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Abstract—Feedback signaling plays a key role in flow control
because the traffic source relies on the signaling information to
make correct and timely flow-control decisions. However, it is
difficult to design an efficient signaling algorithm since a sig-
naling message can tolerate neither error nor latency. Multicast
flow-control signaling imposes two additional challenges: scala-
bility and feedback synchronization. Previous research on multicast
signaling has mainly focused on the development of algorithms
without analyzing their delay performance. To remedy this de-
ficiency, we have previously developed a binary-tree model and
an independent-marking statistical model for multicast-signaling
delay analysis. This paper considers a general scenario where the
congestion markings at different links are dependent—a more ac-
curate but complex case. Specifically, we develop a Markov-chain
model defined by the link-marking state on each path in the mul-
ticast tree. The Markov chain can not only capture link-marking
dependencies, but also yield a tractable analytical model. We
also develop a Markov-chain dependency-degree model to eval-
uate all possible Markov-chain dependency degrees without any
prior knowledge of them. Using the above two models, we derive
the general probability distributions of each path becoming the
multicast-tree bottleneck. Also derived are the first and second
moments of multicast signaling delays. The proposed Markov
chain is also shown to asymptotically reach an equilibrium, and
its limiting distribution converges to the marginal link-marking
probabilities when the Markov chain is irreducible. Applying the
two models, we analyze and contrast the delay scalability of two
representative multicast signaling protocols: Soft-Synchronization
Protocol (SSP) and Hop-By-Hop (HBH) algorithms.

Index Terms—Markov chain, multicast feedback synchroniza-
tion/consolidation, multicast flow-control signaling, soft-synchro-
nization protocol (SSP).

1. INTRODUCTION

A. Background and Motivation

FLOW-CONTROL algorithm consists of two basic com-

ponents: rate control and flow-control signaling. These
two components are conceptually separate from the flow-con-
trol theory’s standpoint, but are often blended together in most
flow-control algorithms. Rate control adjusts the source rate to
the variation of bandwidth available in the network. Flow-con-
trol signaling conveys the congestion and rate-control informa-
tion between the source and the network/receivers. This sig-
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naling is crucial to flow control because the source relies solely
on the signaling information in making flow-control decisions.
However, it is difficult to design an efficient flow-control sig-
naling protocol because the signaling messages, unlike data or
audio/video traffic, can tolerate neither error nor latency. A sig-
naling message could be useless or even harmful if it is not accu-
rate or its delay is unbounded. The delivery of signaling traffic
must therefore be timely and reliable. For example, in ATM
ABR service, flow-control signaling uses resource management
(RM) cells to convey the rate-control and congestion informa-
tion among the traffic source, switches, and the receivers.
Signaling for multicast flow control imposes two new prob-
lems: scalability' and feedback synchronization [1], [2]. These
two problems are closely interwoven in the signaling protocol
for multicast flow control. First, simultaneous feedback arrivals
from all branches can cause feedback implosion [1], [2] at the
source and branch nodes, especially when the multicast tree is
large. Hence, each branch node need to consolidate the conges-
tion feedbacks from its downstream paths and then forward only
one consolidated feedback to its upstream node. Second, we
need a feedback-synchronization signaling algorithm for each
branch node to consolidate feedbacks, because they may arrive
at significantly different times. To solve these problems, several
multicast flow-control signaling algorithms have been proposed.

B. HBH and SSP Schemes for Multicast Signaling

The first-generation feedback consolidation algorithms
[3]-[5] for multicast ABR flow control employ a simple
Hop-by-Hop (HBH) mechanism to deal with the feedback-im-
plosion problem. The HBH scheme works as follows. On receipt
of one forward RM cell, each branch node sends only one con-
solidated feedback RM cell upward by a single hop, ensuring
that at each node, the ratio of feedback RM cells to forward RM
cells is no larger than 1. To reduce the RM-cell round-trip time
(RTT) and improve multicast signaling accuracy, the authors
of [6] proposed a different feedback-synchronization algorithm
by accumulating feedbacks from all branches at each branch
node. The authors of [7] proposed an algorithm to speed up the
transient response by sending fast congestion feedback without
waiting for all branches’ feedbacks during the transient phase.

In [1] and [2], we proposed a feedback-synchronization
signaling algorithm, called the Soft-Synchronization Protocol
(SSP), which derives a single consolidated RM cell at each
branch node from feedback RM cells of different downstream
branches that are not necessarily responses to the same for-
ward RM cell in each synchronization cycle. Fig. 1 shows
the pseudocode of the SSP algorithm. When receiving a feed-

IBy saying that a multicast signaling protocol is scalable, we mean that the
multicast signaling delay performance and cost/complexity do not get worse
significantly as the multicast-tree size and structure scale up.
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00. On receipt of a returned feedback RM cell from the i-th branch:
01. if (conn_pattvec(i) # 1) {! Only process connected branches

02. resp_branch_vec(t) := 1; ! Mark connected and responsive branch

03. MCI := MCIV CI;! CI is randomly marked and consolidated

04. MER := min{MER, ER};! MER is the consolidated ER

05. if (conn_patt_vec @ respbranch_vec = 1) { ! Soft Synchronization

06. send RM cell (dir := back, ER := MER, CI := MCI);

07. no-_resptimer := Ny,¢; | Reset non-responsive timer

08. resp-branch_vec := 0); ! Reset the responsive branch vector;
09. MCI :=0; MER:= ER;}}; ! Reset RM-cell control variable.

Fig. 1. Pseudocode for the switch feedback synchronization algorithm (SSP).

back RM-cell, the switch first marks its corresponding bit
in the responsive branch vector resp_branch_vec and then
conducts RM-cell consolidations. If its modulo-2 addition
with the connection pattern vector (which uses the negative
logic): conn_patt_vec @ resp_branch_vec equals 1, an all 1’s
vector—all feedback RM cells are synchronized, then a fully
consolidated feedback RM cell is generated and sent upward;
otherwise the switch needs to await other feedback RM cells
for synchronization. Notice that since SSP allows feedback
RM cells corresponding to different forward RM cells to be
consolidated, the feedback RM cells are “softly synchronized”
at branch nodes, making SSP not only scale well with the
multicast-tree size/structure, but also readily detect/remove the
nonresponsive branches [1].

C. Delay Modeling of Dependent-Marking Multicast Signaling

All of the above-referenced work only focused on the design
and implementation of feedback synchronization signaling
algorithms, without addressing their delay performances. To
remedy this deficiency, we have previously developed a bi-
nary-tree deterministic model [1] and an independent-marking
statistical model [1] to study the delay performance of various
multicast feedback-synchronization signaling algorithms. The
independent-marking statistical model [1] for multicast sin-
gling delay analysis builds on the recently proposed Random
Early Marking (REM) [8], and the widely cited Random Early
Detection (RED) [9] flow-control schemes.2 The REM and
RED—originally proposed for unicasts—can also be extended
to multicast. Moreover, unicast and multicast transmissions
usually co-exist in a network. In RED or REM, each router
marks a packet’s explicit congestion notification (ECN) bit
with a probability that is exponential in REM, or proportional
in RED, to the average queue length at the output link.

The independent-marking statistical model is suitable for sig-
naling delay analysis for multicast flow control based on REM
or RED, where link markings are assumed to be independent
at different links/routers. However, there are also many cases
where link markings may be dependent. In such a case, the in-
dependent-marking algorithm and analysis can only offer ap-
proximate results, and their performance and accuracy will be
affected by the “dependency degree” between link markings.
This paper addresses the general case of dependent link mark-
ings. Including dependence in the analysis is usually much more
difficult than that with the independent-marking assumption.

In this paper, we develop a Markov-chain model over the
link-marking/congestion states at different levels in a multicast
tree, and a Markov-chain dependency-degree model which can

2The analytical techniques developed in this paper are also applicable to cases
where a link’s random congestion state is caused by the flow-control schemes
other than REM and RED.
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capture all possible Markov-chain dependency degrees between
different link-congestion markings. Using the Markov chain and
Markov-chain dependency-degree models, we derive the prob-
ability distribution for a path to become the multicast-tree bot-
tleneck path. We also derive the first and second moments of the
multicast signaling delay for SSP and HBH, respectively.

D. Paper Organization

In Section II, we develop a Markov-chain model to derive
the multicast-tree bottleneck probability. Section III proposes a
Markov-chain dependency-degree model to compute transition
probabilities. In Section IV, we derive the statistics of multi-
cast signaling delays. Section V explores the asymptotical be-
havior of the link-marking Markov chain and its dependency-
degree models. Section VI numerically evaluates and compares
the delay performances of SSP and HBH. The paper concludes
with Section VIIL.

II. MARKOV-CHAIN MODEL FOR DEPENDENT MARKINGS

In random-marking schemes like REM/RED, and any other
flow-control schemes, the marking/congestion state of a link is a
function of its queue length. However, the queue lengths of dif-
ferent links carrying the same flows are generally not indepen-
dent of each other. For instance, if a large, or small, queue is built
up at a congested upstream link in a multicast tree, the down-
stream links carrying the same flows are more likely to have
large, or small, queues. For multicast flow control with depen-
dent marking probabilities, we develop a Markov-chain model
and a Markov-chain dependency-degree model for measuring
and evaluating the degree of the Markov-chain dependency, in
order to study the various statistical characteristics of multicast
feedback-synchronization delay.

A. Binary Multicast-Tree-Based Dependent Statistical Model

A.l. Unbalanced Binary Multicast-Tree Signaling Model: To
simplify the analysis of RM-cell RTTs, we measure/quantify
each multicast-path’s RTT based on the path length, i.e., number
of hops along that path [1] by assuming that each switch-hop
has a uniform delay, which only includes the propagation de-
lays. We can only consider the propagation delay, excluding
the queueing delay, because the flow-control signaling messages
can tolerate neither latency nor error, and all network/flow-con-
trol signaling messages are typically delivered via an out-of-
band channel,? bypassing buffering and queueing required for
the normal data packets. The uniform hop-length assumption
can be easily relaxed because the difference in the link-lengths
in different switch-hops can be translated into different numbers
of switch-hops, each with the same length.

In a real network, the structure of a multicast tree can be arbi-
trary, ranging from a balanced tree to an unbalanced tree. This
paper aims at the modeling and analysis of signaling feedback
delay and delay variations caused by dynamically changing lo-
cation of the bottleneck path within a multicast tree, and the un-
balanced multicast tree defined in this paper yields the largest

3For instance, in TCP the urgent-data packets are transmitted through
“out-of-band” notification by bypassing buffering and queueing required for
ordinary/normal data packets [10]. Similarly, the ATM network’s RM-cells,
carrying the time-sensitive flow-control feedback information, are also given
the highest priority to bypass queueing delay in the normal/ordinary data
buffers [11].
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delay variation, representing the worst case (lower bound of sig-
naling delay performance) in terms of delay variations. Since the
above multicast-signaling delay analysis is only based on the
path length (the number of hops on each path in a tree), we only
need to consider the binary-tree and the delay modeling results
based on the tree structure with the fan-out degree larger than 2
do not differ from those based on the binary-tree structure.

Our binary-tree model also considers the more realistic sce-
narios where multiple bottleneck links/paths can co-exist in a
multicast tree. Moreover, to make the analysis complete, our
binary-tree model allows the multicast-tree height m to be arbi-
trarily large and include oo as its limiting case. Allowing m —
oo enables us to study the scalability of signaling delay when the
multicast tree becomes large, prove the normalization condition
of bottleneck-path distribution, and study the various asymp-
totic properties of the proposed Markov-chain model. In addi-
tion, the proposed modeling techniques based on the unbalanced
binary-tree model are generic, and thus, can be applied to any
other multicast-tree structures.

A.2. Link Congestion Marking Dependency: While the con-
gestion link-marking states can have either upstream or down-
stream dependency, the formulation of the proposed Markov-
chain model (see the proof of Theorem 1 in Appendix A) only
needs to consider one-way dependency to derive the probability
distribution of a path becoming the dominant bottleneck path.
We choose the upstream-dependency—i.e., congestion state in
the downstream link depends only on its upstream-links’ con-
gestion states—to capture the congestion dependency caused
by the multicast connection itself, which is clearly the major
contributor to congestion dependency within the multicast tree.
The link-congestion dependency by other cross-traffic can be
taken into account by properly choosing/tuning the values of
the dependency factors, «;, Vi.* We choose upstream, instead
of downstream, dependency also based on the following ob-
servations, facts, and the simulation results described in Sec-
tion II-A.3.

O1. Congestion caused by a multicast connection always
originates and then propagates from the multicast source to the
receivers at downstream, rather than from the downstream re-
ceivers to the multicast source at upstream. This implies that
time-sequence-wise, the multicast congestion always occurs at
the upstream link first if any, and then the congestion state of
the same multicast flow propagates to the downstream links.

02. Upward propagation of the congestion state can occur
in the network using the hop-by-hop flow-control scheme, such
as the back-pressure [12, pp. 506-507] and others [13]. By
the backpressure scheme, for instance, the congestion state
propagates backward from the congested node to the multicast
sources through the back-pressure signal. However, our multi-
cast delay modeling mainly targets at the networks using the
end-to-end flow control, such as the Internet, and thus does not
consider downstream dependency.

03. For the multicast networks using the end-to-end flow-
control, if an upstream link is marked congested, i.e., its arrival
rate is larger than its available bandwidth, then the immediate-
next downstream link carrying the same flows will also likely
(with a larger probability) be congested, as long as the imme-
diate-next upstream link gets more available bandwidth/service
rate for these connections such that the large arrival rate/traffic

4The definition of «v; will be specified by Claim 2 in Theorem 2.

CGj: i-th Level’s Right Cross Group; () :i-th Level’s
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Fig.2. Simulation model for link-marking dependency in a multicast tree with
tree height m = 10; link-marking probability Pr{X; = 1} = p; = 1—e~¢%
(g, is average queue size and { = 0.02); link delay of L; or L], = 7 ms, Vi.

TABLE 1
SIMULATED LINK-MARKING DEPENDENCY CAUSED BY
THE MULTICAST CONNECTION

wr | ps pr ps |pr x ps|prs(1,1)| ar |pr>ps
40{7010.2092|0.1308 | 0.0274 | 0.0360 |0.0835| Yes
40(60(0.2019]0.1949| 0.0394 | 0.0575 |0.1167| Yes
40(501/0.2147]0.2121 | 0.0455 | 0.0658 [0.1216| Yes
40(401/0.2211|0.1209 | 0.0267 | 0.0397 [0.1377| Yes
401(3010.2323|0.3382| 0.0786 | 0.1160 |0.2435| No
401(201(0.1997|0.4531| 0.0905 | 0.1207 |0.2767| No
40(101(0.2342|0.5063 | 0.1186 | 0.1417 |0.2000| No

will go through, or overflood the immediate-next downstream
node/link, thus propagating the congestion state to the down-
stream nodes/links.

A.3. Simulation Experiments on the Upstream Link-Marking
Dependency: To further verify the upstream-dependency of
link-marking states in the multicast tree, using ns-2 [14] we
simulated the probabilities p; = Pr{X; = 1} and pg =
Pr{Xg = 1} of link L7 and link Lg being marked, respectively,
and the joint probability pr s(1,1) 2 Pr{X; = 1, Xg = 1} of
links L7 and Lg both being marked, in the unbalanced binary
multicast-tree network model as shown in Fig. 2. The simula-
tion methods and parameters are detailed in [15]. The simulated
results are listed in Table I where p7 and ug are the bottleneck
bandwidths (in Mbps) at links L7 and Lg, respectively, and
a7 is the the Markov-chain dependency degree factor of event
{Xg = 1} (link Lg is marked) on event {X7; = 1} (link L is
marked). We observe that

p7,8(1, 1) = PI‘{Xs = 1,X7 = 1}

= PI‘{XS =1 | X7 = 1}PI‘{X7 = 1}

# Pr{Xs = 1} Pr{X7 = 1} = prps )]
implying that events { X7 = 1} and { Xg = 1} are not indepen-
dent. Furthermore, we also observe that

p7,8(17 ].) = PI‘{Xs = 17X7 = ]_}

= PI‘{X7 = 1} PI‘{Xg =1 | X7 = 1}

> Pr{X7; = 1} Pr{Xs = 1} = prps (2)
always holds for all (p7, ug) combinations regardless whether

p7 < pg (link Lg becomes the bottleneck link) or p7 > pg (link
L7 becomes the bottleneck link), implying that

Pr{Xs=1|X; =1} > Pr{Xs = 1} 3)
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For x;=1 at Link L; : Pr{X;=1}=p;
For x; =0 at Link L; : Pr{X;=0}=1-27;

For x{=1 at Link Lj:
For x}=0 at Link Lj:

Pr{X;=1}=p;
Pr{X;=0}=1-p;

Fig. 3. Dependent random-marking unbalanced binary multicast-tree model.
(a) Unbalanced tree: height m = 4. (b) Unbalanced tree: height m = oc.

which represents the positive’ Markov-chain dependency of the
downstream link-marking state { Xg = 1} on its immediate up-
stream marking state { X7 = 1}, because given the upstream
link L7 is marked, the downstream link Lg is more likely to be
marked than the case where {X7 = 1} is not given. So, the
downstream link-marking state { Xg = 1} depends statistically
on its immediate upstream marking state { X7 = 1}, regardless
whether the upstream link (L7) or the downstream link (Lg) is
the bottleneck link.

A.4. Markov-Chain Model for Link-Marking States: Based on
the above observations/analysis, we can construct the following
Markov-chain model over link-marking states in an unbalanced
binary tree (see Fig. 3) to analyze the multicast signaling delay
with dependent marking probabilities.

Definition 1: Markov-Chain Model for Link-Marking States:
A dependent random-marking unbalanced binary-tree of height
m consists of a set, £, of links which satisfy the following con-
ditions:

C1. Alllinks in £ are so labeled as in Fig. 3(a) and (b) for
m < oo and for m = oo, respectively, that
[,é {leLl27L27 37L37~-~7L;n7Lm}7 if m < oo (4)
- {L1~, 127L27L37L37...7L207Loo}7 if m = co.
The link set £ contains m paths, P, ..., P,,, each represented
by its component links as
P2 {Ly, Loy Ly, Ly}, if1<k<m—1 )
Py 21{Li. Lo,.... L)}, if k= m.

Define P, as the main-stream path taking only right branches
at branch nodes, and define each Py, for1 < kK < m — 1,
as a branch-stream path consisting of k right branches and one
left branch at the last branch node (see Fig. 3). Links L; and
L} Vi > 2, are at the same tree level.

C2. The marking state of link L;, (i = 1,2,...),5 is rep-
resented by a random variable X; which takes value in {0,1}
such that (see the top part of Fig. 3)

forz; =1
forz; =0

PI‘{)(Z = JZZ} = {pi, (6)

1- pi,
where 0 < p; < 1is L;’s marking probability, which measures
the traffic-load level on L;. Thus, we use “marking probability”
or “traffic load” interchangeably for p;.

SDefinition 3 details the positive/negative dependency of link-marking states.
6The marking state on L/, is defined in the same way by using X/, 2, and p/,.
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C3. The congestion marking states at all links are depen-
dent, and satisfy the following Markovian properties:

Pr{X;, = | Xis1 =221, X[_1 =21, Xi—0 = mi_o,
1(—2 = ’2—27 B 7X1 = xl}
=Pr{X; =2 | Xi_1 = i_1} @)
PI‘{XZI = LL’; | Xz',l = 1171‘717X£71 = :E,Iifl,Xi,Q = X;—2,
X! o=ai o,.... X1 =121}
=Pr{X/ =2} | X;_1 =x;_1}. 8
C4. The congestion marking states within the same level
are also dependent and satisfy the following properties:
Pr{Xi=u;| Xi =2}, X; 1 =2 1,X] | =a} 4,

/ /
Xico=mi 2, X{ 9=, 5,..., X1 =11}

=Pr{X; =2 | Xis1 =21} 9
PT{X: = le | Xi= x’hX’i—l = xi—l'/Xz(—l = x’li—b

Xio=wi—9, X| 5 =aj_y,.... X1 =21}

= PI‘{X: = :E; |Xi71 = :51;1} (10)

where the random variables X; and X/ € {0,1}, Vi. [

Remarks on Definition 1 (C3 and C4): While the congestion
state of a link depends on all its upstream’ and same-level links’
congestion states, our Markov-chain formulation/modeling en-
sures that this link’s congestion state is conditionally indepen-
dent of all its upstream and same-level links’ congestion states
as long as its immediate-next upstream link congestion state is
given [see (7)—(10)]. This is because the congestion information
on the links above the immediate-next upstream link (see C3) is
all concentrated into, and carried over by, the given congestion
information on the immediate-next upstream link. C3 and C4
are reasonable since one link’s congestion state depends most
on its immediate-next upstream link’s congestion state in the
same multicast tree. The upstream’s influence on a downstream
link’s congestion state propagates through its immediate-next
upstream link which carries the same flows.

B. Probability Distribution of the Dominant Bottleneck Path

B.1. Bottleneck Path and Dominant Bottleneck Path: For re-
liable data transmission, unicast ABR service adjusts its sending
rate by the feedback from the most congested link having the
minimum available bandwidth on the path [16]. A natural ex-
tension of this strategy to multicast ABR service is to adjust the
source rate to the minimum available bandwidth share on the
most congested path across the multicast tree. Clearly, by OR
rules (see Fig. 1), the shortest bottleneck path in a multicast tree
governs source’s flow-control decisions and feedback RTT. To
explicitly model these features, we define the following.

Definition 2: 1) The bottleneck path is the multicast path
containing at least one congestion-marked link whose conges-
tion feedback received at the source dictates the source flow
control (if it is the only bottleneck path). 2) The bottleneck path
RM-cell RTT is the RM-cell RTT experienced on this bottleneck
path. 3) Among all bottleneck paths concurrently existing in a
multicast tree, the bottleneck path with the minimum length is
called the dominant bottleneck path or multicast-tree bottleneck
path, and its RM-cell RTT is called the multicast-tree bottleneck
RM-cell RTT or multicast-tree RTT. |

7As mentioned in Section II-A.2, the proposed Markov-chain model only con-
siders the upstream dependency (see C3).
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B.2. Probability Distribution of the Dominant Bottleneck
Path: Based on Definition 1, Proposition 1 lays a foundation
for the dominant bottleneck path probability distributions
derived in Theorem 1, which are described as follows.

Proposition 1: The sequence of random link-marking states
{X4,..., X} (for tree height m < oo andm — o0) in Def-
inition 1 deﬁnes a two-state discrete-indexed Markov chain over

the links on the main-stream path P,,, = {Lq, ..., L., },andeach
sequence of link-marking states { X1, ..., Xk, X! k41 in Defini-
tion 1 on each branch-stream path P, = {Ly,..., Ly, L},

fork =1,...,m — 1, also defines a two-state Markov chain.
Proof: The proof follows from C3 of Definition 1 and no-
tice that unlike the traditional Markov chain indexed by time,
we define the Markov chain over each multicast path and index
it by the link sequence numbers associated with that path. ®
Theorem 1: If a dependent-marking multicast tree of height
m defined by Definition 1 is flow-controlled under SSP or HBH
and its link-marking states are not always perfectly dependent
(see Claim 2 in Theorem 2), then the following claims hold.
Claim 1. If m — oo, there is one and only one domi-
nant bottleneck path, and the probability, 14 ( P, c0), of Py, be-
coming the dominant bottleneck path, is given by
,I/Jd (P k> OO) =
(1 —Pr{X; =0}Pr{X},=0| X; =0}, ifk=1

Pr{X; = 0}Pr{X; =0 | Xx_1 =0}

k—2

Pr{Xj_ ,=1]Xy :0}} H{Pr{XH_l =0]X;=0}
1=1
~Pr{X{+1:0|Xi:0}}, itk > 2
(1)
which satisfies
lim qud (Pp,00) = 1. (12)

m—00

Claim2. Ifm < oc then there exists at most one dom-
inant bottleneck path, and the probability, (P, m), that Py
becomes the dominant bottleneck path, is given by
ha (P k> m) =

(1 —Pr{X; =0}Pr{X,=0| X; =0}, ifk=1

Pr{X) = 0}Pr{X} = 0| Xp_1 = 0}
. |:PI‘{Xk: 1|Xk_1 :0} + PI‘{Xk:O|Xk_1 :0}

k—2

Pr{X},, :1|Xk:0}} H{Pr{)g+1 =0]X;=0}

=1
-Pr{X{+1:0|X1;:0}}, ifk>2

Pr{X; = 0}Pr{X,, = 1| X,,_1 = 0}

m—2

1=1
-Pr{X,erl:O|X,L-:0}}7 ifk =m.

\

13)

Proof: The proof is provided in Appendix A. ]
Remarks on Theorem 1: Equation (11) implies that
limg— 00 Ya(Pr,00) = 0. This is expected, since a longer
bottleneck path is always dominated by a co-existing
shorter bottleneck path, if any. Thus, when £k — oo as
m — 00, Py is always dominated by a shorter bottleneck path
for 0 < p;,pl < 1,i=1,...,00,ie., 4(Psx,00) = 0. More-
over, by (12) we have >y~ ; 1q(Px, 00) = 1, which also makes
sense because as tree height m — oo and 0 < p;, p; < 1, there
always exists (with probability 1) one and only one dominant
bottleneck path in a multicast tree. For m < oo, by (13) and
(12) we have ;" 9a( Py, m) < 1, implying the possibility of
no dominant bottleneck path in the multicast tree with m < oo.
This is also expected because 0 < p;,p} < 1.

III. MODEL OF MARKOV-CHAIN DEPENDENCY DEGREE

In order to use (11) and (13), we need to derive ex-
plicit expressions for Pr{X; = x;|X;,-1 = x;—1} and
Pr{X! = 2}|X;,_1 = =x;,_1}, the fundamental conditional
distributions used in (11) and (13). However, it is difficult
to know/compute the accurate dependency between two
random variables. To solve this problem, we propose to use a
real-valued Markov-chain dependency-degree factor o € [0, 1]
to quantify all possible degrees of dependency between the
random variables in the Markov chain’s one-step transition
probabilities. Using this dependency-degree factor, one can
evaluate the degree of Markov chain’s dependency ranging
from independent to perfectly dependent,? without knowing a
priori the dependency degree of the two random variables.

Two dependent random events can affect each other either
positively or negatively. If occurrence of one event is likely
to trigger another, they are said to be positively dependent; if
occurrence of one event makes another event unlikely to occur,
they are said to be negatively dependent. As discussed above,
an upstream link’s congested (uncongested) state makes the
downstream links carrying the same flows more likely (un-
likely) congested. So, the positive dependence can accurately
characterize the marking dependence. Thus, we define the fol-
lowing.

Definition 3: Two dependent link-marking states X; and
X;+1 are said to be positively (negatively) dependent if
PI‘{X,H,l = | X, = 117} > PT{XZ'+1 = | X, = f}
(PI‘{XH_l =T | X7 = .CI?} < PI‘{XH_l = LIZ’|X1 = f}), where
z € {0,1}. ]

Using Definition 3, the theorem given below models the de-
pendency-degree between the random variables of the Markov
chain. Notice that this theorem only gives the results for the case
of PI‘{XH_l = Tijp1 |XL = LEL} and PI‘{XL = 1} = p;, and it
also holds for the case of Pr{X],; = «j,,|X; = z;} and
Pr{X! = 1} = p} with the similar results that we omitted.

Theorem 2: Consider the Markov chain {X;} defined on
link-marking states on every path (for both main-stream and
branch-stream) in the multicast tree specified by Definition 1. If
{X.} is positively dependent, and the link marking-probability
equals Pr{X; = 1} = p;, then the following claims hold.

8The typical examples of perfectly dependent events are (1) two events are
identical—where the occurrence of either event implies the occurrence of the
other event; and (2) one event is a sub-event of the other— if the first event
occurs then the other event which subsumes the first event as a sub-event also
occurs, and thus “perfectly depends” on the first event.
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Claim 1. PI‘{XH_l = Tit1 |)(Z = LIZZ‘}, with T, Tiy1 €
{0, 1}, is upper- and lower-bounded by

1—piy1 <Pr{X;41=0]X; =0} <

{17 %fpi > Pit1 (14)
(1 =pig1)/(1 = pi), if p; < pis1
pit1 > Pr{X,11=1|X;=0}>
{07 %fpiniH (15)
(Pix1 — pi)/(1 = pi), if p; <pis1
1-piy1 > Pr{X;;1=0|X;=1}>
(pi — Pit1)/pi if p; > piga1 (16)
0, if p; <pit1
pit1 < Pr{X,11=1|X;=1}<
Dit1/Dis if p; > pit1
{17 if p; <piti. 17)

Claim2. 3Ja; (af) € [0,1] such that all possible depen-
dency degrees between X; and X;1; (X, ) can be measured
by the real-valued Markov-chain dependency-degree factor®

a; (), and
;= 07
ay = 1,
a; =0,
o =1,

Claim 3. PI‘{XH_l = Tij11 |XL = Jii}, with x;, 2,41 €
{0, 1}, are determined by

iff X; and X, are independent

iff X; and X, are perfectly dependent
(13)

iff X; and X/, are independent

iff X; and X/, are perfectly dependent.
(19)

Pr{XiJrl :0|Xz:0} =

1—(1—0a;) pit1, if p; >pit1
a;(1—p; . 20
(1-a)1=pen)+ 2 ity O
(1—0) piy1, if p; > piy1
ai(Pi+1 — Di . 21
(1= i) piv1+ (1014;—12}]7), if p; <pig1 b
PI‘{XH_l =0 | Xz = 1} =
] ) a;(pi—piv1) . S
(l_az)(l_pz+l)+ i ’ 1fpz sz-l—l (22)
(1= a;)(1=pit1), if p; <pit1
PI‘{XH,l:l |Xz:1}:
(1 — ay)piy1 + %; if p; >pit1
pi (23)
pit1 + (1 = piy1), if p; <pita
where 1 = 1,2, ...;«; is defined in Claim 2 of Theorem 2.
Proof: The proof is detailed in Appendix B. [ |

Remarks on Theorem 2: Claim 1 finds the upper and
lower bounds of all four possible two-state Markov chain

9The actual value of dependency-degree factor (<) can be determined through
either simulations or experiments.
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one-step transition probabilities as functions of the marginal
link-marking probabilities p; and p;;; specified by networks.
Claim 2 ensures the existence of a real-valued dependence-de-
gree factor o; € [0,1]. It also proves the completeness of
the Markov-chain dependence-degree factor by mapping all
possible dependency degrees onto the real-valued interval
[0, 1]. Claim 3 derives all four possible two-state Markov-chain
one-step conditional transition probabilities as the functions of
their marginal distributions.

Applying Theorem 2 and (20)—(23) to Theorem 1, Corollary 1
derives the multicast-tree bottleneck path probabilities.

Corollary 1: Let a dependent-marking multicast tree
of height m given by Definition 1 be flow-controlled
under SSP or HBH. If the one-step transition probability
of Markov chain {X;} defined over each path (main- or
branch-stream path) is specified by the dependency-factor

vector @ = (a1, af, ag,ab, a3, af,...) which is derived in
Theorem 2, and further, denote the link-marking probability
vector by ﬁé (p1, 1, P2, D5, D3, s, - - .), respectively, then the
following claims hold.

Claim 1. If m — oo, then there exists one and only one
dominant bottleneck path, and the probability, 14( Py, &, 7, 00),
that Py, becomes the dominant bottleneck path, is given by

Ya(Pr, @, P, 00) =

(1o (1 p)[1— (1— )], it =1
(1 —p)[1—(1—af )] [(1 )k
= (1= )] (1= a;>pz.+1]
k—2
TI{n-0-aomlli-0-aiutal |, itk >2
\ =1
(24)
which satisfies
lim " pa(Pr, @, 7,00) = 1. (25)
k=1

Claim 2. Ifm < oo, then there exists at most one dominant
bottleneck path, and the probability, 14( Py, &, p, m), that Py
becomes the dominant bottleneck path, is given by

T/fd(Pk-, &757 m) =

(1—(1— )1~ (1—af)ph]. k=1
(L—p0) [1- (1 - )] [(1 o
Pl (=)l (1 appzﬂ}
k—2
.H{[l—(l—ai)pi_,_l] [1—(1—a§)p;+1] }, if k>2
(1= )1 = et [1 = (1= )]
TI{u-0-aomalii-0-aiptal ), itk=m.

(26)
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Proof: The proof follows by plugging (20)—(23) of The-
orem 2 into (11)—(13) of Theorem 1. |
Remarks on Corollary 1: We can use (24) and (26), and tune
up the dependence-degree factor & to see how the system per-
forms with different @’s. More importantly, the completeness of
this approach guarantees that the actual unknown Markov-chain
dependency degree imposed by the practical problems can al-
ways be covered by tuning «; € [0, 1], Vi for heterogeneity.

IV. STATISTICS OF MULTICAST SIGNALING DELAYS

Using Corollary 1 and the multicast signaling delay expres-
sion 7,(j, A) derived in [1] on each path, Theorem 3 derives
the probabilities, their properties, and the means and variances
of multicast signaling delays under SSP and HBH, respectively.

Theorem 3: Letadependent-marking multicast tree of height
m as defined in Definition 1 be flow controlled under SSP and
HBH, respectively, with the RM-cell interval A. If m < 00,0 <
pi=p,=p<land0 < a; = o} = a < 1,Vi (the
homogeneous case), then the following claims hold.

Claim 1. The probability for Pj to become the dominant
bottleneck path, 14( Pk, @, p,m), is given by

Ya(Pr,a,p,m) =
I=(1-p)[1—(1-a)p],

(I-a)A=p)p[2—(1—-a)]
JL=1=a)p)™?, ifk>2
]

(1—a)(1—-pp[l—(1—a)p]® ™, ifk=m
27)

ifk=1

Claim 2.  For each path P, and a given «, (P, a, p, m)
attains the unique maximum at

AN =
2 P, a,p,
p" = arg Oril]?i(l?/u( e, O, P, I
(1, iftk=1

[(1—a)@2m—1)]" {m —(m—-1)a
—\/[m—(m—1)0z]2—(1—a)(2m—1)}, ifk=m

S N s

e\~ w/2 =\ (@/2)° + (v/3)?
[ —[(2k = D) = 6k]/ [6k(1 — )],

if2<k<m-1
(28)

where y1 = (—1+iv/3)/2and v, = (—1—iv/3)/2 are complex

numbers with 2 = —1, and

v=[142k - (2k — 1)a] /[k(1 — @)?]
—[(2k = 1)a — 6K)* /[12k%(1 — a)?]

w = [(2k — 1)a — 6k]3/[723(1 — )] (29)
+[(2k = Vo — 2k — 1][(2k — 1) — 6k]
[6k2(1 — )37t — [k(1 — a)?] 2

—[(2k — 1) — 6K]3/[6k(1 — a)]3.

Claim 3.  For each path Pj and a given p, ¥4( Py, o, p, m)
attains the unique maximum at

. A
f— P . f—
o = arg E{fﬁ(lwd( s O, D, TI)

1 1 2 .
—+— —— if2<k<m-1
P P 2k —1
and k> [1/2+1/[p(2—p)]]
-1 if k—=m and k> [141/(2p)]
2(m —1)p’ - - Pl
(30)
Claim4. If a = «ap > 0 for a given «y, it shifts the prob-

ability of multicast-tree bottleneck path from shorter to longer
paths. If the multicast-tree height m satisfies

N log \/1/(1 — o)
= | log{[1 — (1 — ao)p]/(1 = p)}

then there exists the unique dependency-balanced path PZ such
that 2 < kK < m — 1 and

+2.5

€1y

{wd(Pk7a7p7m)|a=0 Zd)d(Pk7a7p7m)|a=ao7 lkaE
’l/}d(Pk7a7p7m)|a:0 < "J}d(Pkaaap?mNa:aoa ith >k
(32)

where 94( Py, o, p,m) is given by (27) and the dependency-
balanced path number k is given by

i {log \/(Q—P)/{(l—ao)[Q—(l ao)pl}

log{[1 — (1 = ao)pl/(1 —p)}

Claim 5. The means of multicast-tree bottleneck RM-cell
RTT, denoted by Tssp(«, p, m) and Tapn (o, p, m) for the SSP
and HBH schemes, respectively, are given by

+1.5J . (33)

ren(a )=l 13 - [ 202 )
+2m(1-p)[1 — (1 — a)p] {1+[1_(1_a)p]2(m—2)

- [(1—a>p—1]}—<1—a><1 w2 —(1—a)]A

Sa [ CEE IR

Tusu(a, p,

(34)

C a-pe) o
m)‘<1—a>p[2—<1—a>p1{2“ (1~=ap]
- (1—a)p — m 1= (1 )p " 4 (m1)

- [1—(1—a>p12m‘1}+<1—p> 11— (1)

. {(1—a)p [2+(m—1)®(A)]—2} + (2+6(4))
[p+(1—-a)(p—p*)] +2(1—-p) [1-(1-a)p]

where ©(A) is defined by (2) in [1].

(35)
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Claim 6. The variances of multicast-tree bottleneck
RM-cell RTT, denoted by o3gp(c,p,m) and opy (e, p, m)
for the SSP and HBH schemes, respectively, are given by

osp(a,p,m)=4m?+4m?(1—p) [1— (l_a)P]zm_S

((I=a)p=1]-(1-a)(1-p)p[2—(1—a)p] {4mA

o p.m) =14+ (1—a)(1—p)] pl2+ O(A)]?
F(L—a)(1—p)p[1— (=)™ [24 (m—1)
- O(A)+4(1=p) [1—(1—a)p]
{1-n--a)pm )
WP i--aplo@) [,
(-ap—(1-a)) {2 et
—m[l—(1-a)p ™ P 1 (1—a)p™ Y
(1-p)0%(A)
-(m—1
( )}+<1—a>2[2—(1—a>p12[p2—<1—a>p31

- {1+[1—(1—04)p]2—[2—(1—04)1913 [(1-a)p]®

- m? [l—(l—a)p]2(m_1)—|—(2m2—2m—1)
[I=(1=a)p]?™ = (m - 1)?

: [1_(1_Q)P]z(m+l)} — Thpu(a, p,m) 37

where ©(A) is given by (2) in [1], and Tssp(a,p, m) and
Tusnu (@, p, m) are given by (34) and (35), respectively.
Proof: The proof is available online in [15]. ]
Remarks on Theorem 3: Claim 1 derives multicast bottle-
neck-path probabilities in terms of k,p,«a, and m. Claim 2
examines the dynamics of ¢4(P, a, p,m) as p varies, where
Ya(Pr,,p,m) attains the unique maximum at p* given by
(28)—the link-marking probability making P}, the most likely
multicast bottleneck path. Claim 3 shows that 14 (P, o, p, m)
can be either monotonic or nonmonotonic in terms of a: if k
and p satisfy the conditions specified in (30), ©¥q( P, @, p, m)
achieves the maximum at «* given by (30). Claim 4 reveals
that the Markov-chain dependency (@ > 0) reduces the
probabilities for shorter paths, while increasing the prob-
abilities for longer ones, to become the bottleneck. This
probability shift is balanced at the unique path, P;, where
1/}d(P7;7 oz,p,m)|a:0 = djd(P’];v a, P, m)|a>0’ if m is large
enough. This claim also finds the condition for the existence
and uniqueness of P and the equation for k in terms of
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and p. Claim 5 and Claim 6 derive the multicast-signaling
delay means and variances, respectively, of SSP and HBH as
functions of A, p, a, and m.

V. ASYMPTOTICAL ANALYSIS OF THE MARKOV CHAIN

Theorem 4 investigates the long-term behavior of the link-
marking Markov chains based on the proposed Markov-chain
dependency-degree model when m is large. For simplicity, the
following asymptotical analysis and its numerical analysis will
only focus on the homogeneous Markov chain. However, the
analytical techniques/results developed here can also be applied
to the heterogeneous Markov chain, where (ay, o, ag, b, . . .)
differ from each other, and so do (p1, p}, p2, P, - - -).

Theorem 4: Consider the Markov chain { X} defined by the
link-marking states on both main- and branch-stream paths in
the multicast tree specified by Definition 1. If: i) the depen-
dency degree of {X;} is specified by the dependency-degree
factor vector @ = (a1, o), ag,al, az, af, .. .) derived in The-
orem 2; ii) the link-marking probability vector is specified by
7 = (p1, P}, P2, D5, D3, Dk, - . .) defined in Definition 1; and iii)
pand @ satisfy 0 < p; = p, =p < land0 < a; = o =
a < 1,Vi, respectively, such that {X;} becomes a homoge-
neous Markov chain, then the following claims hold.

Claim 1.  The n-step transition probability matrix, P(™), of
the homogeneous Markov chain {X;} is determined by

n) A n)) A .
p 2 {ng)} = {Pr{XrJrn:leT:J}}

_[ 1-—(1—=a")p (1—a")p}
(I-a™)(1=p) a"(1-p)+p
where 5,k € {0,1},n € {0,1,...},¥Vr > 1,Pr{X,y, =
k| X, = j}(r=in=1 are given by (20)~(23), and the Markov-

chain model for P(™ |n=1 is shown in Fig. 4.
Claim2. Ifa € 0,1],{X;}s states are ergodic, and also

(38)

lim suppg-?) = lim p?;—') >0; lim pr) =00 (39
n—o00 n—oo n—oo =

where j € {0,1} and the recurring probability converges as
Pr{Xy=j}=1—p, if j=0,a€ [0,1)

lim p=3 Pr{Xy=j}=p, ifj=Lac[0l)
e 1, if j€ {0,1}, a=1.

(40)

Claim3. If « € [0,1),{X;} is ergodic and its limiting
probabilities converge to the marginal link-marking probabili-
ties as follows:

L N
nlgxgop(n) =7=[m m|=[1-p) p]. D
Claim4. Ifa = 1,{X;} converges to an equilibrium state

where the equilibrium probabilities are not unique, but equal to
the initial state probabilities [po(1) p1(1)].
Proof: The proof is provided in Appendix C. |
Remarks on Theorem 4: Claim 1 specifies the long-term be-
havior of Markov chain {X;} by giving its n-step transition
probabilities. Claim 2 classifies link-marking states as « varies,
and shows that {X;}’s state recurring probabilities converge
asymptotically to the marginal link-marking probabilities [see
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Fig. 4. Markov-chain model for dependent marking multicast flow control.

(40)], if {X;} is not perfectly dependent (o« # 1). Claim 3
ensures that the Markov-chain dependency-degree model con-
verges asymptotically, and the long-term behavior of {X;} is
stable. Also, the ergodicity of {X;} enables us to evaluate its
various statistics (ensemble average) through the sample aver-
ages. Moreover, this claim shows that the limiting probabilities
converge to the marginal link-marking probabilities Pr{X; =
z;} (z; € {0,1}). This is expected because 7 and 71 represent
the long-term proportion of { X; } remaining at state 0 and 1, re-
spectively, being consistent with the definitions of Pr{ X, = 0}
and Pr{X; = 1}, thus validating the Markov-chain depen-
dency-degree model. Claim 4 says that if « = 1 (perfectly
dependent), the equilibrium distribution still exists, but is not
unique, depending on initial state probabilities. This is expected
since when « = 1, {X;} has two isolated classes (see Fig. 4).
So, {X;} is not irreducible and thus is no longer ergodic.

VI. NUMERICAL EVALUATIONS AND COMPARISONS
A. Multicast-Tree Bottleneck Path Distribution 1 q( Py, o, p, m)

Using the derived analytical results, Fig. 5(a) plots
Ya(Pg,a,p,m) versus path length k& while varying the
Markov-chain dependency-degree factor «. ¥q( Pk, o, p,m) is
found to be a strictly monotonic decreasing function of k for both
the independent (& = 0) and dependent (o« > 0) cases. This is
expected because the longer the bottleneck path, the more likely it
will be dominated by shorter paths, as described in Definition 2.

Compared to the independent-marking case, the marking de-
pendency is found to reduce the probability for shorter paths
(with k£ < 4), while increasing the probability for longer paths
(with & > 5), to become the bottleneck. This verifies Claim 4
[see (32)] of Theorem 3, and the dependency-balanced path
number k is found to be around 4-5. Fig. 5(a) also shows that the
larger «, the more this probability shifts from shorter to longer
paths. This is because the stronger the link-marking dependency,
the larger the probability that all links stay in the same con-
gestion state. This trend is also shown in Fig. 7(a), which plots
Ya(Pr, @, p, m)|a=0—va(Pk, @, p,m)|a=a,>0 versus k for dif-
ferent values of @ = «p.

Fig. 5(b) shows that ¢4( P, «, p, m) is inversely proportional
to path length &, also verifying the above observations. Fig. 5(b)
also shows that (P, o, p*,m) has the unique maximum,
given k, verifying Claim 2 of Theorem 3. Fig. 5(c) says that
given «, the larger k, the smaller (P, o, p,m). Fig. 5(c)
also shows that 14(Px, a,p,m) is not always a monotonic
function of «, but it can have the maximum 5 ( Py, o*, p,m) if
k and p satisfy the conditions in (30). As k gets larger, ™ in-
creases. These validate Claim 3 of Theorem 3. Fig. 6(a) shows
complete dynamic behaviors of 94( P, «, p,m) as a function
of (a,p). Fig. 6(a) shows that 14( Py, a, p, m) always has the
maximum on p-axis as « varies from O to 1. In contrast, for
given k, 14(Py, a, p, m) can have the maximum on «-axis only
for some p’s satisfying the conditions in (30) in Theorem 3.

B. Delay Statistics of HBH and SSP for Dependent Markings

Fig. 6(b) plots Tssp(a,p,m) and Tugu(«, p,m) by (34)
and (35) versus m with « varying. Tugu(«,p,m) is found
much larger, and increasing much faster, than Tssp(a, p, m)
[see Fig. 6(b)]. Moreover, Tupu(a, p, m) is more sensitive to
« than Tssp(«, p,m). Fig. 6(b) also shows that, compared to
Tupu(a, p, m),Tssp(a,p,m) is virtually independent of m
and . Fig. 6(b) also indicates that for longer paths (m > 20),
the larger «, the larger the means while for shorter paths
(m < 12), the larger «, the smaller the means, verifying that
the bottleneck path probabilities shift from shorter to longer
paths as « increases [see Fig. 7(a)].

Fig. 6(c) plots the standard deviations of ossp(«,p,m)
and ogpu(a,p, m) by (36) and (37), versus m while varying
«. Fig. 6(c) says that ogpn(«,p,m) is much larger, and in-
creases much faster, than ogsp(«, p,m) as m increases. Also,
ousn(w, p, m) is much more sensitive to « than ogsp(«, p, m).
Thus, SSP’s multicast RTT scales much better than HBH’s
in terms of multicast-tree height and structure. Fig. 6(c) also
shows that SSP’s RTT variation ossp(a,p,m) is virtually
independent of m and «, compared to HBH’s ouggu(a, p, m).
Fig. 6(c) says that for longer paths (rn > 10), the larger «, the
larger the variances while for shorter paths (m < 8), the larger
a, the smaller the variances, also verifying that the bottleneck
probabilities shift from shorter to longer paths as « increases
[also see Fig. 7(a)].

C. Marking Dependency Impact on Multicast Signaling Delays

Fig. 7(b) and (c) plots the means of multicast signaling RTTs
Tusu(«, p,m) and Tssp(a, p, m) versus traffic load p, while
varying a. We observe: 1) there is a unique maximum for
each Tupu (o, p,m) and Tssp(a,p,m) in terms of p, being
consistent with the unique maximum of t4( Pk, @, p,m) in
Claim 2 of Theorem 3; 2) the maximizers for Tupu(a, p, m)
and Tsgp(a, p, m) shift from a small to large p as « increases;
3) as « increases, Tupu(«, p,m) and Tssp(a, p, m) become
less sensitive to p; and 4) Tupu(«, p, m) is about 2 times larger
than Tssp (v, p, m) for any p derived in our parameter settings.

To assess the approximation error of the multicast delay
analysis caused by assuming independent marking, while
the actual link markings are dependent, Fig. 8(a) and (b)

plots the approximation errors of means: e1BH (a, p, m) 2
_ _ N
Tupu(a, p, m)|a=o—TuBH (0, p,m)|as0 and 50" (a, p,m) =

Tssp(a, p,m)|a=0 — Tssp(a, p, m)|a>0, respectively, between
the multicast-signaling delay analyses under the dependent
(a > 0) and independent (o« = 0) markings. We observe:
1) the maxima of both e22BH(a, p,m) and £35F (o, p,m) are
monotonically increasing functions of «, showing that the
approximation error increases as « increases; 2) e2BH (o, p, m)
and 55T (o, p, m) are not monotonic functions of p, but change
from a positive to a negative value as p increases 0 — 1, in-
dicating that the analysis assuming independent overestimates
the mean delay for small p, while underestimating the mean
delay for large p; 3) the approximation error for HBH is more
than two times higher than that for SSP. Thus, the approxi-
mation error in multicast signaling-delay mean caused by the
inaccurate independent assumption is not negligible, justifying
the necessity of a Markov-chain-based marking-dependency
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Fig.5. Impact of path length k, link-marking probability p, and dependency-degree o on multicast-tree bottleneck path probability distribution ¢4 ( Py, e, p, m)
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analysis. Similar observations are drawn for the multicast sig-
naling delay variations [see Fig. 8(c)] and their approximation
errors caused by “independent” assumptions, as shown in [15].

VII. CONCLUSION

We modeled and analyzed the delay performance of a class of
multicast feedback-synchronization signaling protocols. Specif-
ically, we developed a Markov-chain model to characterize the
multicast signaling delay when the congestion markings at dif-
ferent links are dependent. We also developed a Markov-chain
dependency-degree model to quantify the dependency degree
between different link markings. Using these two models we
derived the first and second moments of the multicast-signaling
delay for HBH and SSP schemes with dependent link markings.
Our numerical evaluations showed that SSP outperforms HBH
in terms of multicast signaling delay, and the marking depen-
dency tends to shift the bottleneck from shorter to longer paths,
being consistent with the definition of the positive link-marking
dependency imposed by the nature of multicast signaling.

APPENDIX A
PROOF OF THEOREM 1

Proof: For presenting convenience, we start with Claim 2.

Claim2: Since0 < p; < 1,itis possible thatall (2m — 1)
linksin £ = {Ly, LY, Lo, L%, Ls,..., L., Ly} [see Fig. 3(a)]
defined by Definition 1 are not marked—no dominant bottleneck
path. If at least one of (2rm — 1) links is marked, by Definition
2, the shortest path containing the marked link(s) is the dominant
bottleneck. By Definitions 1 and 2, the dominant bottleneck path
is unique. Thus, there is at most one dominant bottleneck path.

By Definitions 1 and 2, the probability that P; becomes the
dominant bottleneck path equals the probability that X; = 1 or
X/, = 1, which yields the first part of (13) as follows:

Iﬂd(Pl,m):PI‘{Xl =1U Xézl}zl—PI‘{Xl =0N XéZO}

Consider path Py, 2 < k < m—1. Since the last two links are
Ly and L, 41 [see Fig. 3(a)], the probability that P, becomes the
dominant bottleneck path is equal to the probability that X; =
0,vi € {1,2,...,k—1}and X! = 0,Vi € {2,3,...,k}, and
Xj = 1lor X; , =1, which leads to

Q/Jd(P]ﬂm)

k—1
:Pr{ﬂ{X,;:O,XZ{Jrlzo}ﬂ{Xk:1UX,’C+1:1}}

i=1

k—1
= Pr{ (J{Xi=0,X[,, =0}, X) = 1}

i=1

k—1
+ PI‘{ ﬂ {Xt = 07X1(+1 = 0}7Xllc+1 = 1}

=1

k—1
- PI‘{ ﬂ{Xz = 07X1(+1 = 0}7Xk = 17XII<:+1 = 1}
=1

k—1
= Pr{ ({Xi=0,X],; =0}, X; = 1}
1=1

k—1
- PI‘{ m{XZ = 07X£+1 = 0}7Xk = 1~,Xllc+1 = 1}

i=1

k—1
+ PI‘{ ﬂ {Xt = 07X1(+1 = 0}7

=1

{XkZOUXkZI},X;C_i_l :1}

k—1
= PI‘{ m{XZ =0, ’£+1 = 0}7Xk = 1}

=1
k—1
+ Pr{ (X =0,X[1; =0}, X, =0,X},, = 1}
=1

=Pr{X; =0} Pr{X; =0| X; =0}
Pr{Xs = 0| X, = 0}
s Pr{Xp_1 = 0| X2 =0}
-Pr{X;, =0]|X; =0}
Pr{X,=0]|X2=0}---Pr{X}, = 0| Xy_1 =0}
-Pr{Xy =1|Xk—1 =0} + Pr{X; =0}
Pr{X;=0|X, =0} Pr{X3 = 0] X = 0} ---
Pr{X; = 0] X3_ = 0} Pr{X} = 0] X; = 0}
Pr{X} =0|Xy =0} Pr{X, = 0| X;_; = 0}
Pr{X;, =1|X, =0}

=Pr{X; =0} Pr{X}, = 0| X}_1 =0}

(42)

. PI‘{Xk =1 |Xk_1 = 0} +Pr{Xk = 0|Xk_1 = 0}

k—2
’ Pr{Xllc+1 =1 |Xk = 0}:| H{ Pr{Xi-i—l =0 | X, = 0}

i=1

Pr{X{, , =0]X; = 0}} (43)
where (42) is due to C3 and C4 of Definition 1. Thus, (43) yields
the second part of (13).

The probability that P,, becomes the dominant bottleneck
path is equal to the probability that X; = 0,Vi € {1,2,...,m—
1} and X] =0,Vi € {2,3,...,m}, and X,, = 1, implying

17/)11(P1€7Tn)

m—1
= Pr{ () {Xi=0,X{;, =0}, X, = 1} =Pr{X; =0}
=1
Pr{X;, =1| X1 =0}Pr{X,,=0]| X,,_1 =0}
m—2
i=1
(44)
where (44) follows from the proof of the first term of (42) and
is also due to C3 and C4 of Definition 1. Hence, the third part
of (13) follows from (44).
Claim 1: Equation (11) follows from the proof of the first
and second parts of (13). Now, we prove (12):

lim Z Ya(Pp, 00)
k=1

= lim
m—0o0

{1 — PI‘{X1 = O}PI{Xé =0 | X1 = 0}



FPH{Xo = 0] X1 = 0}Pr{X} = 1| X, = 0}}

+ Pr{X =0} [Pr{Xa=0] X =0} Pr{X,=01 X, =0}
Pr{X} = 0] X2:0}[Pr{X3: 1] X = 0}

Y Pr{X; =0 Xo = 0} Pr{X, =1 X; :0}} T

+PI‘{X1 = 0} |:PI‘{X2 =0 | Xl = 0}

Pr{X;=0] X =0} Pr{X, =0]| X3 =0}
Pr{X,;=0]X3=0}---Pr{X,,_; = 0] X, o = 0}

Pr{X!, | =0]| Xz = 0}] Pr{X/ = 0| X1 = 0}
: {Pr{Xm =1| X1 =0} +Pr{Xp =0 Xy =0}
Pr{X} i =1] X :0}]}

= lim
m—00

{I—Pr{Xl:0}Pr{X§:0|X1:0}+Pr{X1:0}
e =0 | X = 0| (1= Pr(Xa =0 X, = 0))
FPHXs =0 X, = 0}(1 _Pr{X,=0] X = 0})}
+ Pr{X, =0} {Pr{XQ —0| X, =0} Pr{X}=0| X, :o}]
e =01 % =0} (1= Prixa = 0] X2 = 0))
+Pr{X3:0|X2:0}(1—Pr{XZ’1:0|X3:()}>} L

Pr{X,=0|X3=0}---Pr{X;,_1 = 0| X;n_o =0}

Pr{X!, 1 =0|Xp_o= 0}] Pr{X/, = 0| X,,_1 = 0}
: [(1—Pr{Xm:0|Xm_1:0}> +Pr{X,,=0|X,,_; =0}

(1P =0l X, = 0]}

= 1

m
m— 00

{1—PI‘{X1:0}PI‘{X%:O|X1:0}+PI‘{X1:O}

Pr{X,=0|X, =0}

Pr{X,=0]| X, =0}
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Pr{X,=0|X3=0}---Pr{X;_1 = 0| X;n_o =0}

Pr{X/, ;=0 Xp_s= 0}] Pr{X/, = 0| X,,_; = 0}
: [I—Pr{Xm:0|Xm_1:0}Pr{X,’TH_l:0|Xm:0}}}

= lim

m— 00

{1 — Pr{X; =0} [Pr{Xg =0|X; =0}

-PI‘{X%:0|X1:0}PI‘{X3:0|X2:0}
PI‘{X&ZO|X3:0}PI‘{Xm_1 :0|Xm_2:0}

Pr{X!,_, =0 Xy = 0}] Pr{X’/, =0|X,u_1 =0}

Pr{X,,=0|X,_1 =0} Pr{X} :0|Xm:0}}
= lim {1 —Pr{X; =0}Pr{X], ; =0]| X,,, =0}
m—1
11 [Pr{XH_l:O | X;=0}Pr{X{,,=0]| Xi:O}]}

=1
=1-Pr{X; =0} lim Pr{X,,

m—1

- lim H[Pr{X,L-H:0|X,L-:0}Pr{X§+1:0|X1~:0}}(45)
=1

=0 X, =0}

=1 (46)
where (46) holds since the limiting terms of (45) satisfy
0 Sw}i_n)})opr{X;le =0|X,, =0}
m—1
im ] [Pr{XH_l =0]X;=0}Pr{X[,,=0|X; :o}}
i=1

k—1 k—1
< i max. . =1 max . =0 47
< lim. 1:[1 {p pmax} Jim {p pmax] (47)
where because the link-marking states are not always perfectly
dependent, for m = oo there always exists a subsequence!?
for any given multicast tree defined by Definition 1 such that
Pr{X,,4+1 =0]|X,, =0} <land Pr{X], ., =0|X,,, =
0} <lforl<my <my<---andl < my < mg < -+,
respectively, implying that
{Pr{Xi+1 =0 | X; :0}} <1

max

Pmax = |
i€{n1,nz,

(48)

A
Phax =  IMax Pr{X{, ;=0]|X;=0}p<1
i€{mi,mz, -}

which proves (12). Thus, 14( Py, 0),VEk € {1,2,...,00} de-
fines a valid pmf. Moreover, (46) also implies that there is at
least one dominant bottleneck path as m — oo. But, based on
the tree structure defined by Definitions 1 and 2, there is at most
one dominant bottleneck path. Thus, there exists one and only
one dominant bottleneck path, completing the proof. ]

10For the trivial case of Pr{X;1; = 0|X; = 0} = 1 and Pr{X/ , =
0| X; = 0} = 1, Vi (perfectly dependent), it is easy to prove that Theorem 1
still holds.
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Fig. 9. Markov-chain dependency-degree modeling for CASE 1 and CASE 2. (a) CASE 1: p; > pit1. (b)) CASE2: p; < pit1.

APPENDIX B
PROOF OF THEOREM 2

Proof: Claim 1:
X’H’lai =12..

Consider link-marking states X; and
.. By the partition rule, we have

PI‘{XZ'+1 :0} :PI'{Xi :0} PI‘{XH_l =0 | Xz = 0}

+PI‘{XZ':1}PI‘{XZ‘+1:0|Xi:1}. (49)
By defining w® 2 Pr{X,; = 0|X; = 0} and
MO Pr{X;11 = 0|X; = 1}, (49) reduces to
(@)
w

= (1-pis1)/(L=pi) = [pi/(1 = pi)]o', yielding
a fundamental system functional f(-) between w(” and v(*)
as follows:

A ey Ll=pit1 P
Y fw™) l-pi  1-pi

(@,

(50)

Then, we can solve for the upper and lower bounds for w® and
v(® subject to the following three constraints:

C1. (w®,0®) e {(w®,0®)[w® = f(v®)}: where
f(+) is defined in (50);

C2. w® > v(®: because the Markov chain {X;} is posi-
tively dependent (see Definition 3);

C3. 0L w® v < 1: since w® and v are both prob-

abilities.

We need to consider the following two cases, depending on
Pi 2 Pit1 Or p; < Piy1.

CASE 1: p; > p;iy1: Fig. 9(a) plots the derived feasible so-
lution regions, under C1, C2, and C3, for CASE 1 in the space
spanned by v(?) and w(® axes. C1 requires that all solution
points be on the line of w?) = f(v®) = (1 — pi1)/(1 — pi)—
[pi/(1 — p;)]v®; C2 says all solution points must be within
the region between the positive half axis of w(*) and the 45°
line w® = v® [shaded area in Fig. 9(a)]; C3 confines all
solution points within the unit square area w(* € [0,1] and
v® € [0,1]. Applying C1, C2, and C3, the solution point
set for {(w(®, v())} lies between points A and B on the line
w® = fo®) = (1= pir1)/(L=pi) = i/ (1 = pi)]o®.
After some algebra, the projection points of A and B onto w

@ _

and v axes are w), = ®

1wl M) _

= l_pi-l-l andvA =
(pi — piv1)/pi, vg) = 1 —p,11, respectively. Then, the projec-
tions of A and B onto w(? axis give w?’s upper bound wily
and lower bound wsgn, respectively, while the pro(jc)ictions of A

and B onto the v axis yield v()’s lower bound Vi, and upper

bound fu,(f%x, respectively, as follows:

{w$3n=w§§)=1—pi+1 :>{1—Pi+1§ 1)

which proves the first part of (14). Similarly, the first part of (16)
holds due to (52):

@) 0 _ (pi —pit1)/pi <
{”@;H—“Ai =(pi=pin) /e L ) prix,) 20| xi=1) (52)
Umax =Up" =1=pit1 <1-pit1.

CASE 2: p; < piy1: Fig. 9(b) plots the derived feasible
solution regions, by C1, C2, and C3, for CASE 2 in the same
space. Due to p; < pit1, the line w® = f(v®) = (1 -
piz1)/(1 = pi) = [pi/(1 = p;)]v® intersects with w(? axis at
point below 1 now. The new prog'ections of line between A and
Bontow® and v® axesare ) = (1—p;1)/(1—pi), w'h) =
1—piy1,and vf;) =0, vg) = 1—p;41, respectively, which yield
CASE 2’s upper and lower bounds for () and v(*), proving the
second part of (14) as follows:

w® — w1 Dist 1—{pi+1 < | }
min — ¥YB — 17T Pit+ Pr Xi-l—l:O XLZO
w0 TP = 1— pist (53)
max — A — 1—p; S D e e
pi L —pi
Likewise, the second part of (16) holds due to (54):
O R (O
{ min~— YA T {0SPI‘{X1+1:0|X121} (54)
vfﬁéx:vg) =1-pip1 < L=pir.

The rest of the proof is completed in [15]. The proof follows.
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APPENDIX C
PROOF OF THEOREM 4

Proof: Claim 1:  Since {X;} is homogeneous, the ma-
trix P of {X;}’s one-step transition probabilities is fixed and
defined by (20)—(23) for ; = « and p; = p,Vi. We prove
(38)!! by mathematical induction.

Base Case: Using (20)—(23) and (38)

P2 {p} = {Pr{Xz‘+1 =k|Xi :j}}

[IGoae e
(I-a)(1-p) a(l-p)+p
where j, k € {0,1};¢ € {1,2,...}. So, (38) holds forn = 1.

Inductive Hypothesis: Suppose (38) holds forn = ¢ — 1,
then

p@ 2 {pﬁ)} — pla-p

| 1= (1 — a(q_l)) P
(- a(q_l)) (1-p)
_{1—(1—0/1)17 (1—af)p }
(1—af)(1-p) a?(1-p)+p]’

So, (38) holds for n = ¢, and thus also holds Vn € {0,1,...}.
Claim 2: Equation (40) follows directly from (38). States
j (7 € {0,1}) are ergodic iff j is positive recurrent and ape-
riodic. Clearly, j is aperiodic (period d = 1). Since {X;}
is a finite-state Markov chain, we only need prove that j is

recurrent, which is true because from (38), 0 < p < 1, and
a € [0, 1], we obtain the following:

limce 357120 =X a(1-p)+ X pa =00
limy oo 7y P17 = S0 (1=p)a” + 02, p=o0.

Thus, { X, }’s states are ergodic. Equation (57) gives the second
part of (39). Since states j (j € {0,1}) are aperiodic, we
lim,—oe p\. By (40), we get

} =P |,y (59

(1 — a(q—l)) P ]
o= (1 —p) +p

(56)

h 1. n _
ave limsup,_,p;;" =

limsup,, ., pg?-) = lim, 00 pg.?) > 0, which proves the first
part of (39).
Claim3: Since @« € [0,1), ie., @« # 1, implying

{X;} is not perfectly dependent, {X;} is irreducible. So,
the Markov chain {X;} is ergodic due to Claim 2. Thus,
{X;} has the unique limiting/equilibrium state probabili-
ties determined by (38): my = lim,_,o0 p%) =1—-p =
Pr{X; = 0};m = lim,_ pyll) = p = Pr{X, = 1} where
a € [0,1)and V5 € {0,1}. So, (41) follows.
. Lo A "

Claim 4: Let j(n) = [po(n) p1(n)] = [po(1) pr(1)] PO~V
denote the vector of state probabilities at link n (> 1). Since
a = 1, P = T (unit matrix), Vn by (38). Thus, we get 7 =
lim,, e f(n) = [po(1) p1(1)], completing the proof. ]
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¢t is trivial to prove that (38) also holds for n = 0.
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