, the following theorem derives the prob-
scribed by Egs. (10), (11), (12), and (13), because théeast-tree ability distributions of the dominant-bottleneck path.

signaling delay analysis to be developed below need not considefy,o5rem 2:1f a dependentnarking multicast tree of height

the downstreandependence. The congestion information on thes efined in Definition 1 is flow-controlled under SSP or HBH,
links above the immediate-next upstream link or on the link at tl?r?en the following claims hold:

same level (se€4) is all concentrated into, and carried over by,
the given congestion information on the immediate-next upstrea
Iink.gConditior?sCS andC4 are reasonable because one IinkF’)s con- Pottleneck path, and the probability distribution, denoted by
gestion state depends most on its immediate upstream link’s con- ¥4(F%, ), thatP;; becomes the dominant bottleneck path, is
gestion state. The upstream’s influence on a downstream link's détermined by

congestion state propagates through its immediate upstream link (P, 00) =

which carries same flows, and thus, as long as the immediate up- ATk

laim 1. If m— oo, then there existane and only ondominant

stream link’s congestion state is given, the probability distribution 1—-Pr{X; =0}Pr{X; =0 | X, =0}, ifk=1;

at the downstream link is independent of the congestion state at )

links which are located above the immediate upstream link or at Pr{X; = 0}Pr{X; =0 | X;,_, = 0}

the same level as indicated by conditiod in Egs. (12) and (13). APHX, = 1] Xeor = 0}

B. Probability Distribution of the Multicast-Tree Bottleneck Path +Pr{Xx =0 | Xx_1 =0} (14)
To ensure reliable data transmission, the multicast ABR service Pr{X; 1 =1|Xx=0)

needs to adjust the source rate to the minimum available bandwidth E—2

share on the most congested path that is currently sensed (through . H {pr{XiJrl =0|X;=0}

feedback) by the source [3]. Clearly, based on the OR rule (see i1

the multicast signaling algorithms given in Fig. 1, and the detailed ;L o . )

versions in [1], [3]), among all existing bottleneck paths in a multi- PriXi =0[Xi=0}kp,  ifk>2

cast tree, thehortestottleneck path dominates the source’s flow-
control decisions and the RTT of flow-control feedback loop. To  And, %4(Px, 0o) given in Eq. (14) satisfies:
explicitly model this feature, we introduce the following definition.

Definition 2: Among all concurrent bottleneck paths sensed by lim Z $a( Py, 00) = 1; (15)
the source in a multicast tree, the bottleneck path oftiémum mereo



Claim 2. If m < oo, then there existat most onedominant makes another event unlikely to occur, then they are said tege
bottleneck path, and the probability distributiafy( Py, m), atively dependentAs we discussed earlier, an upstream link’s be-
that P, becomes the dominant bottleneck path, is given by ing congested (uncongested) state will make the downstream links

carrying the same flows more likely (unlikely) to be congested. So,
Ya(Pe, m) = the positive dependence can more accurately characterize the de-
1—-Pr{X; =0}Pr{X},=0]| X; =0}, ifk=1; pendence behavior of link markings. To quantitatively describe
this feature, we introduce the following definition:

Pr{X; =0}Pr{X; =0 | Xx_1 =0} Definition 3: Two dependent link marking staté§; and X1

] _ _ are said to be positively (negatively) dependent i{ Rt ;== |
Pr{X, =1 Xk =0} Xi=2}>Pr{Xip1=2 | X;= 7} (Pr{Xiy1=2 | Xi=2}<

—|—Pr{Xk =0 | Xp_1= 0} PF{XH_l =z | Xi:f}), wherez ¢ {0, 1}. [ |
Pr{X},, =1|Xx= 0)] Based on Definition 3, Theorem 3 models the dependency-
degree between two random variables. Notice that Theorem 3 gives

k2 the results only for the case of PX; 11 = z;41 | X; = ;} and

' H{Pr{XiH =0[X; =0} (16) Pr{X; = 1} = p;, and it also holds for the case of £X; ; =

=t 2., | X; = z;} and P{X! = 1} = p} with the similar results

Pri{Xi,, =0|X;= 0}}, if £>2;, that we omitted.
Theorem 3:Consider the Markov chaifiX;} defined on link
PriX’ —0l% ~ 0 marking states on every path (for both main-stream and branch-
'mrl{z m =0]Xm_1 =0} stream) in the multicast tree specified by Definition 1. If Markov
_ _ hain{ X} is positively dependenand the link marking probabil-

. Pr{X;11 =0 X; =0 cha - :

H { X | } ity is equal to P{X; = 1} = p;, then the following claims hold:

Pr{X; = 0}Pr{X,, = 1| X;n_1 = 0}

=1
PH{X/,,=0|X; = 0}}, if k = m. Claim 1. The conditional distribution RiXit1 = @iy1 | X5 =
‘ z;}, with z;, z; 11 € {0, 1}, is upper- and lower-bounded by
Proof: The proofis detailed in [17]. [ | 1, if pi > pita;
Remarks on Theorem 2: We observe that by Eq. (14), 1—pip1 < Pr{X;;1=0]X;=0}< l—pis1 17)
limg 00 Ya(Pr,00) = 0. This is expected, since a longer bot- —p; if pi <pit1;
tleneck path is always dominated by a co-existing shorter bottle- L
neck path, if any. Thus, whela — oo asm — oo, P, is al- 0, if pi > piy1;
ways dominated by a shorter bottleneck pathtfor p;, o} < 1, i1 > Pr{X;11=1|X;=0}>{ (18)
i = 1,2,---,00. Thatis, ¢4(Pe,00) = 0. In addition, no- Pir17hi Di <Dig1,
tice that by Eq. (15) we hav® .2, ¥4(Px, 00) = 1, which also 1-p
makes sense because asuhbalanced-tree’s height — oo and bi~Pit1 i pi>pige;
0 < pi,p; < 1 there always eX|sts_ (with probablllty 1) one and 1-piy1 > Pr{Xi11=0|X;=1}> Pi (19)
only one dominant bottleneck path in a multicast tree. On the other - - .
hand, for the case o < oo, by Egs. (16) and (15) we have 0, if pi <pia;
S ¥a(Pe,m) < 1, implying the possibility that there is no Pit1 if pi > pisa;
dominant bottleneck path in the multicast tree of height co. < PHXi—1|Xi=13<d P ' ‘= ’(26)
This is also expected becauses p;, p, < 1. Pit1 3 1= AI= S
1, if ps <pit1;

V. MARKOV-CHAIN DEPENDENCY¥DEGREEMODELING _ _
Claim 2. 3e;(a}) € [0, 1] such that all possible dependency-

To use Egs. (14) and (16), we need to derive explicit expres- degrees betweek; andX;; (X/, ) can be measured by the

sions for PAX; = z; | X;—1 = @;_1} and PHX; = z; | X;_, = real-valuectlependency-degree factes; (), and®

z;—1} used in the Egs. (14) and (16). However, it is difficult to . _

know/compute the accurate dependency between tmdora vari- { a; = 0 iff X; andX;,, are independent; (21)
ables. To solve this problem, we propose to use a real-valued | @ =1 iff X; andX,, areperfectlydependent;

dependency-degree facter € [0, 1] to quantify all possible de-
grees of dependency between the random variables in the Markov , . , ]

chain’s one-step transition probabilities. Using this dependency- { o; = 0 iff X; andX;,, are independent; (22)
degree factor, one can evaluate any possible degree of dependency | @i =1 iff X; andX;, , areperfectlydependent;
ranging fromindependento perfectly dependentwithout know-
ing a priori the dependency degree of two random variables.

In general, two dependent random events can a#ach other
eitherpositivelyor negatively For instance, if occurrence of one  Pr{X;41 =0|X; =0} =

?Ye”t is likely to trigger another event, ,then they are said fodze 8Examples of theerfectlydependent events discussed below include that two
itively dependent On the other hand, if occurrence of one evemrtents are identical or one event s a sub-event of the other, see [17] for details.

Claim 3. The conditional distributions RtX; 11 = z;11 | X; =
z;}, with z;, z;41 € {0, 1}, are determined by



1—(1—0i) pit1, if p; > piga;
{(1_ai)(1_pi+1) + oy (11__%) I D <pig1; (23)
Pr{X;1=1|X; =0}=
(1—ai) piy1, if p; > pita;
{(1_ai)Pi+1 + o pl;_i;pl) , if p; <pit1; (24)

and,y4( P, o0) given in Eq. (27) satisfies:

Jim ; Ya(Pr,d, p,00) = 1; (28)

Claim 2. If m < oo, then there existat most onedominant
bottleneck path, and the probability distribution, denoted by
Ya( Py, &, P, m), that P, becomes the dominant bottleneck

path, is determined by

Pr{XrH_]_ =0 | X,L = 1} =
{(1—041')(1—Pi+1)+ai (
(1—a:)(1=pit1),
Pr{XrH_]_ =1 | X,L = 1} =
{(1_ai)pi+1 + a; ( ) )
pit1 + ai(l-piy1),
wherei = 1, 2, - - -, ande; is defined in Claim 2

Proof: The proof is available in [17]. ]

Remarks on Theorem 3: Claim 1 finds the upper and lower
bounds of all 4 possible 2-state Markov chain one-step transition
probabilities as functions of the marginal link-marking probabil-
ities p; and p; 1 given by networks._Claim 2nsures the exis-
tence of a real-valued dependence-degree fagGter [0, 1]. It also
proves the completeness of the dependency-degree factor model-
ing by mapping all possible degrees of dependency onto the real-
valued point sefo0, 1]. Claim 3derives expressions for all 4 possi-
ble 2-state Markov chain one-step transition probabilities.

Applying Theorem 3 and Eqgs. (23) and (24) to Theorem 2, we
obtain the general-case (heterogeneous) expressions for calculating
the multicast bottleneck path probability distributions, which are
summarized in the following corollary.

Corollary 1: Let a dependent-marking multicast tree of heightf

Pi—Pi+1

?

)

wd(Pka&aﬁam)
1-(1=p1)[1 - (1—a3)py

ifpi<pi+1; ] if k=1

Dit1

Di

(=) [1- (1 - af_)ph] [(1- o)

if p; <pit1;
+U—U—amﬂmﬂl—%wu4

k—2

TI{0- 0 eom)

=1
(-0 el k2

/

(1=p)(1 = om-1)pm [1 = (1 — o7 1)P,

]
-,{u—u—mmﬂ]

1=1

-h—u—%mHQ,Wk:m
(29)

Proof: The proof follows by plugging Egs. (23) through (26)
m as defined in Definition 1 be flow-controlled under SSP Gt ' neorem 3 into Egs. (14), (15) and (16) of Theorem 2. W

HBH. If the one-step transition probability of the Markov chaifk@marks on Corollary 1: We can use Egs. (27) and (29), and

{X;} defined over every path (including the main- and branckine up the dependence-degree faattw see how the system per-
forms with different dependency degrees. More importantly, the

. . A
stream pathsl) IS splecmed by the dependency-factor VeCISr  .mpjeteness of the dependency-degree factor model derived in
(a1, 0, @2, @3, a3, @, - - ) Which is derived in Theorem 3, andrpeorem 3 guarantees that the actual unknown degree of depen-
further, denote the link marking probability vector kg 2 dency imposed by the practical problems can always be covered
(pl, pi, p2, D5, P3, D%, - - ), then the following claims hold. by tuninga in the interval [0,1]. Moreover, Egs. (27) and (29)
Claim 1. If m — oo, then there existene and only onelomi- Provide very general probability distribution expressions since one
nant bottleneck path, and the probability distribution, denoté@n arbitrarily selec& andp for different links to handle the het-
by ¥4(Py, &, B, o), that P, becomes the dominant bottleneclerogeneity. Egs. (27) and (29) reduce to the probability distribution
path, is determined by expressions of( P, m) derived for the multicast signaling delay
P a5 analysis undeindependentandom-marking [2] by lettinge = 0
Ya( Pk, & P, 00) (independent), verifying the correctness of Egs. (27) and (29).

1-(1=p)[1 = (1-ay)p], if k= 1;
VI. STATISTICAL AND DYNAMIC PROPERTIES OFMULTICAST
, , SIGNALING DELAYS UNDER DEPENDENTMARKINGS
(1=p1) [1 - (1 - aj_y)pi] [(1 - an-1)px
Using the probability distribution derived in Corollary 1 and
+1-(1—ap_1)pe] (1 — a;)pg+1] (27) Eas. (1) and' (3) o (4, A) d_e_riveq in_ Th_eorem 1, the follqwing
theorem derives the probability distributions, their dynamic prop-

k—2

TI{0 - (- apsa

1=1
- O-adpalh k2

erties, and the means and variances of multicast signaling delays
under SSP and HBH for the homogeneous casenardo.

Theorem 4:Let a dependent-marking multicast tree of height
as defined in Definition 1 be flow-controlled under SSP and HBH,




where 94(Pg,a,p,m) is given by Eq. (30), and the

respectively, with the RM-cell intervah. If m < o0, 0 < p; =
“dependency-balanced path numbkiis determined by

P, =p<land0 < a; = a, = a < 1, Vi (the homogeneous
case)’ then the following claims hold:
Claim 1. The probability distribution thaP, becomes the dom- 10g\/ 2-p
inant bottleneck path, denoted by (Px, , p, m), is deter- 7o (1 —a0)[2— (1 — ao)p] +15]; (36)
mined by log 1—(1—ao)p ’
l1-p
wd(Pka a,p,m ) =
1—(1-p)[1—(1—a)p], if k=1 Claim 5. The means of multicast-tree bottleneck RM-cell RTT,
) ) denoted byFssp(a, m) andTgpm (e, m) for the SSP and
(1-e)(1—ppl2—(1- a)p]zk_g . (30) HBH schemes, respectively, are determined by:
M= —-a)p™ ", ifk>2
2m—3 . . _ 9 2(m—2)
(1-a)(1-—pp[1-(1-a)p , fk=m; Tssp(a,m) = [p—i—(l—a)(p—p )] 2m— A A
Claim 2. For each pathP, and a givenx, ¥4( Pk, a, p, m) at-
tains theuniguemaximum at +2m(1—p)[1 — (1 — a)p] {1 +1-(1-a) ]2(m 2)
P2 arg Jnax Ya(Pe, &, p,m)
: | 0= a)p- 11} - (1= )1 - ppl2— (1 - a)sla
{1, if &k =1;
=1 m—(m-1)a—y/lm—(m-1)a)P—(1—a)@m-1) .., _ (31) m—1 L
(1—0()(2771—1) ; |f k =m, { \‘2(m Ak 1)J [1 _ (1 _ a)p]2k—3}, (37)
and for2 < k < (m — 1), p* is non-negative and no larger k=2
than1 real-valued root of the following cubic equation: 1—p)O©(A
S (o) = g B {2 (ae)
2k(1—@)?*p® + (1 — ) [(2k — 1)a — 6K] p° s -
—2[(2k —1)a—2k—1]p—2=0. (32) A= -a)p” = ml = (1 - a)p]™ " + (m—1)
2m—1 2m—-3
Claim 3. For each patt®, and a giverp, ¢4(Px, o, p, m) attains 1= (1 —a)p] } +(1-p)[1 = (1-a)p
theuniquemaximum at
-{(1 —a)p[2+(m—1)0(A)] - 2} +(24+6(4A)
ot 2 arg max ¥4(Px,a,p, m) )
O<ast [+ (1=a)(p - p*)] +2(1-p) [L - (1-a)p]; (38)
p—1 1 2 . . . .
Y + ;\/ 1- %1’ if2<k<m-1 and where©(A) is defined in Theorem 1.
1 1 _ Claim 6. The variances of multicast-tree bottleneck RM-cell
= k>|5+ 2-p) | 3 RTT, denoted by 2, (a, m) ando? g (a, m) for the SSP
) . and HBH schemes, respectively, are determined by:
' 3(m 1) themandk (150l a1 )1 (1 )
l—a)p—1—(1—-a)(1— 2—(1l—«a
Claim 4. If Markov chain dependency-factar = a¢ > 0 for a g 7)5_1 ] (( i ) P2 = ( 7]
givenay, it shifts the probability distribution of multicast-tree L amA 2(m—k—1 11— 2k—3)
bottleneck path from shorter paths to longer ones. If the tree m kz_:z A (1= (1=ap)
heightm satisfies: B
ml 2(m — k — 1) 2k 3)
. B S ECSUETT P
log T k=2
m > + 2.5/, (34) _ 2
log L= (L= a0)p +p[1+(1—a)(1 —p)]{Az {MJ —4mA
1—p A
. L ' 2(m —2) 9
then there exists thenique“dependency-balanced patlﬁ’; Sl R Tesp(a,m), (39)
[14(1—a)(1-p)]p(2+ ©(A))*+(1-a)

U%IBH(a’m) =
(1-pp[L— (1 —a)p*"? 2+ (m — 1)O(A)?

+4(1—p)[1 = (1 = )p] {1 —1-(1- a)p]z(m_z)}

such tha2 < k < m — 1 and

{'de(Pk,a,p, m) |a:0 Z wd(Pkaaapa m) |0t=0tua if k S E;

) | azao, if k> k;

oo (&)1 —p)[1— (1 —a)p]
40(A)(1—-p)1—(1—a)p 2
T -apl-(-ap {2‘“‘(1‘“)”]

wd(Pkaaapa m) |o¢:0 < wd(Pkaaapam

“The analytical results derived from the homogeneous case can be easily extended
to the heterogeneous case whey@nda; are differentvs.



(1-a)p

1-(1-a)p ‘Q‘e’ pt+a(i-p)

(1-)(1-p)
Fig. 4. Markov-chain model for dependentlink-markingltimast flow control.

o)p" ) 4 [1 - (1 - )Y

o (1—p)©*(A)
( 1)} T ey P-(1—a)p PP —(1—a)p"]

'{1 +[1-(1—e)p’ —[2- (1 -a)p’[(1 - )]’

-m[l—(1-— -«

—m?[1— (1 - a)pf™ M + (2m? — 2m — 1)
(1 —a)p—1]

(1 a)p]z(’”“)} ~ 74 pr (e, m),

2m—|—(2m—m2—1)

(40)

where®(A) is defined in Theorem 1, arksp (e, m) and
Tupm (o, m) are given by Egs. (37) and (38), respectively.

Proof: The proofis given in [17]. ]
Remarks on Theorem 4:Claim 1 derives formulas for multicast-

modeling technique whem is large.

Theorem 5:Consider the Markov chaif X;} defined by the

link-marking states on both main-stream and branch-stream paths
in the multicast tree specified by Definition 1 (ilf the dependency
degree of X;} is specified by the dependency-degree factor vec-
toréd = (a1, o}, az, af, as, of, - -
the link-marking probability vectos =
defined in Definition 1 and satisfy0 < p; = p; = p < 1 and
0 < oy = af = a < 1, Vi, respectively, such thdtX;} becomes a
homogeneous Markov chain, then the following claims hold:

Claim 1. The n-step transition probability matrix, denoted by

-) derived in Theorem 3; an()
(pla plla D2, P’za D3, péa o )

P(™), of the homogeneous Markov chajiiX;} is determined
by:

pn) =2 A { (”) [

wherej, k € {0,1},n €{1,2,--
n = 1 is shown in Fig. 4.

Claim 2. If a € [0, 1], then both link-marking states agegodic
with

1-(1—a™)p
(1—a™)(1-p)

(1-a)p

41
a*(1-p) +p (1)

-}, and the case d®(™) with

>0

hm Zp()—oo

lim sup p( ) = hm p (42)

n—r 00

tree bottleneck path distributions as a function of path lergth
link-marking marginal probability and dependency-degree fac-
tor @, and tree heightn. Claim 2examines the dynamic behavior
of ¥4(Ps, @, p,m) asp varies and observes thét( Pk, a, p, m)
attains the unique maximum at given by Egs. (31) and (32),
representing the link-marking probability that malk®sthe most
likely multicast-tree bottleneck path. ClaimsBudies the behav-
ior of ¥4(Ps, e, p, m) from the viewpoint ofa and indicates that
¥a( Py, o, p, m) can be either monotonic or non-monotonic, de-
pending on the givet andp values. As long ag andp satisfy
the condition specified in Eq. (33%4(Px, @, p, m) achieves the
maximum aix* given by Eq. (33).

Claim 4reveals the fact that the Markov-chain dependency (
0) reduces the probabilities for shorter paths to be the bottle-
neck path while increasing the probabilities for longer paths to
be the bottleneck path. This probability shift is also shown to
be balanced at the unique paﬂPE wherewd(PE, o, p,m) |a=o=
'gbd(P'l;,a,p, m) |a=ao, If the tree is high enough (see Eq. (34)).
This claim also derives the condition for the existencePpfand

where: € {0, 1}, and

|

wherek € {1,2,--};
Claim 3. If a € [0, 1), then the Markov chaif X} is ergodic
and its limiting probabilities converge to thaiqueequilib-
rium state probabilities which are independent of both the ini-
tial state probabilities and dependency-degre@he Markov
chain’s limiting probabilities, denoted by, ¢ € {0, 1}, con-
verge to the marginal link-marking probabilities as follows:

Pr{Xy=i}=1—p, ifi=0,c€
Pr{X,=1i} = p,
1

[0,1);
ifi=1,a€][0,1); (43)
ifie{0,1},a=1;

lim p{})=

Elm m]=[(1-p p]

i.e,mo = Pr{X; =0} = (1-p) andm; = Pr{X; = 1} = p;
Claim 4. If the Markov chain{X;} is “perfectly dependent”,
i.e,a = 1, then{X;} also converges to an equilibrium state,
but the equilibrium state probabilities are not unique and are
equal to the initial state probabilities. If the initial state prob-
abilitiesare P{X; =0} =1—-pand P{X; = 1} = p(asin

(44)

i

the equation to compute the dependency-balanced path number
as a function of Markov-chain dependency-factoand the link-
marking probabilityp. Claim 5and_Claim 6show that the means
and variances for SSP and HBH are the functionapp, «, and

m. In addition, Egs. (30), (31), (32) (37), (38), (39), and (40) all this paper addressed case), then= 1 — p andm; = p still
reduce to the analytical results derived for the multicast signaling ,514.
delay analysis undandependentandom-marking [2] by letting Proof: The proof is presented in [17] -

a = 0, confirming the correctness of the dependency-degree mod- . -
eling and the associated equations. Remarks on Theorem 5:Claim 1fully specifies the long-term be-

havior of the Markov chain and determines the distribution of a bot-
tleneck path in the homogeneous case. Claicta&sifies the link-
marking states as the dependency-fastaaries. It also shows that
the Markov-chain state recurring probabilities converge asymptot-

We now investigate the long-term behavior of the link-markinigally to the marginal link-marking probabilities (see Eq. (43)), if
Markov chains based on the proposed dependency-degree fatteMarkov chain is not “perfectly” dependeiat £ 1).

VIlI. ASYMPTOTICAL ANALYSIS OF LINK-MARKING

MARKOV CHAINS
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Fig. 5. Impact of path length, link-marking probabilityp, and dependency-degreen multicast-tree bottleneck path probability distributidg( Py, o, p, m).

Claim 3 ensures that our dependency-degree modeling caluces the probability contribution frofiX, = 1U X; , = 1}

verges asymptotically, and the long-term behavior of the resyfjpije increasing that frorﬁﬂk__ll(Xi = 0, X/,, = 0)}. Then for

ing Markov chain is stable. Also, the ergodicity of the Markoy, < ¢ e decaying rate af4( Py, o, p, m) ask increases is slower

chain enables us to evaluate its various statistics (ensemble aMels that for the case af — 0 Compared to the case af = 0

age) through the sample averages in simulations or implemenfgr, 1 is small & < 4), the decrease of probability contribution

tions. Moreover, this claim shows that the limiting probabilitieﬁom (Xp=1 Ux . = 1} due toa > 0 cannot be compensated
= I

converge to the marginal link-marking probabilities. This is also . i b_1 ,

expected, because andr; represent the long-term proportion of O by the increase in that frof(,_; (X; = 0, X;,, = 0)}. So,
Markov chain remaining at staeand1, respectively, and is con- ¥a(Fk; @ P, ™M) [a>0 < $a(Pk, @, P, m) [a=o for smallk (k < 4).
sistent with the definitions of RiX; = 0} and PH{X; = 1}, which Whenk is large ¢ > 5), the gain in probability contribution from
verifies the validity of our dependency-degree modeling. CIainﬂﬁfgll(Xi = 0,X;,, = 0)} is larger than the drop in that from
says that wher = 1, i.e., the link-marking states are perfectly de{ X = 1U X; ., = 1} due toa > 0. Thuse4( Py, @, p, m) |a>o
pendent, the steady state distribution still exists, but is not uniqge¢d(pk, @, p, M) |a=o for largek (k > 5). Whenk becomes very
depending on the initial state probabilities. This is expected harge, bothps( Py, @, p,m) |a>o and (P, @, p,m) |a=o CON-
cause whem = 1, the Markov chai{ X; } has two isolated classesverges to zero. Seps(Px,a,p,™m) |a>o= Ya(Ps,a, p,m) |a=o
(see Fig. 4). So itis not irreducible, and thus is no longer ergodigsk — oo, which is confirmed by Fig. 5(a).

But, no matter howp4( Py, a, p, m) shifts asax changes, the nor-
VIIl. N UMERICAL EVALUATIONS malization condition given by Eq. (28) is always satisfied, which

Based on the analytical results derived in the previous sectioffverified by the fact that the area undch plot for any given
the various multicast signaling delay properties are evaluated AYayS SUMS ta as shown in Fig. 5(a).
merically as follows. Fig. 5(b) shows that}4(Ps, o, p, m) is inversely proportional

to path lengthk, verifying the above observations. Fig. 5(b) also
A. Multicast-Tree Bottleneck Path Distributigiy( P, o, p,m) ~ Shows that there exists a unique maximyif(Px, o, p*,m) for
any givenk, verifying Claim 2of Theorem 4. Fig. 5(c) indicates

Fig. 5(a) plotsya(Px, a, p, m) vs. path lengttk while varying that for any givena, the larger the path length, the smaller
the dependency-degree facter ¢q(Fx,a,p,m) is found to be (P, a,p,m). Fig. 5(c) also indicates thatz(Py, o, p, m) is
a Strictly monotonic decreaSing function kffor both the inde- not a monotonic function O&, but there can be a unique maxi-
pendent & = 0) and dependeni > 0) cases. This is expectedmum ¥* (P, a*,p,m) as long as the given path lengthand p
because tha)hger the bottleneck path, the more IIker it will b%a“sfy the condition given in Eq (33) Alsgets |arger'a* in-
dominated by shorter paths, as described in Definition 2. creases. These also validate Claiwf ¥heorem 4. Fig. 6(a) shows

Compared to the independent-marking case=(0), the mark- a more complete dynamic-behavior picturegf Px, o, p, m) as a
ing dependency is found to reduce the probability for shorter paflgiction of two independent variablés, p). Fig. 6(a) shows that
(with & < 4) to be the multicast-tree bottleneck path while increag(Px, o, p, m) always has the maximum along thpeaxis aso
ing the probability for longer paths (with > 5). This verifies the varies from0 to 1. In contrastga(Px, a, p, m) can have the max-
Claim 4of Theorem 4, and the dependency-balanced path numbeum along thex-axis only for a certain range gf values which
k is found to be around ands. Fig. 5(a) also shows that the largegatisfy the condition given in Eq. (33) in Theorem 4 for a giken
a, the more this probability shifts from the shorter to longer paths.
This is because the larger the link-marking dependence, the laigerDelay Statistics for HBH and SSP Schemes under the Depen-
the probability that all links stay in theamecongestion state. dent Markings

On thg other hand, Theorgms 2 and 4 state thatPfoto be Fig. 6(b) plots the meang:ssp (e, m) andFgsx (o, m) cal-
the multicast bottleneck, all links on sh.orter pais (k' < k) ylated by Egs. (37) and (38) againat for differenta’s. We
must be un-congested ai’s last two links Ly or Li11 MUsSt gpserve that the link-marking dependeney) has direct impact
be congested. Thugy(Fx, a, p,m) is contributed by two events, o, the average multicast signaling delays. This impact gets more
{Xpk =1U X}, =1} and{ﬂf;ll(Xi =0,X;,; = 0)}, which pronounced when the HBH scheme is used or the multicast tree’s
must occur at the same time. But, link-marking dependence height increases, see Fig. 6(b). Consequently, the approximation
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Fig. 6. Impact of dependency-degree faeciotink-marking probabilityp, and multicast-tree height on multicast-tree bottleneck path probabilty ( Py, o, p, m) and
multicast signaling delay means and standard deviations. SSP is found to be more scalable with tree heightthan HBH in terms of signaling dethyariatossan

error in the multicast signaling delay analysis/calculation, whichtions/analyses justified the necessity of the marking-dependency
caused by assuming “independent link-marking” while the actuabdeling/analysis, and also revealed that the marking-dependency
congestion markings are dependentpds negligible. This quan- tends to shift the bottleneck from shorter to longer paths, which is
titatively justifies the ecessity of the marking-dependency analyconsistent with the definition of the positive link-marking depen-
sis for multicast signaling-delay performance evaluations, suchdency imposed by the nature of multicast signaling. The analytical
the Markov-chain and dependency-degree models developed integilts have also been confirmed by simulations [17].

paper. Fig. 6(b) also shows that for longer pgths > 20), the
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