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Localization-Oriented Coverage in
Wireless Camera Sensor Networks

Liang Liu, Xi Zhang, and Huadong Ma

Abstract—In this paper, we investigate the coverage problem
from the perspective of target localization for wireless camera
sensor networks. We first propose a novel localization-oriented
sensing model based on the perspective projection of camera
sensors. Based on the sensing model, we propose a new notion of
coverage, Localization-oriented coverage (L-coverage for short),
by using Bayesian estimation theory. Furthermore, we analyze
the relationship between the density of camera sensors and the
L-coverage probability under random deployment where camera
sensors are deployed according to a 2-dimensional Poisson
process. According to the relationship between the density of
camera sensors and the L-coverage probability, we derive the
density requirements for an expected L-coverage probability.
We validate and evaluate our proposed models and schemes by
simulations.

Index Terms—Wireless camera sensor networks, target local-
ization, coverage, coverage probability, Bayesian estimation.

I. INTRODUCTION

IN WIRELESS sensor networks, the coverage is an im-
portant problem that has received considerable research

attention. Generally speaking, coverage answers the question
about quality of service (surveillance) that can be provided by
a particular wireless sensor network. In most existing works
about coverage for wireless sensor networks, a point is said
to be covered if its Euclidean distance to a sensor is within
the sensing radius of this sensor. This kind of coverage is
only considered as the measure of quality for target/event
detecting. In fact, coverage can be subject to a wide range of
interpretations. For a given wireless sensor network, there are
two main factors to determine the appropriate interpretation
of coverage.

1) Sensing model. The sensing models of most kinds of
sensors (such as temperature sensor, light sensor, and
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microphone) can be simply considered as a disk, and
most existing works about coverage are on the basis
of this disk sensing model. However, there still ex-
ist some other sensing models which cannot be pre-
sented by the disk. The camera sensor is a typical
example. More recently, rapid advances in the tech-
nologies of camera sensors and embedded processors
make it possible to deploy the large-scale wireless
camera sensor networks [1], [2], [3] for various applica-
tions [4], [5], [6], [7]. The difference of sensing models
enables novel approaches to study the coverage problem
for wireless camera sensor networks.

2) Application. Because the target/event detecting is a basic
application of wireless sensor networks [8], coverage
is used to measure the quality of detecting in most
existing works. However, many applications of wireless
sensor networks, including event surveillance and target
tracking, rely on the locations of targets. Then, target
localization is also important for many applications of
wireless sensor networks. It is necessary to investigate
the coverage problem from the perspective of target lo-
calization, and we call it Localization-oriented coverage
(L-coverage for short). Please note that, throughout the
rest of this paper, unless otherwise mentioned, “local-
ization” refers to “target localization”.

All above observations motivated us to study the L-coverage
problem for wireless camera sensor networks. In this paper,
we formulate the problem of L-coverage in the framework
of parameter estimation. Camera sensors cooperate to make
an estimate of the target’s location. In the deployment region
of a given camera sensor network, if the location of a point
can be reliably estimated, then this point can be claimed to
be L-covered. The authors of [9], [10] also formulated the
coverage problem in the framework of parameter estimation,
and they proposed the notion of information coverage based
on BLUE (Best Linear Unbiased Estimator). Compared to the
information coverage, our proposed L-coverage in wireless
camera sensor networks has two main differences as follows:

∙ Information coverage is the measure of quality for tar-
get/event existence detecting, and the L-coverage is the
measure of quality for target localization.

∙ The sensing model of information coverage satisfies that
the parameters of a target/event decay with distance
linearly. The sensing model of our L-coverage is based
on the perspective projection model and the camera noise
model, which are nonlinear.

Hence, we propose a novel localization-oriented sensing
model for camera sensors by taking the perspective projection
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model and the camera noise model into account. Based on
this sensing model, we define the notion of L-coverage by
using Bayesian estimation theory. Furthermore, we analyze the
relationship between L-coverage probability and the density of
camera sensors under the random deployment, and derive the
density requirement of camera sensors for a given L-coverage
probability. For the same deployment region of a camera
sensor network, we compare the L-coverage probability to
the classic K-coverage probability which is the measure of
detecting quality.

Our derived results can be used in both the initial de-
ployment phase and the dynamic reconfiguration phase after
camera sensors have been deployed, which are detailed as
follows:

∙ In initial deployment phase: Using our results of L-
coverage, an appropriate number of camera sensors can
be derived, in order to guarantee that most of points in
the deployment region are L-covered.

∙ In dynamic reconfiguration phase: For a given deploy-
ment of wireless camera sensor networks, our results of
L-coverage can measure the quality of localization for the
deployment region, and then suggest future deployment
or reconfiguration schemes for improving the overall
quality of target localization.

The rest of this paper is organized as follows. Section II de-
scribes the related works. Section III proposes the localization-
oriented sensing model for the camera sensor. Section IV
defines the localization-oriented coverage (L-coverage) on the
basis of Bayesian estimation and illustrates the notion of L-
coverage by using 3 cases. Section V derives the density
requirements of camera sensors for a given L-coverage proba-
bility. Section VI evaluates our proposed models and schemes
of L-coverage by extensive simulations. The paper concludes
with Section VII.

II. RELATED WORKS

The coverage problem is studied extensively in the litera-
ture [12], and it is also a well-studied problem in wireless
sensor networks. The most commonly used sensing model
for the coverage problem is the disk model, which assumes
that the sensing region for a given sensor is a disk centered
around it. A point within the disk sensing region is said to be
covered. Paper [13] was the first to apply the computational
geometry and Voronoi Diagrams to study coverage for wireless
sensor networks. The authors of [14] discussed the necessary
and sufficient conditions for grid-deployed sensor networks
to cover an unit square region completely. Their results also
indicate that, when the number of sensor nodes is large, even
if each node is highly unreliable and its transmission distance
is small, the sensor network can still maintain connectivity
with coverage.

For any positive integer K, a point is said to be K-
covered by a sensor network if it falls in at least K sensors’
sensing regions. The authors of [15] studied the relationships
among the probability of a deployment region being K-covered
by randomly deployed sensors, the sensing radius, and the
number of sensors. The authors of [16] proposed a analytical
model to compute the number of sensors needed to achieve

an expected K-coverage probability, only if the proportion
of the sensing radius to the deployment region is known.
For guaranteeing K-coverage under a dynamic topology of
sensor network, the authors of [17], [18] proposed a series of
distributed algorithms, which can be used by sensor nodes to
decide the states (work or sleep) of themselves during a period
to ensure K-coverage of every point.

Different from the conventional disk sensing models, we
employed a directional sector sensing model in our prior
work [20]. The similar works can be found in [23], [25]. The
authors of [25] addressed the problem on how to select the op-
timal number of camera sensors and determine their placement
in a given monitored area for multimedia surveillance systems.
The authors of [24] focused on the placement of camera
sensors with respect to maximizing coverage or achieving
coverage at a certain resolution. In [21], [22], we extended
the directional sensing model for camera sensor by taking the
rotatable direction into account, and then we proposed two
effective coverage enhancement algorithms by using convex
hull theory and virtual potential field theory, respectively.

In all the above types of coverage, a point is said to be cov-
ered if it is within the sensing region of any sensor. In contrast,
the authors of [9], [10] proposed a new type of coverage, the
information coverage, by using the linear estimation theory,
where sensors cooperate to make an estimate or decision for
the data to sense at a particular location. The information
coverage is based on the linear sensing model. The authors
of [10], [11] also studied sensor density requirements for a
given information coverage probability with random sensor
deployment. They provided an upper bound on the probability
that an arbitrary point in a randomly deployed sensor field is
not information-covered, and also analyzed the relationship
between the sensor density and the average field vacancy.

III. LOCALIZATION-ORIENTED SENSING MODEL

As shown in Fig. 1(a), given a number of randomly
deployed camera sensors, our goal is to locate a target as
accurately as possible in a ground plane. In order to achieve
this goal, we first study how to use camera sensors to locate
a target, and then build a localization-oriented sensing model
for camera sensors. For simplicity, we make the following
assumptions.

A1. All camera sensors follow the same sensing model. We
assume that the camera sensors are modeled by the perspective
projection, and all camera sensors have the same shape of FOV
(field-of-view) region. Additionally, all noises are Gaussian
noises with zero mean.

A2. The camera sensors can observe a moving target
synchronously [30]. If the target moves with a limited speed,
the synchronization can be readily implemented by using the
methods proposed in [26].

A3. The message functions and transmissions of mes-
sages introduce no information loss [10]. In other words, the
quantization/modulation/encoding for measurements and the
transmission channels are lossless.

When a camera sensor captures a image frame, it can
employ background subtraction1 [28], [29] to identify the

1Background subtraction is a commonly used technique for segmenting out
objects of interest in a scene for applications such as video surveillance.
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Fig. 1. (a) Schematic of target localization in a camera sensor network. There
are several camera sensors deployed in a surveillance region, and a target is in
the center of this region. (b) The image captured by the camera sensor which
is indicated in the dotted ellipse. The distance, 𝑋 , from the vertical centerline
of the target blob to the centerline of image is the observation measurement
by this camera sensor for target localization.
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Fig. 2. Perspective projection model.

moving target. As shown in Fig. 1(b), the area of an image
frame where there is a significant difference between the
observed and estimated images determines the location of a
moving object in this image plane. The area containing the
change in the frame is further processed to find the horizontal
shift, denoted by 𝑋 , of the target’s image from the center
of the image plane. In our localization scheme, 𝑋 is the
observation measurement of the camera sensor, and only 𝑋 is
communicated to the central processor (sink node).

Let 𝑇 (𝑥𝑡, 𝑦𝑡) be the location of a target. For a given camera
sensor 𝑐𝑖, we can get the theoretic horizontal shift, denoted
by 𝕏𝑖, of the target image by using the perspective projection
model. As shown in Fig. 2, the relationship between 𝕏𝑖 and
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Fig. 3. Sector sensing model.

𝑇 = 𝑇 (𝑥𝑡, 𝑦𝑡) is

𝕏𝑖 = 𝔽 ⋅ tan
(
𝜃𝑖 − arctan 𝑦𝑡 − 𝑦𝑖

𝑥𝑡 − 𝑥𝑖

)
. (1)

The descriptions of parameters used in Eq. (1) are summarized
in Table I.

When the distance between the target location 𝑇 and the
camera sensor location 𝐿𝑖 becomes far enough, the back-
ground subtraction cannot segment out the objects of interest.
This implies that the camera sensor 𝑐𝑖 cannot detect the target
on 𝑇 . Let 𝑟 be the maximum detecting distance. Because
𝑟 ≫ 𝔽, we employ a sector model to describe the sensing
region of a camera sensor. Here, we use 𝐷𝑖 to denote the
sensing region of 𝑐𝑖. If a point belongs to 𝐷𝑖, then the point
can be detected by 𝑐𝑖. As shown in Fig. 3, the sector model can
be denoted by a 4-tuple

(
𝐿𝑖, 𝑟,

−→
𝑉𝑖, 𝛼

)
, where

−→
𝑉𝑖 is the unit

vector, which evenly splits the sensing sector into two halves,
determining sensing direction2, and 𝛼 is the offset angle in
the field of view on both sides of

−→
𝑉𝑖. The point 𝑇 is said to

be covered if and only if 1) ∣𝐿𝑖 − 𝑇 ∣ ≤ 𝑟 and 2) the angle
between

−−→
𝐿𝑖𝑇 and

−→
𝑉𝑖 is within [−𝛼, 𝛼], where ∣𝐿𝑖 − 𝑇 ∣ is the

Euclidean distance between 𝐿𝑖 and 𝑇 .
From Eq. (1), we can obtain

𝑦𝑡 − 𝑦𝑖
𝑥𝑡 − 𝑥𝑖

= tan

(
𝜃𝑖 − arctan 𝕏𝑖

𝔽

)
. (2)

If there is only one measurement, i.e., there is only one
camera sensor that can detect the target, then the values of 𝑥𝑡
and 𝑦𝑡 cannot be uniquely determined because there are two
unknowns with just one equation Eq. (2). Thus, we need at
least two measurements to uniquely determine the location of
the target. Similar to the 𝐾-coverage in literatures, the target
is 𝐾-covered in wireless camera sensor networks if it falls in
at least 𝐾 sector-based sensing regions. Theoretically, from
Eq. (2) it appears that the L-coverage problem is equal to the
K-coverage problem where 𝐾 = 2. However, this statement
is not true, because the the projection model used in Eq. (1)
is just an ideal model. The measurement 𝑋𝑖 of camera sensor
𝑐𝑖 can be corrupted by some additive noises in practice. This
implies that only two or even more than two measurements
cannot guarantee the target to be located accurately when
the noises are large (Thus, K-coverage with 𝐾 = 2 is not
L-coverage). These noises mainly come from two aspects:
the sensing model of camera sensors and the processing of

2𝜃𝑖 is the directional angle of
−→
𝑉𝑖.
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TABLE I
PARAMETERS OF PERSPECTIVE PROJECTION.

Parameters Descriptions

𝑇 (𝑥𝑡, 𝑦𝑡) Location of target in ground plane
𝐿𝑖(𝑥𝑖, 𝑦𝑖) Location of camera sensor 𝑐𝑖 in ground plane
𝑋(𝐿𝑡) Horizontal shift of the target’s image from the center of the image plane

𝜃𝑖 Rotatable angle of camera sensor 𝑐𝑖 around x-axis, i.e., the orientation of 𝑐𝑖
𝔽 Focal length of camera sensor

background subtraction. Referring to [27], we assume that the
measurement error variance, denoted by 𝜎2

𝑖 , for camera sensor
𝑐𝑖 is of the following form:

𝜎2
𝑖 = 𝜁𝑑2𝑖 + 𝜎2

𝑝 + 𝜎2
𝑠 . (3)

In Eq. (3), 𝑑𝑖 is the distance from the camera sensor 𝑐𝑖
to the target. Making camera noise variance dependent on
distance can efficiently model the weak perspective projection
while allowing the usage of projective model in Eq. (1). Our
noise model takes the errors in the calibration of camera
sensors into account. Errors in the location of camera sensor
𝑐𝑖 are contained in 𝜎2

𝑝 , and errors in the sensor’s orientation
are measured in 𝜁. Moreover, the accuracy of background
subtraction method and posture/motion of the target also cause
errors, and these errors are reflected in 𝜎2

𝑠 .
Therefore, we adopt the Gaussian error model to represent

the relationship between the measurement𝑋𝑖 of camera sensor
𝑐𝑖, and the location 𝑇 of the target. Then, the conditional prob-
ability density function of the random measurement variable
𝑋𝑖 given 𝑇 is determined as follows:

𝑓(𝒳𝑖 ∣ 𝑇 ) = 1√
2𝜋𝜎𝑖

exp

(
− (𝒳𝑖 − 𝕏𝑖)

2

2𝜎2
𝑖

)
. (4)

IV. BAYESIAN ESTIMATION BASED 𝐿-COVERAGE

A. 𝐿-Coverage Concept

Consider a deployment field 𝑆 and a set of 𝑁 geographi-
cally distributed camera sensors. Let 𝑇 ∈ 𝑆 be the location
of a target. If 𝑇 can be detected by 𝑘 (0 ≤ 𝑘 ≤ 𝑁 ) camera
sensors simultaneously, then we call these 𝑘 camera sensors
{𝑐1, 𝑐2, . . . , 𝑐𝑘} a detecting set, denoted by 𝒞𝑘, of the camera
sensors for 𝑇 . This implies that 𝑘 measurements are available.
Assume that the priori probability distribution of 𝑇 obeys the
uniform distribution in 𝑆. Then, for an arbitrary point 𝑡(𝑥, 𝑦)
in the two-dimensional space, the probability density function
of 𝑇 is

𝑓(𝑡) =

⎧⎨
⎩

1

∥𝑆∥ , 𝑡 ∈ 𝑆;

0, 𝑡 /∈ 𝑆,
(5)

where ∥𝑆∥ denotes the area of 𝑆. According to Eq. (4), we
have the measurement expression as follows:

𝑋𝑖 = 𝕏𝑖 + 𝑒𝑖, ∀𝑖 ∈ {1, 2, . . . , 𝑘},

where 𝑒𝑖 is the additive noise of 𝑋𝑖, and 𝑒𝑖 follows the normal
distribution of 𝑁(0, 𝜎𝑖).

Let X ≜ (𝒳1,𝒳2, . . . ,𝒳𝑘) be an arbitrary point in the k-
dimensional space of (𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑘). Because the mea-
surements (𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑘) are i.i.d., from Eq. (4) we obtain

𝑓(X∣𝑡) =
𝑘∏

𝑖=1

𝑓(𝒳𝑖∣𝑡)

=

⎧⎨
⎩

𝑘∏
𝑖=1

1√
2𝜋𝜎𝑖

𝑒
− (𝒳𝑖−𝕏𝑖)

2

2𝜎2
𝑖 , if k cameras detect 𝑡;

0, otherwise.

(6)

According to Eq. (5), Eq. (6), and the Bayesian formula, we
get:

𝑓(𝑡∣X) = 𝑓(X∣𝑡)𝑓(𝑡)∫ ∫
𝑆 𝑓(X∣𝑡)𝑓(𝑡)d𝑥d𝑦 =

𝑓(X∣𝑡)∫ ∫
𝑆 𝑓(X∣𝑡)d𝑥d𝑦 . (7)

Let 𝑇𝑘 ≜ (𝑥, 𝑦) and 𝑇𝑘 ≜ ∣𝑇𝑘 − 𝑇 ∣ denote the es-
timate and the estimation error for a given measurement
(𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑘), respectively, where ∣𝑇𝑘 − 𝑇 ∣ is the Eu-
clidean distance between 𝑇𝑘 and 𝑇 , i.e., 𝑇𝑘 = ∣𝑇𝑘 − 𝑇 ∣ =√
(𝑥 − 𝑥𝑡)2 + (𝑦 − 𝑦𝑡)2. The mean square error (MSE) is a

common measure of estimator quality. A well-known Bayesian
estimator can be applied to estimate 𝑇𝑘 and to achieve the
minimum MSE. Then, we have the following lemma.

Lemma 1: The Minimum MSE estimator specified by
Eq. (7) is determined by

𝑇𝑘 = (𝑥, 𝑦)

=

(∫ ∫
𝑆
𝑥𝑓(X∣𝑡)d𝑥d𝑦∫ ∫

𝑆 𝑓(X∣𝑡)d𝑥d𝑦 ,

∫ ∫
𝑆
𝑦𝑓(X∣𝑡)d𝑥d𝑦∫ ∫

𝑆 𝑓(X∣𝑡)d𝑥d𝑦
)
. (8)

Proof: The detailed proof of this lemma is provided in
Appendix I.

We use the mean of 𝑇𝑘, denoted by 𝛿𝑘, to measure how
well the point 𝑇 is located by 𝒞𝑘, which is determined by

𝛿𝑘 ≜ E[𝑇𝑘] =

∫
ℜ
𝑇𝑘𝑓(X∣𝑡)dX, (9)

where 𝑇𝑘 = ∣𝑇𝑘 − 𝑇 ∣, ℜ is the 𝑘-dimensional real-number
space of (𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑘), and the conditional pdf 𝑓(X∣𝑡)
is a function of 𝑟, 𝛼, and the other parameters. The smaller
𝛿𝑘 is, the more accurate the estimate is. We assume that the
accuracy of localization satisfies the requirement if 𝛿𝑘 is not
larger than a predefined threshold 𝜀, i.e., 𝛿𝑘 ≤ 𝜀. Then, we
can define the notion of L-coverage as follows:

Definition 1: Localization-oriented coverage, also called
L-coverage. A point is said to be L-covered if there exist 𝑘
camera sensors to estimate the location of this point, and the
mean estimate error 𝛿𝑘 satisfies 𝛿𝑘 ≤ 𝜀, where 0 < 𝑘 ≤ 𝑁 .

Remarks on Definition 1: The value of 𝜀 is determined by
the localization application. On the other hand, 𝜀 is generally
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TABLE II
THE VALUES OF RELATED PARAMETERS. WE USE SONY DSC-F717 AS

THE CAMERA SENSOR IN THE EXPERIMENTS.

Parameters Values

𝔽 9.45mm
CCD 8.8mm×6.6mm
Angle of view 100∘
𝑟 4000mm
𝑇 (𝑥𝑡, 𝑦𝑡) (1950mm,650mm)
𝜁 5× 10−8

𝜎𝑝 0.1
𝜎𝑠 0.1
𝜀 1000mm

relevant to the sensing radius 𝑟. For example, if 𝑟 = 100 and
𝜀 = 100, the localization accuracy is relatively low; if 𝑟 =
1000 and 𝜀 = 100, the localization accuracy is relatively high.
Then, we also define the ratio variable 𝑎 ≜ 𝜀/𝑟 to measure the
requirement of localization accuracy. In Section IV-B, we will
use an example to further illustrate the proposed L-coverage
model.

B. 𝐿-Coverage Illustrations

As shown in Fig. 4, we deploy 10 camera sensors in a
rectangular region. The values of related parameters are listed
in Table II. In Fig. 4, 𝑐𝑖(𝑥𝑖, 𝑦𝑖, 𝜃𝑖) denotes the location and
orientation of camera sensor 𝑐𝑖. There are two cases that a
camera sensor cannot detect the target on 𝑇 : 1) 𝑇 is out of
this camera sensor’s AOV (angle of view), see camera sensor
𝑐4 in Fig. 4; or 2) the distance between 𝑇 and the camera
sensor exceeds 𝑟, see 𝑐5 in Fig. 4.

Let 𝑢𝑖 denote the horizontal pixel coordinates of the target
for camera sensor 𝑐𝑖. We use three camera sensors 𝑐1, 𝑐2,
and 𝑐3, to make measurements, and thus the corresponding
horizontal pixel coordinates of the target are 𝑢1 = 140,
𝑢2 = 1055, and 𝑢3 = 990, respectively, as shown in Fig. 4.
We first need to transform these pixel coordinates 𝑢𝑖 of the
horizontal shifts into the real-world coordinates 𝑋𝑖. Because
the resolution of these camera sensors is 1280× 960 and the
size of the Charge Coupled Device (CCD) is 8.8mm×6.6mm,
the transformation formula is as follows:

𝑋𝑖 =

(
𝑢𝑖 − 1280

2

)
× 8.8

1280
. (10)

Next, we determine whether 𝑇 is L-covered or not by using
3 different detecting sets of camera sensors, respectively.
Case I: 𝒞1 = {𝑐1}

We first use one measurement to estimate the location of
target. According to Eq. (1) and Eq. (3), 𝑋1(𝑇 ) = −3.15 and
𝜎1 = 0.48, respectively.

Substituting 𝑢1 = 140 into Eq. (10), we get 𝑋1 = −3.4375.
According to Eq. (7), we get the probability distribution
function 𝑓(𝑡∣ − 3.4375). When 𝑋1 = −3.4375, using Eq. (8)
the corresponding minimum MSE 𝑇1 = (4774.89, 1460.8).
According to 𝑓(𝑋1∣(1950, 650)) and Eq. (9), we get 𝛿1 =
2953mm. Because 𝛿1 exceeds the threshold 𝜀 = 1000mm, 𝑇
cannot be L-covered by the camera sensor 𝑐1.
Case II: 𝒞2 = {𝑐1, 𝑐2}

The detecting set 𝒞2 = {𝑐1, 𝑐2} implies that we locate
the target by combing the measurements of 𝑐1 and 𝑐2. From

Eq. (1) and Eq. (3), we can get 𝜎1 = 0.48, 𝜎2 = 0.48,
𝑋1(𝑇 ) = −3.15, and 𝑋2(𝑇 ) = 3.15. Substituting 𝑢1 = 140
and 𝑢2 = 1055 into Eq. (10), the measurements of 𝑐1 and
𝑐2 are -3.4375 and 2.8531, respectively. The corresponding
𝑇2 = (3584, 753).

According to 𝑓(𝑋1, 𝑋2∣(1950, 650)) and Eq. (9), we get
𝛿2 = 1607mm. In this case, 𝛿2 also exceeds the threshold
1000mm, and thus 𝑇 cannot be L-covered by {𝑐1, 𝑐2}.
Case III: 𝒞2 = {𝑐1, 𝑐3}

In this case, we locate the target by combing the measure-
ments of 𝑐1 and 𝑐3. From Eq. (1) and Eq. (3), 𝜎1 = 0.48,
𝜎3 = 0.75, 𝑋1(𝑇 ) = −3.15, and 𝑋3(𝑇 ) = 1.89. Substituting
𝑢1 = 140 and 𝑢3 = 990 into Eq. (10), 𝑋1 = −3.4375 and
𝑋3 = 2.4063. The corresponding 𝑇2 = (2246.95, 820.089).

According to 𝑓(𝑋1, 𝑋3∣(1950, 650)) and Eq. (9), we get
𝛿2 = 261mm< 1000mm. This implies that 𝑇 can be L-covered
by {𝑐1, 𝑐3}.
V. 𝐿-COVERAGE PROBABILITY IN RANDOMLY DEPLOYED

WIRELESS CAMERA SENSOR NETWORKS

We consider the random deployment where camera sen-
sors are randomly scattered within a vast two-dimensional
geographical region, and their locations are uniformly and
independently distributed in the region. Under this deployment
strategy, the locations of camera sensors can be modeled
by a two-dimensional stationary Poisson point process with
intensity 𝜆. This indicates that the number, 𝑁(𝑆′), of camera
sensors in any sub-region 𝑆′ follows a Poisson distribution
with a parameter 𝜆∥𝑆′∥, where ∥𝑆′∥ is the area of 𝑆′. Let 𝑘
be a positive integer, the probability that 𝑁(𝑆′) is equal to 𝑘
is then given by

Pr {𝑁(𝑆′) = 𝑘} = (𝜆∥𝑆
′∥)𝑘

𝑘!
𝑒−𝜆∥𝑆′∥. (11)

Moreover, we assume that the orientation of each camera
sensor is a random variable with the uniform distribution on
[0, 2𝜋], i.e., 𝜃 ∼ 𝑈(0, 2𝜋).

Let 𝐿(𝑇 ) be the indicator function indicating whether a
point 𝑇 is L-covered or not, i.e.,

𝐿(𝑇 ) =

{
1, if 𝑇 is L-covered;
0, if 𝑇 is not L-covered,

and let 𝐴𝐿 be the L-covered area in the deployment region 𝑆.
Then, we have

𝐴𝐿 =

∫
𝑆

𝐿(𝑇 )d𝑇.

We can define the L-coverage probability as follows:
Definition 2: L-coverage probability, denoted by 𝑃𝐿. In a

deployment field 𝑆, the ratio between the mean L-covered area
and the area of 𝑆 is said to be the L-coverage probability of
𝑆, i.e.,

𝑃𝐿 ≜ E[𝐴𝐿]

∥𝑆∥ , 0 ≤ 𝑃𝐿 ≤ 1.
Remarks on Definition 2: By using the Fubini’s theorem [31]

and exchange the order of integral and expectation [10], we
can get the expected value of 𝐴𝐿 as follows:

E[𝐴𝐿] =

∫
𝑆

E[𝐿(𝑇 )]d𝑇 =

∫
𝑆

Pr{𝐿(𝑇 ) = 1}d𝑇
= ∥𝑆∥Pr{𝐿(𝑇 ) = 1}, (12)
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Fig. 4. A scene for illustration of L-coverage. There are 10 randomly deployed camera sensors and a target 𝑇 in a surveillance region. We use three camera
sensors, 𝑐1, 𝑐2, and 𝑐3, to capture the images of the target. The 𝑐𝑖(𝑥𝑖, 𝑦𝑖, 𝜃𝑖), 𝑖 = 1, 2, 3 denote the location and orientation of camera sensor 𝑐𝑖, and
𝑢𝑖, 𝑖 = 1, 2, 3 denote the horizontal pixel coordinates of the target.

where Pr{𝐿(𝑇 ) = 1} is constant for all 𝑇 ∈ 𝑆. According to
Eq. (12) and Definition 2, the coverage probability is equal to
the probability that 𝑇 is L-covered, i.e.,

𝑃𝐿 = Pr{𝐿(𝑇 ) = 1}. (13)

The L-coverage probability 𝑃𝐿 = 1 implies that 𝑆 is
completely L-covered. However, because the deployment of
camera sensors follows the Poisson point process, it is difficult
to guarantee 𝑃𝐿 = 1 for a finite density 𝜆. In this paper,
we mainly focus on the relationship between the L-coverage
probability and the density of camera sensors.

From Definition 1, a point 𝑇 ∈ 𝑆 being L-covered by 𝑘
camera sensors implies that 1) there exist 𝑘 camera sensors
which can detect 𝑇 ; and 2) the corresponding 𝛿𝑘 of these 𝑘
camera sensors is not larger than the predefined threshold 𝜀.
Let 𝑁𝑇 be the number of camera sensors which can detect 𝑇 .
According to Eq. (13), we have

𝑃𝐿 =
∞∑
𝑘=1

Pr{𝑁𝑇 = 𝑘}Pr{𝛿𝑘 ≤ 𝜀}, (14)

where Pr{𝑁𝑇 = 𝑘} is derived by the following lemma.
Lemma 2: If camera sensors are modeled by a two-

dimensional stationary Poisson point process with intensity
𝜆, then the probability that there are 𝑘 camera sensors which
can detect 𝑇 is given by

Pr{𝑁𝑇 = 𝑘} =
(
𝜆𝛼𝑟2

)𝑘
𝑘!

𝑒−𝜆𝛼𝑟2 . (15)

Proof: The detailed proof is provided in Appendix II.
From Lemma 2, we can readily get the expression of K-

coverage probability for wireless camera sensor networks. In
the literature, a point is K-covered if it is covered by at least

K sensors. Then, in camera sensor networks, the K-coverage
probability, denoted by 𝑃𝐾 , is

𝑃𝐾 ≜ Pr{𝑁𝑇 ≥ 𝐾} =
∞∑

𝑖=𝐾

(
𝜆𝛼𝑟2

)𝑖
𝑖!

𝑒−𝜆𝛼𝑟2

= 1−
𝐾−1∑
𝑖=0

(
𝜆𝛼𝑟2

)𝑖
𝑖!

𝑒−𝜆𝛼𝑟2 . (16)

However, according to Eq. (9), it is difficult to derive the
closed-form analytical expression for Pr{𝛿𝑘 ≤ 𝜀}. Next, we
study Pr{𝛿𝑘 ≤ 𝜀} by using Monte Carlo simulations.

Let 𝑇 (0, 0) be the location of a target. We randomly deploy
one camera sensor 𝑐 in the disk centered around 𝑇 with the
radius 𝑟. Let 𝐿𝑐 be the location of 𝑐, and 𝛾𝑐 be the orientation
of

−−→
𝐿𝑐𝑇 . In order to detect 𝑇 , the orientation 𝜃𝑐 of camera

sensor 𝑐 satisfies the random uniform distribution on [𝛾𝑐 −
𝛼, 𝛾𝑐+𝛼]. According to Eq. (9), we can get the corresponding
𝛿1. Assume that 𝜁, 𝜎𝑝, and 𝜎𝑠 are fixed, above process is
repeated 1000 times to obtain 1000 𝛿1’s. Define 𝑎 ≜ 𝜀/𝑟 and
let it vary from 0 to 0.25. For each value of 𝑎, we can get the
total number, denoted by 𝑁𝐿,1, of 𝛿1’s which are not larger
than corresponding 𝜀. Then, Pr{𝛿1 ≤ 𝜀} approximates the
ratio of 𝑁𝐿,1 over 1000.

Figure 5 plots the statistical results of 1000 𝛿1’s. From
Fig. 5, we can observe that about 80% 𝛿1’s are larger than
𝑟/10. For most applications of wireless camera sensor net-
works, 𝛿1 is much larger than ordinary requirements. On the
other hand, Eq. (2) shows that it is impossible to derive the
unique (𝑥𝑡, 𝑦𝑡) by using just one measurement. The above
observations imply that the point which is covered by only
one camera sensor cannot generally be L-covered. Therefore,
we can have the following property:
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Fig. 5. Relationship between Pr{𝛿1 ≤ 𝜀} and 𝑎 with different 𝑟. We set
𝜁 = 5× 10−8, 𝜎𝑝 = 0.1, and 𝜎𝑠 = 0.1.
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Fig. 6. Relationship between Pr{𝛿2 ≤ 𝜀} and 𝑎 with different 𝑟. We set
𝜁 = 5× 10−8, 𝜎𝑝 = 0.1, and 𝜎𝑠 = 0.1.

Property 1: The point which is detected by only one camera
sensor is not L-covered.

Next, we randomly deploy two camera sensors, 𝑐1 and 𝑐2,
in the disk centered around 𝑇 with radius 𝑟. Their orientations,
𝜃1 and 𝜃2, satisfy the random uniform distribution on [𝛾1 −
𝛼, 𝛾1 + 𝛼] and [𝛾2 − 𝛼, 𝛾2 + 𝛼], where 𝛾1 and 𝛾2 are the
orientations of

−−→
𝐿1𝑇 and

−−→
𝐿2𝑇 , respectively. Then, we can get

the corresponding 𝛿2 according to Eq. (9). We repeat above
process 1000 times to obtain 1000 𝛿2’s. Let 𝑎 vary from 0 to
0.25 per 0.025 steps. For each value of 𝑎, we can get the total
number, denoted by 𝑁𝐿,2, of 𝛿2’s which are not larger than
corresponding 𝜀. Then, Pr{𝛿2 ≤ 𝜀} approximate the ratio of
𝑁𝐿,2 over 1000.

Figure 6 plots the statistical results of 1000 𝛿2’s. As shown
in Fig. 6, when 𝑟 = 4000, about 80% 𝛿2’s are smaller than
𝑟/10. This implies that if the requirement of localization
accuracy is not very strict, then the probability that a point
is L-covered by two camera sensors, i.e., Pr{𝛿2 ≤ 𝜀}, is high.
Furthermore, we can also obtain the following observations
from Fig. 6:

∙ When 𝑎 is at the lower end, Pr{𝛿2 ≤ 𝜀} increases quickly

as 𝑎 increases; when 𝑎 is at the higher end, Pr{𝛿2 ≤ 𝜀}
increases slowly as 𝑎 increases.

∙ For a fixed 𝑎, Pr{𝛿2 ≤ 𝜀} decreases as 𝑟 increases.

When 𝑘 ≥ 3, it is complicated to calculate 𝛿𝑘 according
to Eq. (9), because the dimensions of ℜ are large. There is
a property for Pr{𝛿𝑘 ≤ 𝜀} that Pr{𝛿𝑘 ≤ 𝜀} increases as
𝑘 increases, i.e., Pr{𝛿𝑘 ≤ 𝜀} < Pr{𝛿𝑘+1 ≤ 𝜀}. This is
because the more camera sensors for estimation, the lower
the estimation error. Thus, we have

Pr{𝛿2 ≤ 𝜀} < Pr{𝛿𝑘 ≤ 𝜀} ≤ 1, for 𝑘 > 2.

Then, according to Eq. (16), we can obtain

Pr{𝛿2 ≤ 𝜀}𝑃2 < 𝑃𝐿 < Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 = 2}+ 𝑃3, (17)

where

𝑃2 = 1− 𝑒−𝜆𝛼𝑟2 − 𝜆𝛼𝑟2𝑒−𝜆𝛼𝑟2 ,

𝑃3 = 1− 𝑒−𝜆𝛼𝑟2 − 𝜆𝛼𝑟2𝑒−𝜆𝛼𝑟2 − (𝜆𝛼𝑟2)2

2 𝑒−𝜆𝛼𝑟2 .

Figure 7 plots Pr{𝛿2 ≤ 𝜀}𝑃2 and Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 =
2}+𝑃3 against 𝜆 with two different values of Pr{𝛿2 ≤ 𝜀} by
taking Pr{𝛿2 ≤ 𝜀} = 0.8 and 0.5, respectively. From Fig. 7,
Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 = 2} + 𝑃3 approaches to 1 and Pr{𝛿2 ≤
𝜀}𝑃2 approaches to Pr{𝛿2 ≤ 𝜀} = 0.8 or 0.5 when 𝜆 goes to
infinity. This implies that 1) the difference between Pr{𝛿2 ≤
𝜀}𝑃2 and Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 = 2} + 𝑃3, denoted by Δ𝑃 ,
approaches to 1 − Pr{𝛿2 ≤ 𝜀} when 𝜆 goes to infinity; 2)
Δ𝑃 decreases as Pr{𝛿2 ≤ 𝜀} increases. On the other hand,
we have

lim
𝜆→∞

Pr{𝛿2 ≤ 𝜀}𝑃2

𝑃𝐿
= Pr{𝛿2 ≤ 𝜀}

and

lim
𝜆→∞

Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 = 2}+ 𝑃3

𝑃𝐿
= 1.

Therefore, when Pr{𝛿2 ≤ 𝜀} approaches to 1, we can use
Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 = 2} + 𝑃3 as the approximation of 𝑃𝐿,
i.e.,

𝑃𝐿 ≈ Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 = 2}+ 𝑃3.

In this paper, we assume that if Pr{𝛿2 ≤ 𝜀} > 0.8, then
𝑃𝐿 ≈ Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 = 2}+ 𝑃3. However, when 𝜀 is at
the lower end, Pr{𝛿2 ≤ 𝜀} may be smaller than 0.8. Thus,
the difference between 𝑃𝐿 and Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 = 2}+𝑃3

cannot be neglected.
Let Pr{𝛿2 ≤ 𝜀} = 𝜑(𝑎) be a function of 𝑎 where 𝑎 =

𝜀/𝑟. As shown in Fig. 6, we can get the plot of 𝜑(𝑎) by
using Monte Carlo simulations. Because Pr{𝛿2 ≤ 𝜀} increases
monotonically as 𝑎 increases, we can define a threshold value
for 𝑎, denoted by 𝑎𝑡, as follows: 𝑎𝑡 ≜ inf{𝑎 ∣ 𝜑(𝑎) ≥ 0.8}.
If 𝜀 < 𝑎𝑡𝑟, i.e., 𝑎 < 𝑎𝑡, then Pr{𝛿2 ≤ 𝜀} < 0.8. Define

𝑟′ ≜ 𝜀

𝑎𝑡
. (18)

Substituting 𝑟 = 𝑟′ into Eq. (9), Eq. (15), and Eq. (16), we
can get the corresponding 𝛿2, Pr{𝑁𝑇 = 2}, and 𝑃𝐾 with
the sensing radius 𝑟′, denoted by 𝛿′2, Pr{𝑁 ′

𝑇 = 2}, and 𝑃 ′
𝐾 ,

respectively. Let 𝜑′(𝑎) be the function which expresses the
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Fig. 7. The curves of Pr{𝛿2 ≤ 𝜀}𝑃2 and Pr{𝛿2 ≤ 𝜀}Pr{𝑁𝑇 = 2}+ 𝑃3

when Pr{𝛿2 ≤ 𝜀} = 0.8 and 0.5, respectively.

relationship between Pr{𝛿′2 ≤ 𝜀} and 𝑎. Because Pr{𝛿2 ≤ 𝜀}
decreases as 𝑟 increases, 𝜑′(𝑎𝑡) > 0.8. This implies that

𝑃𝐿 ≈ Pr{𝛿′2 ≤ 𝜀}Pr{𝑁 ′
𝑇 = 2}+ 𝑃 ′

3.

We can also use Monte Carlo simulations to get the curve of
𝜑′(𝑎). However, in order to simplify the computation, we use
𝑃 ′
2 ≈ Pr{𝑁 ′

𝑇 = 2}Pr{𝛿′2 ≤ 𝜀} + 𝑃 ′
3, because Pr{𝛿′2 ≤ 𝜀} >

0.8. Therefore, we can derive the approximated expression for
𝑃𝐿 as follows:

𝑃𝐿 ≈

⎧⎨
⎩

1− 𝑒−𝜆𝛼𝑟2 − 𝜆𝛼𝑟2𝑒−𝜆𝛼𝑟2

− (
1− 𝜑

(
𝜀
𝑟

)) (𝜆𝛼𝑟2)2

2 𝑒−𝜆𝛼𝑟2 , if 𝜀 > 𝑎𝑡𝑟;

1− 𝑒−𝜆𝛼( 𝜀
𝑎𝑡
)2

−𝜆𝛼
(

𝜀
𝑎𝑡

)2

𝑒−𝜆𝛼( 𝜀
𝑎𝑡
)
2

, otherwise.

(19)

From Eq. (19), we can obtain the corresponding density of
camera sensors for a given L-coverage probability.

VI. SIMULATION EXPERIMENTS

We verify our derived model and analytical analyses on
the L-coverage in wireless camera sensor networks through
simulation experiments. In order to perform empirical eval-
uations of the L-coverage probability, we have built up a
simulation platform by using VC++. The fixed parameters
of the simulation platform are as follows: 𝑆 = 500 × 500,
𝛼 = 𝜋/6, 𝜁 = 5× 10−8, 𝜎𝑝 = 0.1, and 𝜎𝑠 = 0.1.

In each simulation run, we randomly scatter a number of
camera sensors according to a 2-dimensional Poisson process
with mean 𝜆 × 250000 within 𝑆. The number of camera
sensors, 𝑁 , varies from 0 to 1000 per 100 steps. A grid
of 500 × 500 vertices is created for 𝑆. From Property 1,
when a point is covered by only one camera sensor, this point
cannot be L-covered. This implies that the region which is
covered by only one camera sensor is also the vacancy for
L-coverage. Then, we can divide these 250,000 vertices into
three categories: 1) the vertices covered by 0 or 1 camera
sensor, 2) the vertices covered by 2 camera sensors, and 3)
the vertices covered by at least 3 camera sensors. Assume
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Fig. 8. Comparisons between the simulation results and the analytical results
of Pr{𝑁𝑇 < 2}, Pr{𝑁𝑇 = 2}, and Pr{𝑁𝑇 > 2}, where 𝑟 = 40.

that there are 𝑛 vertices which are covered by 0 or 1 camera
sensor. We repeat above process 100 times to obtain the mean
of 𝑛, E[𝑛], for each value of 𝜆. Then, the simulation result
of Pr{𝑁𝑇 < 2} is computed as the ratio between E[𝑛] and
250,000. By using the same method, we can also get the
simulation results of Pr{𝑁𝑇 = 2} and Pr{𝑁𝑇 > 2}.

Figure 8 plots the simulation results and analytical results
of Pr{𝑁𝑇 < 2}, Pr{𝑁𝑇 = 2}, and Pr{𝑁𝑇 > 2} against 𝜆.
As shown in Fig. 8, the analytical results of Pr{𝑁𝑇 < 2} are
always slightly larger than simulation results. The analytical
results of Pr{𝑁𝑇 > 2} are slightly smaller than simulation
results. Pr{𝑁𝑇 = 2} increases at first, and then decreases as
𝜆 increases. The analytical results of Pr{𝑁𝑇 = 2} are slightly
larger than simulation results during the increasing process of
Pr{𝑁𝑇 = 2}, and are slightly smaller than simulation results
during the decreasing process. These observations imply that:

∙ For Pr{𝑁𝑇 < 2}, Pr{𝑁𝑇 = 2}, and Pr{𝑁𝑇 > 2}, the
simulation results are close to the analytical results;

∙ In order to obtain a given coverage probability, the
simulation results for 𝜆 are slightly smaller than the
analytical results.

For each value of 𝜆, we randomly generate 20 different
topologies of camera sensors. In each topology, we compute
the corresponding 𝛿2 for all the vertices covered by 2 camera
sensors. The threshold 𝜀 takes the value of 0,1,. . . ,10. Assume
that there exist 𝑛′ vertices which satisfy 𝛿2 ≤ 𝜀. Then, we can
get the ratio between 𝑛′ and the number of vertices which are
covered by 2 cameras. Repeat this process 20 times to obtain
the mean of this ratio, i.e., the simulation result of Pr{𝛿2 ≤
𝜀}. Table III summarizes the simulation results and analytical
results of Pr{𝛿2 ≤ 𝜀}. We can also observe that the simulation
results are very close to the corresponding analytical results.

Set 𝜀 = 4, we can get the simulation results of 𝑃𝐿 by sub-
stituting the simulation results of Pr{𝑁𝑇 = 2}, Pr{𝑁𝑇 > 2},
and Pr{𝛿2 ≤ 𝜀} into Eq. (13). As shown in Fig. 9, the
simulation results of 𝑃𝐿 are slightly larger than analytical
results. As 𝜆 increases, the difference between the simulation
result and the corresponding analytical result increases firstly,
and then decreases. On the other hand, for each value of 𝜆, we
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TABLE III
COMPARISON BETWEEN SIMULATION RESULTS (THE NUMBERS IN THE COLUMNS 2 THROUGH 11) AND ANALYTICAL RESULTS (THE NUMBERS IN THE

COLUMN 12) OF Pr{𝛿2 ≤ 𝜀}.

𝜆 (for simulation results)
𝜀 0.0004 0.0008 0.0012 0.0016 0.0020 0.0024 0.0028 0.0032 0.0036 0.0040 Analytical results

100 .0500 .0522 .0426 .0571 .0652 .0500 .0424 .0447 .0468 .0349 .0611
200 .3400 .2410 .1782 .2368 .2301 .2421 .2263 .2481 .1959 .1968 .2659
300 .6600 .5663 .5798 .5666 .5471 .6184 .5758 .6328 .5205 .5873 .6092
400 .8900 .8032 .8032 .7949 .8225 .8395 .8121 .8685 .8041 .8222 .8302
500 .9400 .8795 .8936 .8858 .8986 .9132 .9051 .9330 .9035 .8984 .8958
600 .9500 .9116 .9335 .9302 .9420 .9395 .9414 .9578 .9240 .9365 .9416
700 .9800 .9357 .9574 .9577 .9583 .9632 .9677 .9752 .9561 .9460 .9641
800 .9800 .9558 .9734 .9725 .9692 .9816 .9758 .9851 .9649 .9587 .9757
900 .9900 .9719 .9814 .9831 .9873 .9895 .9818 .9950 .9766 .9714 .9793
1000 1.0000 .9839 .9920 .9873 .9946 .9974 .9859 .9975 .9825 .9873 .9865

Fig. 9. Comparisons among 1-coverage probability (𝑃1), 2-coverage prob-
ability (𝑃2), and L-coverage probability (𝑃𝐿).

compare the simulation results of 𝑃1 and 𝑃2 to the simulation
result of 𝑃𝐿, respectively. From Fig. 9, we can observe that 𝑃𝐿

is much smaller than 𝑃1 (𝑃1, i.e., 1-coverage probability, is
the ordinary coverage probability for detecting applications).
Because Pr{𝛿2 ≤ 4} is about 80%, 𝑃𝐿 is slightly smaller than
𝑃2.

We can obtain the simulation results of Pr{𝛿2 ≤ 𝜀}𝑃2

and Pr{𝑁𝑇 = 2}Pr{𝛿2 ≤ 𝜀} + 𝑃3 by using the simulation
results of Pr{𝛿2 ≤ 𝜀}, Pr{𝑁𝑇 = 2}, 𝑃2, and 𝑃3. Even
the difference, Δ𝑃 , between Pr{𝛿2 ≤ 𝜀}𝑃2 and Pr{𝑁𝑇 =
2}Pr{𝛿2 ≤ 𝜀} + 𝑃3 increases as 𝜆 increases, Δ𝑃 is always
small when 𝜀 is at the higher end (Fig. 10(a)). Therefore, 𝑃𝐿

approximates to Pr{𝑁𝑇 = 2}Pr{𝛿2 ≤ 𝜀} + 𝑃3. Figure 10(a)
also shows that Δ𝑃 decreases as 𝜀 increases. If 𝜀 is small, i.e.,
the application has a strict restriction on localization accuracy,
then Pr{𝛿2 ≤ 𝜀} is small, and the Δ𝑃 is large (Fig. 10(b)).
According to Eq. (18), we use 𝑟′ = 20 as the sensing radius of
camera sensors, and then get the corresponding 𝑃 ′

2. As shown
in Fig. 10(b), the difference between 𝑃 ′

2 and Pr{𝛿2 ≤ 𝜀}𝑃2

is small, i.e., 𝑃𝐿 can approximate to 𝑃 ′
2. We notice that the

simulated Pr{𝛿2 ≤ 𝜀}𝑃2 is not always less than 𝑃 ′
2, which is

because of the limited number of simulations.

VII. CONCLUSIONS

We investigated the coverage problem from the perspective
of target localization in wireless camera sensor networks,

which is necessary to make camera sensor networks useful for
surveillance applications. We proposed and analyzed the novel
localization-oriented sensing model based on the perspective
projection model of camera. We formulated the problem of
localization in the framework of Bayesian estimation, and
proposed a new notion of localization-oriented coverage (L-
coverage). Furthermore, we analyzed the relationships be-
tween L-coverage probability and the density of camera sen-
sors, and derived the requirement density of camera sensors
for an expected L-coverage probability. Our proposed system
models and schemes were validated and evaluated through the
extensive simulation experiments.

APPENDIX A
PROOF OF Lemma 1

The MSE of 𝑇𝑘 is

MSE(𝑇𝑘) = E[(𝑥𝑡 − 𝑥)2 + (𝑦𝑡 − 𝑦)2]

=

∫ ∫
𝑆

[
(𝑥− 𝑥𝑡)

2
+ (𝑦 − 𝑦𝑡)

2
]
𝑓(𝑡∣X)d𝑥d𝑦.

To minimize the MSE(𝑇𝑘), we take its partial derivative
over 𝑥 and 𝑦, respectively, as follows:

∂
∂𝑥

(∫ ∫
𝑆

[
(𝑥− 𝑥𝑡)

2 + (𝑦 − 𝑦𝑡)
2
]
𝑓(𝑡∣X)d𝑥d𝑦

)
=

∫ ∫
𝑆

∂
∂𝑥

([
(𝑥− 𝑥𝑡)

2
+ (𝑦 − 𝑦𝑡)

2
]
𝑓(𝑡∣X)

)
d𝑥d𝑦

= −2 ∫ ∫
𝑆
(𝑥𝑡 − 𝑥)𝑓(𝑡∣X)d𝑥d𝑦.

∂
∂𝑦

(∫ ∫
𝑆

[
(𝑥− 𝑥𝑡)

2
+ (𝑦 − 𝑦𝑡)

2
]
𝑓(𝑡∣X)d𝑥d𝑦

)
=

∫ ∫
𝑆

∂
∂𝑦

([
(𝑥− 𝑥𝑡)

2 + (𝑦 − 𝑦𝑡)
2
]
𝑓(𝑡∣X)

)
d𝑥d𝑦

= −2 ∫ ∫
𝑆
(𝑦𝑡 − 𝑦)𝑓(𝑡∣X)d𝑥d𝑦.

Setting the above partial derivatives to be zeros and solving
them, respectively, we get{

𝑥 =
∫ ∫

𝑆
𝑥𝑓(𝑡∣X)d𝑥d𝑦,

𝑦 =
∫ ∫

𝑆
𝑦𝑓(𝑡∣X)d𝑥d𝑦. (20)

Then, substituting Eq. (7) into Eq. (20), we obtain Eq. (8).

APPENDIX B
PROOF OF Lemma 2

From the sensing model of camera sensors, it is easy to
know that if a camera sensor can detect 𝑇 , then the location
of this camera sensor must be in the disk, denoted by 𝑅, which
is centered around 𝑇 with radius 𝑟. On the other hand, not all
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Fig. 10. (a) The differences among Pr{𝛿2 ≤ 6}𝑃2, Pr{𝑁𝑇 = 2}Pr{𝛿2 ≤ 6} + 𝑃3, Pr{𝛿2 ≤ 4}𝑃2, and Pr{𝑁𝑇 = 2}Pr{𝛿2 ≤ 4} + 𝑃3; (b) the
differences among Pr{𝛿2 ≤ 2}𝑃2, Pr{𝑁𝑇 = 2}Pr{𝛿2 ≤ 2}+ 𝑃3, and 𝑃 ′

2. We set 𝑟 = 40 and 𝑟′ = 20.

camera sensors in 𝑅 can detect 𝑇 because of their orientations.
Assume that there are 𝑛 camera sensors in 𝑅, from Eq. (11),
we have

Pr{𝑁𝑅 = 𝑛} = (𝜆𝜋𝑟
2)𝑛

𝑛!
𝑒−𝜆𝜋𝑟2 ,

where 𝑁𝑅 is the number of the cameras sensors in 𝑅. The
probability that a camera sensor in 𝑅 can detect 𝑇 is 𝛼/𝜋.
Then, the probability that 𝑘 (𝑘 ≤ 𝑛) of these 𝑛 camera sensors
can detect the target 𝑇 is

Pr{𝑁𝑇 = 𝑘∣𝑁𝑅 = 𝑛} =
(𝛼
𝜋

)𝑘 (
1− 𝛼

𝜋

)𝑛−𝑘
(

𝑛
𝑘

)
.

Then,

Pr{𝑁𝑇 = 𝑘}

=
∞∑

𝑛=𝑘

Pr{𝑁𝑅 = 𝑛}Pr{𝑁𝑇 = 𝑘∣𝑁𝑅 = 𝑛}

=

∞∑
𝑛=𝑘

(𝜆𝜋𝑟2)𝑛

𝑛!
𝑒−𝜆𝜋𝑟2

(𝛼
𝜋

)𝑘 (
1− 𝛼

𝜋

)𝑛−𝑘
(

𝑛
𝑘

)

=

(
𝜆𝛼𝑟2

)𝑘
𝑘!

𝑒−𝜆𝛼𝑟2 ,

which is Eq. (15).
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