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QoS-Aware Base-Station Selections for Distributed
MIMO Links in Broadband Wireless Networks
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Abstract—The distributed multiple-input-multiple-output
(MIMO) techniques across multiple cooperative base stations
(BS) can significantly enhance the capability of the broadband
wireless networks in terms of quality-of-service (QoS)
provisioning for wireless data transmissions. However, the
computational complexity and the interfering range of the
distributed MIMO systems also increase rapidly as the number
of cooperative BS’s increases. In this paper, we propose the
QoS-aware BS-selection schemes for the distributed wireless
MIMO links, which aim at minimizing the BS usages and
reducing the interfering range, while satisfying diverse statistical
delay-QoS constraints characterized by the delay-bound
violation probability and the effective capacity technique. In
particular, based on the channel state information (CSI) and
QoS requirements, a subset of BS with variable cardinality for
the distributed MIMO transmission is dynamically selected,
where the selections are controlled by a central server. For the
single-user scenario, we develop two optimization frameworks,
respectively, to derive the efficient BS-selection schemes and the
corresponding resource allocation algorithms. One framework
uses the incremental BS-selection and time-sharing (IBS-TS)
strategies, and the other employs the ordered-gain based
BS-selection and probabilistic transmissions (OGBS-PT). The
IBS-TS framework can yield better performance, while the
scheme developed under the OGBS-PT framework is easier
to implement. For the multi-user scenario, we propose the
optimization framework applying the priority BS-selection,
block-diagonalization precoding, and probabilistic transmission
(PBS-BD-PT) techniques. We also propose the optimization
framework applying the priority BS-selection, time-division-
multiple-access, and probabilistic transmission (PBS-TDMA-PT)
techniques. We derive the optimal transmission schemes for all
the aforementioned frameworks, respectively. Also conducted
is a set of simulation evaluations which compare our proposed
schemes with several baseline schemes and show the impact of
the delay-QoS requirements, transmit power, and traffic loads
on the performances of BS selections for distributed MIMO
systems.

Index Terms—Distributed MIMO, broadband wireless net-
works, statistical QoS provisioning, wireless fading channels.

I. INTRODUCTION

IN ORDER to increase the coverage of broadband wire-
less networks, distributed multiple-input-multiple-output

(MIMO) techniques, where multiple location-independent
base stations (BS) cooperatively transmit data to mobile users,
have attracted more and more research attentions [1]–[4]. In
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particular, the distributed MIMO techniques can effectively
organize multiple location-independent BS’s to form the dis-
tributed MIMO links connecting with mobile users, while
not requiring too many multi-antennas, which are expensive,
equipped at individual BS’s. Like the conventional centralized
MIMO system [5]–[7], the distributed MIMO system can
significantly enhance the capability of the broadband wireless
networks in terms of the quality-of-service (QoS) provisioning
for wireless transmissions as compared to the single antenna
system. However, the distributed nature for cooperative multi-
BS transmissions also imposes many new challenges in wide-
band wireless communications, which are not encountered in
the centralized MIMO systems.

First, the cooperative distributed transmissions cause the
severe difficulty for synchronization among multiple location-
independent BS transmitters. Second, as the number of cooper-
ative BS’s increases, the computational complexity for MIMO
signal processing and coding also grow rapidly. Third, because
the coordinated BS’s are located at different geographical
positions, the cooperative communications in fact enlarge
the interfering areas for the used spectrum, thus drastically
degrading the frequency-reuse efficiency in the spatial domain.
Finally, many wide-band transmissions are sensitive to the
delay, and thus we need to design QoS-aware distributed
MIMO techniques, such that the scarce wireless resources can
be more efficiently utilized.

Towards the above issues, many research works on dis-
tributed MIMO transmissions have been proposed recently.
The feasibility of transmit beamforming with efficient syn-
chronization techniques over distributed MIMO link has been
demonstrated through experimental tests and theoretical analy-
ses [2], [3], suggesting that complicated MIMO signal process-
ing techniques are promising to implement in realistic systems.
While the antenna selection [6], [7] is an effective approach to
reduce the complexity for centralized MIMO systems, which
can be also extended to distributed MIMO systems for the
BS selection. It is clear that the BS-selection techniques can
significantly decrease the processing complexity, while still
achieving high throughput gain over the single BS transmis-
sion. Also, it is desirable to minimize the number of selected
BS’s through BS-selection techniques, which can effectively
decrease the interfering range and thus improve the frequency-
reuse efficiency of the entire wireless network. Most previous
research works for BS/antenna selections mainly focused on
the scenarios of selecting a subset of BS’s/antennas with
the fixed cardinality [4], [6], [7]. However, it is evident that
based on the wireless-channel status, BS-subset selections with
dynamically adjusted cardinality can further decrease the BS
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Fig. 1. System model of a wireless distributed MIMO system for downlink
transmissions.

usage. More importantly, how to efficiently support diverse
delay-QoS requirements through BS-selection in distributed
MIMO systems still remains as a widely cited open problem.

To overcome the aforementioned problems, we propose the
QoS-aware BS-selection schemes for the distributed wireless
MIMO links, which aim at minimizing the BS usages and re-
ducing the interfering range, while satisfying diverse statistical
delay-QoS requirements. In particular, based on the channel
state information (CSI) and QoS requirements, the subset
of BS with variable cardinality for the distributed MIMO
transmission is dynamically selected, where the selections are
controlled by a central server. For the single-user scenario,
we consider the optimization framework which uses the in-
cremental BS-selection and time-sharing (IBS-TS) strategies,
and study another framework which employs the ordered-gain
based BS-selection and probabilistic-transmissions (OGBS-
PT) techniques. For the multi-user scenario, we propose the
optimization framework applying the priority BS-selection,
block-diagonalization multiple-access, and probabilistic trans-
mission (PBS-BD-PT) techniques. We also propose the opti-
mization framework applying the priority BS-selection, time-
division-multiple-access, and probabilistic transmission (PBS-
TDMA-PT) techniques. We derive the optimal transmission
schemes for the above frameworks, respectively, and conduct
comparative analyses with the baseline schemes through sim-
ulations.

The rest of this paper is organized as follows. Section II
describes the system model for distributed MIMO transmis-
sions. Section III introduces the statistical QoS guarantees
and the concept of effective capacity. Section IV proposes
the optimization frameworks for QoS-aware BS selections of
the single-user case and develops their corresponding optimal
solutions. Section V develops the optimization frameworks
for multi-user cases and derives their optimal solutions. Sec-
tion VI simulates our proposed schemes. The paper concludes
with Section VII.

II. SYSTEM MODEL

A. System Architecture

We concentrate on the wireless distributed MIMO system
for downlink transmissions depicted in Fig. 1, which consists
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Fig. 2. Our proposed QoS-aware BS-selection framework.

of Kbs distributed BS’s, Kmu mobile users, and one central
server. The mth BS has Mm transmit antennas for m =
1, 2, . . . , Kbs and the nth mobile user has Nn receive antennas
for n = 1, 2, . . . , Kmu. All distributed BS’s are connected to
the central server through high-speed optical connections. The
data to be delivered to the nth mobile user, n = 1, 2, . . . , Kmu,
arrives at the central server with a constant rate, which is
denoted by Cn. Then, the central server dynamically controls
these distributed BS’s to cooperatively transmit data to the
mobile users under the specified delay-QoS requirements.

For the case of Kmu = 1, the distributed BS’s and
the mobile user form a single wireless MIMO link; when
Kmu ≥ 2, the distributed BS’s and the mobile users form
the broadcast MIMO link for data transmissions. The wireless
fading channels between the mth BS and the nth mobile user
is modeled by an Nn×Mm matrix Hn,m. The element at the
ith row and jth column of Hn,m, denoted by (Hn,m)i,j , is the
complex channel gain between the ith receive antenna of nth
mobile user and the jth transmit antenna of the mth BS. All
elements of Hn,m are independent and circularly symmetric
complex Gaussian random variables with zero mean and the
variance equal to hn,m. Also, the instantaneous aggregate
power gain of the MIMO link between the nth mobile user
and the mth BS, denoted by γn,m, is defined by

γn,m � 1
Mm

Nn∑
i=1

Mm∑
j=1

∣∣∣(Hn,m)i,j

∣∣∣2 . (1)

We define Hn � [Hn,1 Hn,2 · · · Hn,Kbs ] as the CSI for
the nth mobile user for n = 1, 2, . . . , Kmu. The matrix
Hn follows the independent block-fading model, where Hn

does not change within a time period with the fixed length
T , called a time frame, but varies independently from one
frame to the other frame. Furthermore, we define H �
[Hτ

1 Hτ
2 · · · Hτ

Kbs
]τ , representing a fading state of the entire

distributed MIMO system, where the superscript τ denotes the
transpose operation on a matrix or a vector.

Under the aforementioned model, our proposed BS-
selection framework is illustrated in Fig. 2. As shown in
Fig. 2, based on CSI feedback from the users, the central
data server will dynamically select a subset of BS’s and then
use all transmit antennas of the selected BS’s to construct
the distributed channels to transmit data to the Kmu users.
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Our BS-selection strategies and the corresponding resource
allocation algorithms depends not only on the CSI, but also
the statistical delay-QoS constraints (to be detailed on Sec-
tion II-B and Section III) for the incoming traffics. Although
the BS/antenna selection techniques for distributed/centralized
MIMO systems have been extensively studied, most existing
works [4], [6], [7] focused on maximizing the capacity or
minimizing the error rate given the specified BS/antenna
subset cardinality. In contrast, our work in this paper aims at
tackling the following new challenges for distributed MIMO
system. 1). Our BS-selection and the associated resource
allocation algorithms need to guarantee the specified delay-
QoS requirements for the incoming traffics. 2). The cardinality
of selected BS-subset vary with CSI and delay QoS, which is
more flexible and efficient than the selection schemes with
the fixed subset cardinality. 3). We aim at using the minimum
average number of BS’s to support the incoming traffic with
delay-QoS guarantees, which also decreases the interferences
to the entire network.

B. The Delay QoS Requirements

The central data server maintains a queue for the incoming
traffic to each mobile user. We mainly focus on the queueing
delay in this paper because the wireless channel is the major
bottleneck for high-rate wireless transmissions. Since it is
usually unrealistic to guarantee the hard delay bound over the
highly time-varying wireless channels, we employ the statis-
tical metric, namely, the delay-bound violation probability, to
characterize the diverse delay QoS requirements. Specifically,
for the nth mobile user, the probability of violating a spec-
ified delay bound, denoted by D

(n)
th , cannot exceed a given

threshold ξn. That is, the inequality

Pr
{
Dn > D

(n)
th

}
≤ ξn, n = 1, 2, . . . , Nmu, (2)

needs to hold, where Dn denotes the queueing delay in the
nth mobile user’s queueing system.

C. Performance Metrics and Design Objective

We denote by L the cardinality of the selected BS subset
(the number of selected BS’s) for the distributed MIMO
transmission in a fading state. Then, we denote the expectation
of L by L and call L the average BS usage. As mentioned in
Section II-A, our major objective is to minimize L through
dynamic BS selection while guaranteeing the delay QoS
constraint specified by Eq. (2). Besides the average BS usage,
we also need to evaluate the average interfering range affected
by the distributed MIMO transmission. The instantaneous
interfering range, denoted by A, is defined as the area of the
region where the average received power under the current
MIMO transmission is larger than a certain threshold denoted
by σ2

th. The average interfering area is then defined as the
expectation E{A} over all fading states. Clearly, minimizing
L can not only reduce implementation complexity, but also
decrease the average interfering range affected by the transmit
power.

D. The Power Control Strategy

The transmit power of our distributed MIMO system varies
with the number of selected BS’s. In particular, given the
number L of selected BS’s, the total instantaneous transmitted
power used for distributed MIMO transmissions is set as a
constant equal to PL. Furthermore, PL linearly increases with
L by using the strategy as follows:

PL = Pref + κ(L − 1), L = 1, 2, . . . , Kbs, (3)

where Pref > 0 is called the reference power and κ ≥ 0
describes the power increasing rate against L. Also, we define
PL � 0 for L = 0. The above power adaptation strategy
is simple to implement, while the average transmit power
can be effectively decreased through minimizing the average
number of used BS’s. In addition, Eq. (3) can upper-bound
the instantaneous interferences and the interfering range over
the entire network.

III. EFFECTIVE CAPACITY APPROACH FOR STATISTICAL

DELAY-QOS GUARANTEES

In this paper, we apply the theory of statistical QoS Guar-
antees [8], [9], [13], [20] to integrate the constraint on delay-
bound violation probability given by Eq. (2) into our BS selec-
tion design. Consider a stable dynamic discrete-time queueing
system. The data arrival-rate and data service-rate of the
queueing system are denoted by C[k] and R[k], respectively,
where k is the index for the time frame with a fixed time-
duration equal to T (as also described in Section II-A) and the
units of C[k] and R[k] are both nats/frame. The C[k] and R[k]
change from frame to frame and thus can be characterized as
the time-varying processes. By using the asymptotic analyses
based on the large deviation principal, the author of [8] showed
that under the sufficient conditions, the queue-length process
as a function of t, denoted by Q[k], converges in distribution
to a random variable Q satisfying the following equation:

− lim
Q→∞

log(Pr{Q > Qth})
Qth

= θ, (4)

for a certain θ > 0. A set of sufficient conditions given in [8]
for Eq. (4) are summarized as follows. 1). Both C[k] and
R[k] are stationary. 2). The Gartner-Ellis limits [8] for C[k]
and R[k], denoted by ΛC(θ) and ΛR(θ), respectively, exist
for all θ, where C[k] �

∑k
t=1 C[t] and R[k] �

∑k
t=1 R[t].

3). The processes C[k] and R[k] are independent. 4) There
exists a certain θ > 0 such that ΛC(θ) = ΛR(−θ). For the
details of the sufficient conditions for Eq. (4), please refer
to [8]. It has been shown that Eq. (4) holds for many stable
queueing systems with typical arrival/departure processes [8],
[13], such as Markovian processes, auto-regressive processes,
and capacity-achieving service processes over i.i.d. block-
fading wireless channels.

Based on Eq. (4), the probability that the queue-length,
denoted by Q, exceeding a given bound Qth can be approxi-
mated [8] by

Pr{Q > Qth} ≈ e−θQth , (5)

where θ > 0 is a constant called QoS exponent. It is clear
that the larger (smaller) θ implies the lower (higher) queue-
length-bound violation probability. Furthermore, when the
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delay bound becomes the main QoS metric of interests, the
delay-bound violation probability can be approximated [9],
[20] by

Pr{D > Dth} ≈ e−θϕ(θ)Dth, (6)

where D and Dth denote the queueing delay and delay bound,
respectively, and ϕ(θ) is known as the effective bandwidth [8]
of the arrival-rate process under the given θ. When the arrival
rate C[k] is equal to a constant C over all k and the departure
rate R[k] is time-varying, Eq. (6) can be written [9], [20], [21]
as

Pr{D > Dth} ≈ e−θCDth . (7)

Then, to upper-bound Pr{D > Dth} with a threshold ξ, using
Eq. (7), we get the minimum required QoS exponent θ as
follows:

θ = − log(ξ)
CDth

. (8)

Consider a discrete-time arrival process with constant rate
C and the discrete-time time-varying departure process R[k],
where k is the time index. In order to guarantee the desired
θ determined by Eq. (8), the statistical QoS theory [8]–[10]
shows that the effective capacity C(θ) of the service-rate
process R[k] needs to satisfy

C(θ) ≥ C, (9)

under the given QoS exponent θ. The effective capacity
function is defined in [9] as the maximum constant arrival rate
which can be supported by the service rate to guarantee the
specified QoS exponent θ. If the service-rate sequence R[k]
is stationary and time uncorrelated, the effective capacity can
be written [13] as

C(θ) � −1
θ

log
(
E

{
e−θR[k]

})
, (10)

where E{·} denotes the expectation.
In our distributed MIMO system, the BS selection result

is designed as the function determined by the current CSI.
Thus, the corresponding transmission rate (service rate) is
time independent under the independent block-fading model
(see Section II-A). Then, applying Eqs. (8)-(9), the delay QoS
constraints given by Eq. (2) can be equivalently converted to:

EH

{
e−θnRn − e−θnCn

}
≤ 0, , n = 1, 2, . . . , Nmu, (11)

where θn = − log(ξn)
/(

CnD
(n)
th

)
and EH{·} denotes the

expectation over all H.

IV. QOS-AWARE BS SELECTION FOR THE SINGLE-USER

CASE

We focus on the scenario with a single mobile user in this
section, where Kmu = 1. For presentation convenience, we
use the term transmission mode L to denote the case where
the cardinality of the selected BS subset is equal to L. Given
transmission mode L, we denote by ΩL the set of indices
of the selected BS’s, where ΩL = {iL,1, iL,2, . . . , iL,L}
and iL,� ∈ {1, 2, . . . , Kbs} for 	 = 1, 2, . . . , L. Once a
BS is selected, we use all its transmit antennas for data

transmissions. Then, we characterize the channel matrix for
the selected BS subset by HΩL and write HΩL as HΩL �[
H1,iL,1 H1,iL,2 · · · H1,iL,L

]
, which is an N1 ×ML matrix

with ML �
∑L

�=1 MiL,�
. Accordingly, the physical-layer

signal transmission is characterized by

y = HΩLsΩL + ς,

where y is the N1 × 1 received signal vector and ς de-
notes the N1 × 1 additive Gaussian noise vector whose
elements are independent with unit power. The variable sΩL �[
sτ
iL,1

, sτ
iL,2

, . . . , sτ
iL,L

]τ

is the input signal vector (transmitted
signal vector) for the MIMO channel HΩL , where siL,�

is the
MiL,�

× 1 signal vector transmitted from the (iL,�)-th BS.
Clearly, for dynamic BS selections of distributed MIMO

transmissions, we need to answer the following three ques-
tions: (i) For a specified transmission mode L, how do we
determine the BS subset ΩL? (ii) How are the wireless
resources shared if applying multiple transmission modes
within a time frame? (iii) Which transmission modes will be
used and how to quantitatively allocate the wireless resources?
We first study associated issues for question (i) in Sec-
tion IV-A. Then, we introduce the time-sharing transmission
and probabilistic transmission to share the resources across
different transmission modes in Section IV-B. Following the
discussions in Sections IV-A and IV-B, we formulate two
analytical optimization frameworks to answer question (iii).
In particular, the first optimization framework is based on
the incremental BS-selection algorithm and the time-sharing
strategy; the second framework applies the ordered-gain based
BS selection algorithm with probabilistic transmission, which
will be detailed in Sections IV-C and IV-D, respectively.
The BS-selection scheme derived under the first optimization
framework can achieve better performance, while the second
optimization framework is simpler to implement.

A. BS-Selection Strategy Given the Cardinality of the BS
Subset

In this paper, we focus on the spatial multiplexing based
MIMO transmissions. Given ΩL in a fading state, the max-
imum achievable data rate (Shannon capacity), denoted by
R(ΩL) (nats/frame), is determined [5] by

R(ΩL)= max
Ξ:Tr(Ξ)=PL

{
BT log

[
det

(
I + HΩLΞH†

ΩL

)]}
(12)

for L = 1, 2, . . . , Kbs under given H, where (·)† represents
the conjugate transpose, det(·) generates the determinant of
a matrix, Tr(·) evaluates the trace of a matrix, and Ξ is the
covariance matrix of sΩL . Also, we define R(ΩL) � 0 for
L = 0, implying that no BS is selected and thus no data
is transmitted in this fading state. For the details on how
to achieve MIMO capacity under the given power budget
and how to allocate power across multiple transmit antennas,
please refer to [5].

Given L, the best selection strategy to optimize the achiev-
able rate is the solution to the following optimization problem:

max
ΩL

{
R(ΩL)

}
. (13)
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00. Let Ψ := {1, 2, . . . ,Kbs} and Ψ := ∅, and Z = |Ψ|, where ∅

is the empty set and |Ψ| denotes the cardinality of the set Ψ;
! Use variables Ψ and Ψ to store all selected BS’s and all other

BS’s, respectively.
01. For i := 1 to L ! Add one BS to Ψ in each step.
02. For z := 1 to Z ! Examine Z BS’s in Ψ, respectively
03. Θz := Ψ ∪ {ψz}, where ψz is the zth element in Ψ;

! Pick a BS of Ψ to form a new BS subset Θz with Ψ.
04. eRz := R(Θz) based on Eq. (12) by setting ΩL := Θz .

! Examine the achievable rate of Θz .
05. End

06. z∗ := arg max1≤z≤Z

n eRz

o
;

! Select the BS to maximize the achievable rate.
07. Ψ := Θz∗ , Ψ := Ψ\{ψz∗}, and Z := |Ψ|;

! Add the newly selected BS into the BS subset Ψ.
08. End
09. ΩL := Ψ. ! Complete the BS selection and get ΩL.

Fig. 3. The pseudo codes to determine ΩL by using the incremental BS-
selection algorithm for the single-user case.

To derive the optimal solution for this optimization problem,
it is clear that we need to examine all

(
Kbs
L

)
possible BS com-

binations, which leads to the prohibitively high computational
complexity as Kbs gets large. Alternatively, we consider two
suboptimal approaches with low complexities as follows.
1). Incremental BS-Selection Algorithm: In [7], the au-

thors developed the fast antenna selection algorithm using
the incremental-selection strategy. Although this incremental-
selection strategy was developed for antenna selection without
CSI feedback, it can be readily extended to the scenario for
BS selection with CSI feedback to achieve the near optimal
data rate. The pseudo codes of the incremental BS-selection
algorithm are given in Fig. 3. In particular, the idea of this
algorithm is to determine ΩL through L steps, where in
each step one BS is selected, as shown in lines 01-08 of
Fig. 3. In each step, one selected BS is added to the BS
subset denoted by Ψ, where the selection criterion is to
maximize the achievable rate of the updated BS subset Ψ.
Then, after L steps, we have totally added L BS’s into Ψ
and then assign ΩL := Ψ. This algorithm only examines
the achievable rates for L(Kbs − (L − 1)/2) different BS
combinations, which requires L(Kbs − (L − 1)/2) times of
singular value decomposition (SVD) to calculate the MIMO
channel capacity, resulting in much less complexity than the
optimal approach which examines all

(
Kbs
L

)
BS combinations.

2). Ordered-Gain Based BS-Selection Algorithm: The
ordered-gain (or ordered-SNR) based BS-selection algorithm
selects L BS’s with the largest aggregate power gain over
all BS’s, where the aggregate power gain is defined by
Eq. (1). Since maximizing the aggregate power gain may
not effectively optimize the achievable transmission rate for
MIMO links, the incremental BS-selection algorithm usually
dominates the ordered-gain based BS-selection algorithm.
However, since the ordered-gain based BS-selection algorithm
does not need to perform the SVD, its complexity is much
lower than that of the incremental BS-selection algorithm.

B. Time Sharing and Probabilistic Transmissions

To get the more general framework for BS selection, we
apply the time sharing and probabilistic transmission strate-

gies, respectively, over different transmission modes, which
are described as follows.
1). Time Sharing Transmissions: Each time frame can be

divided into (Kbs + 1) time slots with the lengths equal to
{Tαm}Kbs

m=0, where αm is the normalized time-slot length and∑Kbs
m=0 αm = 1. Within the mth time slot for m > 1, the trans-

mission mode m will be used; for m = 0, no data is transmit-
ted in the corresponding time slot. Then, the total service rate
in a time frame is equal to

∑Kbs
L=0 αLR(ΩL), where R(ΩL)

is given by Eq. (12) for L �= 0 and R(ΩL) = 0 for L = 0.
Furthermore, the total BS usage is given by

∑Kbs
L=0 LαL. The

purpose of applying the time sharing based transmissions is
to increase the system flexibility and to gain the continuous
control on the BS usage within each time frame. Accordingly,
we need to identify how to optimally adjust α with CSI and
QoS constraints, where α � (α0, α1, . . . , αM ).
2). Probabilistic Transmissions: Under this strategy, within

each time frame only one transmission mode will be used for
distributed MIMO transmissions. In particular, we will select
transmission mode L with probability equal to φL and define
φ � (φ0, φ1, φ2, . . . , φKbs)

τ . Then, our target is to determine
how to dynamically adjust φ according to the CSI and QoS
requirements.

If setting φ = α and using the same strategy to determine
ΩL over all fading states, we obtain the same BS usage.
However, the effective capacities (see Eq. (10)) achieved under
the time-sharing transmission and the probabilistic transmis-
sion, denoted by CTS(α, θ1) and CPR(φ, θ1), respectively, are
different. Specifically, we derive

CTS(α, θ1) = − 1
θ1

log
(

EH

{
e−θ1

PKbs
L=0 αLR(ΩL)

})
≥ − 1

θ1
log

(
EH

{
αLe−θ1

PKbs
L=0 R(ΩL)

})
= − 1

θ1
log

(
EH

{
φLe−θ1

PKbs
L=0 R(ΩL)

})
= CPR(φ, θ1), (14)

where the inequality holds because EH

{
e−

PKbs
L=0 αLR(ΩL)

}
is

convex over (R(Ω0), R(Ω1), . . . , R(ΩKbs)). Eq. (14) suggests
that the time-sharing transmission generally outperforms the
probabilistic transmission. However, the probabilistic trans-
mission is more realistic to implement than the time-sharing
transmission due to the following reasons. On the one hand,
for the optimized time-sharing transmission, the time-slot
length TαL may be quite small and thus very hard to
implement. On the other hand, the multiple time slots (for
the time-sharing transmission) within a time frame introduces
more overhead than the single-slot case (for the probabilistic
transmission).

C. Optimization Framework Using Time-Sharing Transmis-
sions with Incremental BS Selection

As discussed in Section II-C, our major objective is to
minimize the average BS usage. In this section, we focus on
the framework which employs the incremental BS-selection
algorithm for each transmission mode and apply the time-
sharing transmission for different transmission modes. Then,
we develop the efficient BS-selection scheme under the above
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framework by solving the following optimization problem
A1, which aims at minimizing the average BS usage while
guaranteeing the delay-QoS requirement:

A1 : min
α(H)

{
L
}

= min
α(H)

{
EH

{
Kbs∑
L=0

αL(H)L

}}

s.t.: 1).
Kbs∑
L=0

αL(H) = 1, ∀H; (15)

2). EH

{
e−θ1

PKbs
L=0 αL(H)R(ΩL)−e−θ1C1

}
≤0, (16)

where Eq. (16) is the constraint to guarantee the delay-bound
violation probability as derived in Eq. (2), we obtain ΩL

through the incremental selection algorithm listed in Fig. 2,
which varies with H, and we determine R(ΩL) based on
Eq. (12). Note that we denote the time-sharing vector (orig-
inally defined in Section IV-B) by α(H) in problem A1 to
emphasize that α is a function of H. When the context is
clear, we will then drop the symbol (H) and only use α to
simplify notations without causing confusions. We call the
optimal solution to A1, denoted by α∗, as the incremental
BS-selection and time-sharing based (IBS-TS) scheme.

Note that the optimization over α is an (Kbs + 1)-
dimensional problem. To reduce the dimension of optimization
variables, for each H we define

R̃(L) � max
α

{
Kbs∑
L=0

αLR(ΩL)

}
, for each H (17)

s.t.
Kbs∑
L=0

αL = 1;
Kbs∑
L=0

αLL = L, for each H. (18)

Based on Eqs. (17)-(18), R̃(L) is the maximum achievable rate
over all α with the same BS usage. Since R̃(L) is a convex
combination [12] over {R(ΩL)}Kbs

L=1, then the definition in
Eqs. (17)-(18) suggests that R̃(L) is a piece-wise linear and
concave function, which can be written as

R̃(L)=

⎧⎪⎨⎪⎩
R̃ (mj−1) + νj (L − mj−1) , if L∈(mj−1, mj ] ,

j =1, 2, . . . ,K;
0, if L = 0;

(19)

for a certain integer K, where m0 < m1 < · · · < mK,
m0 = 0, mK = Kbs, and mi ∈ {0, 1, . . . , Kbs}. Moreover, us-
ing

(
mi, R̃(mi)

)
to represent the coordinates of a point in the

two-dimensional plane, we can identify
{(

mi, R̃(mi)
)}K−1

i=1
through the following procedures: a). find vertices of the con-
vex hull spanned by two-dimensional points

{(
L, R̃(L)

)}Kbs

i=0
;

b).
{(

mi, R̃(mi)
)}K−1

i=1
are located above the line segment

with end points (0, 0) and
(
Kbs, R̃(Kbs)

)
. Accordingly, νj is

the slope of the line segment starting at the point
(
mi, R̃(mi)

)
and ending at the point

(
mi−1, R̃(mi−1)

)
, which is deter-

mined by

νi =
R̃(mi) − R̃(mi−1)

mi − mi−1
, i = 1, 2, . . . ,K. (20)

For presentation convenience, we also define ν0 � ∞ and
νK+1 � −∞. Note that R̃(L) defined in Eq. (19) and the

associated variables, including ΩL, K, {mj}Kj=1, and {νi}Ki=1,
are all functions of H. Furthermore, given L ∈ [mj−1, mj ],
following the piece-wise linear property, we derive the corre-
sponding α to achieve the service rate R̃(L) as follows:

αL =

⎧⎪⎪⎨⎪⎪⎩
mj−L

mj−mj−1
, if L = mj−1;

L−mj−1
mj−mj−1

, if L = mj ;

0, otherwise.

(21)

Applying Eqs. (17), (18), and (21) into problem A1, we
can equivalently convert A1 to the following problem A1′:

A1′ : min
L(H)

{
EH {L(H)}}

s.t.: EH

{
e−θ1 eR(L(H)) − e−θ1C1

}
≤ 0, (22)

where L(H) is a function of H and we denote the optimal
solution to problem A1′ by L∗(H). To simplify notations,
we will drop the symbol H for problem A1′. After obtaining
the optimal solution L∗, we can then map L∗ to α through
Eq. (21). Since R̃(L) is an increasing and concave function,
e−θ1 eR(L) is convex over L [14, pp. 84]. Thus, we can see
that A1′ satisfies: a) the objective function is convex; b)
the inequality constraint function EH

{
e−θ1 eR(L) − e−θ1C1

}
is

convex. Therefore, A1′ is a convex problem [14, pp. 137].
Then, using the Lagrangian method, we solve for the optimal
solution of A1′, as summarized in the following Theorem 1.
Theorem 1: The optimal solution to A1′, if existing, is

determined by

L∗=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
mj, if νj+1 ≤ eθ1 eR(mj)

θ1λ∗ ≤ νj ;

log(θ1λ
∗νj)

νjθ1
− R̃(mj−1)

νj
+ mj−1,

if R̃(mj−1) <
log(θ1λ∗νj)

θ1
< R̃(mj),

(23)

where R̃(·) and νj are characterized by Eqs. (17) through (20).
In Eq. (23), λ∗ ≥ 0 is a constant over all fading states, which
needs to be selected such that equality in Eq. (22) holds.

Proof: The proof of Theorem 1 is provided in the
Appendix A.
Remarks: (i) Having obtained the optimal L∗ for problem

A1′, the optimal solution to A1, denoted by α∗, is obtained
by setting L = L∗ in Eq. (21). (ii) Under the optimal solution,
we do not allocate time slots for all transmission modes. As
indicated by Eq. (21), within any time frames, we use at
most two transmission modes. (iii) It is clear that by setting
αKbs = 1 for all time frames, we use the maximum transmit
power and thus obtain the maximum achievable effective ca-
pacity, which is denoted by C(1)

max. If C(1)
max is still smaller than

C1, the specified delay-QoS requirement cannot be satisfied
since we have used up all power budget. As a result, no
feasible solution exists for this case. In contrast, if C(1)

max ≥ C1,
we can always find the optimal solution. (iv) The analytical
expressions for λ∗ is usually intractable. Alternatively, we use
the numerical-tracking method to derive the optimal λ∗. The
details of the numerical-tracking method and the discussions
on its complexity are provided in Appendix B.
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D. Optimization Framework Using Probabilistic Transmis-
sions with Ordered-Gain Based BS Selection

We in this section consider the framework using the
ordered-gain based BS-selection algorithm and the proba-
bilistic transmission strategy. Specifically, we formulate the
optimization problem for this framework as follows:

A2 : min
φ(H)

{
L
}

= min
φ(H)

{
EH

{
Kbs∑
L=0

φL(H)L

}}

s.t.: 1).
Kbs∑
L=0

φL(H) = 1, ∀H; (24)

2). EH

{(
Kbs∑
L=0

φL(H)e−θ1R(ΩL)

)
−e−θ1C1

}
≤0, (25)

where the probabilistic transmission vector is denoted by a
function φ(H) of H. When the context is clear, we drop the
symbol (H) for problem A2 to simplify notations. We call
the optimal solution to the optimization problem A2 as the
ordered-gain and probability transmission based (OGBS-PT)
scheme.
Theorem 2: The optimal solution to problem A2, denoted

by φ∗, is given by

φ∗
L =

{
1, if L = L∗;
0, if L �= L∗, (26)

for all H, where

L∗ = argmin
L

{
L + λ∗e−θ1R(ΩL)

}
. (27)

In Eq. (27), λ∗ ≥ 0 is a constant over all H, which is selected
such that the equality holds for Eq. (25) to guarantee the delay-
QoS requirement.

Proof: The detailed proof of Theorem 2 is omitted due to
lack of space, but is provided on-line in the technical-report
version [19] of this paper.
Remarks: Theorem 2 suggests that under the optimal solu-

tion, the probabilistic transmission reduces to a deterministic
strategy, where the only transmission mode L∗ will be used for
data transmission. Similar to problem A1, the parameter λ∗

for A2 also needs to be tracked through numerical searching.

V. QOS-AWARE BS SELECTION FOR THE MULTI-USER

CASE

We next consider the distributed MIMO transmissions for
the case with multiple mobile users.1 For efficient BS selec-
tion and distributed MIMO transmissions, the central server
controls the selected distributed BS’s and the mobile users
to constitute the broadcast MIMO link, as mentioned in
Section II. Specifically, given the transmission mode2 L and
BS-index subset ΩL = {iL,1, iL,2, . . . , iL,L} of the selected
BS’s, the channel matrix of the nth mobile user, modeled by
H(n)

ΩL
, is determined by

H(n)
ΩL

�
[
Hn,iL,1 Hn,iL,2 · · · Hn,iL,L

]
, n = 1, 2, . . . , Kmu

1We use the terms of “mobile user” and “user” exchangeably in the rest
of this paper.

2For the multi-user case, we also use the term of transmission mode L to
denote the case where the BS-subset’s cardinality is L.

where H(n)
ΩL

is an Nn ×
(∑L

�=1 MiL,�

)
matrix. Then, the

physical-layer signal transmissions can be characterized by

y(n)
ΩL

= H(n)
ΩL

Kmu∑
i=1

s(i)
ΩL

+ ς(n), n = 1, 2, . . . , Kmu

where s(i)
ΩL

represents the ith user’s input signal vector for the

MIMO channel H(n)
ΩL

, y(n)
ΩL

is the signal vector received at the
nth user’s receive antennas, and ς(n) is the complex additive
white Gaussian noise (AWGN) vector with unit power for each
element of this vector.

It is well-known that the optimal capacity of the broad-
cast MIMO link can be achieved through the dirty-paper
coding technique [16], which is, however, hard to imple-
ment due to its high complexity [17]. Alternatively, we
apply the block-diagonalization precoding techniques [17]
for distributed MIMO transmissions and then concentrate
on developing efficient QoS-aware BS-selection schemes and
associated resource allocation schemes, which are elaborated
on in the following sections.

A. The Block Diagonalization Technique for Distributed
MIMO Transmissions

The idea of block diagonalization (BD) [17] is to use
a precoding matrix, denoted by Γ(n)

ΩL
, for the nth user’s

transmitted signal vector, such that H(i)
ΩL

Γ(n)
ΩL

= 0 for all

i �= n. By setting s(n)
ΩL

= Γ(n)
ΩL

ŝ(n)
ΩL

, where ŝ(n)
ΩL

is the nth

user’s data vector to be precoded by Γ(n)
ΩL

, we can rewrite the

received signal y(n)
ΩL

as

y(n) = H(n)
ΩL

Kmu∑
i=1

Γ(i)
ΩL

ŝ(i)
ΩL

+ ς(n) = H(n)
ΩL

Γ(n)
ΩL

ŝ(n)
ΩL

+ ς(n)

= Γ̂(n)
ΩL

ŝ(n)
ΩL

+ ς(n), (28)

where Γ̂(n)
ΩL

� H(n)
ΩL

Γ(n)
ΩL

. Under this strategy, the nth user’s
signal will not cause interferences to other users. Accordingly,
the MIMO broadcast transmissions are virtually converted
to Kmu orthogonal MIMO channels with channel matrices{
Γ̂(n)

ΩL

}Kmu

n=1
. Then, we can get the nth user’s maximum

achievable rate in a fading state, denoted by R(n)
(
ΩL,P(n)

L

)
,

as follows:

R(n)
(
ΩL,P(n)

L

)
� max

Ξ(n)

{
BT log

[
det

(
I + Γ̂

(n)

ΩL
Ξ(n)

(
Γ̂

(n)

ΩL

)†)]}
,

s.t.: Tr
(
Ξ(n)

)
= P(n)

L , (29)

where Ξ(n) is the covariance matrix of ŝ(n)
ΩL

and P(n)
L

is the power allocated for the nth user. Also, we define
R(n)

(
ΩL,P(n)

L

)
� 0 for L = 0. Note that the aforementioned

Γ(n)
ΩL

may not exist, implying that the total number of trans-
mit antennas over the selected BS’s cannot support enough
freedom for block-diagonalization. In this case, no data will
be transmitted to the nth user to avoid interferences caused
to other users. For the procedures on how to determine Γ(n)

ΩL
,

please refer to [17].
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B. Priority BS-Selection Strategy Given BS Subset Cardinality

When the transmission mode is specified, i.e., the cardinal-
ity of the BS subset is given, every user expects to select the
BS subset that maximizes its own transmission rate. However,
it is clear that this objective cannot be obtained for all users in
the multi-user case. Moreover, the derivation of global optimal
selection strategy in terms of minimizing the average BS usage
is intractable due to the too high complexity, where we need
to examine all

(
Kbs
L

)
possible BS combinations. Therefore, we

propose a simple yet efficient BS-selection algorithm, called
priority BS-selection (PBS), which is detailed as follows.

For the nth user, the global maximum achievable transmis-
sion rate is attained when all BS’s are used and all the other
users do not transmit. Thus, the maximum achievable rate is
given by

R(n)
(
ΩKbs ,PKbs

)
= max
Ξ(n):Tr(Ξ(n))=PKbs

{
BT log

[
det

(
I + HnΞ(n)H†

n

)]}
. (30)

Then, we get the maximum achievable effective capacity of
the nth user, denoted by C(n)

max, as follows:

C(n)
max = − 1

θn
log

(
EH

{
e−θnR(n)(ΩKbs ,PKbs)

})
(31)

for n = 1, 2, . . . , Kmu. We further define the effective-
capacity fraction for the nth user as the ratio between the
traffic loads and the maximum achievable effective capacity.
Denoting the effective-capacity fraction by Ĉn, we have
Ĉn � Cn/C(n)

max. Clearly, for a higher Ĉn, the nth user needs
more wireless resources to meet its QoS requirements. Thus,
in order to satisfy the QoS requirements for all users, we
assign higher BS-selection priority to the user with larger Ĉn.
Following this principle, we design the priority BS-selection
algorithm to determine ΩL in each fading state and provide the
pseudo code in Fig. 4. For presentation convenience, we sort
{Ĉn}Kmu

n=1 in the decreasing order and denote the sorted version
by {Ĉπ(j)}Kmu

h=1 , where Ĉπ(1) ≥ Ĉπ(2) ≥ · · · ≥ Ĉπ(Kmu)

indicates the order from the higher priority to the lower
priority. In the rest of this paper, we use the term of user
π(i) to denote the user with the ith largest effective-capacity
fraction.

As shown in Fig. 4, in each fading state the BS-selection
procedure starts with the selection for user π(1), who has the
highest priority. After picking one BS for user π(1), we select
one different BS for user π(2). More generally, after selecting
for user π(j), we choose one BS for user π(j + 1) from the
BS-subset Ψ, which consists of the BS’s that have not been
selected. This procedure repeats until L BS’s are selected. For
user-π(j)’s selection, we choose the BS with the maximum
aggregate power gain (see Eq. (1) for its definition) over the
subset Ψ. In addition, after user-π(Kmu)’s selection, if the
number of selected BS’s is still smaller than L, we continue
selecting one more BS for user π(1), as shown in line 06
in Fig. 4, and repeat this iterative selection procedure until
having selected L BS’s.

C. The Optimization Framework for BS-Selection and Re-
source Allocation

C.1. Problem Formulation for Average BS-Usage Minimization

01. Let Ψ := {1, 2, . . . ,Kbs} and Ψ := ∅, and � = |Ψ|;
! Use variables Ψ and Ψ to store selected BS’s and all other BS’s,

respectively.
02. j := 1. ! User π(j) is selecting BS.
03. While (� < L) ! Iterative selections until L BS’s are selected.
04. m∗ = arg minm∈Ψ{γπ(j),m}.

! γπ(j),m is the aggregate power gain associated with user π(j).
! Select BS to maximum the aggregate power gain for user π(j).

05. Ψ := Ψ ∪ {m∗}, Ψ := Ψ\{m∗}, and � := �+ 1.
! Update Ψ, Ψ, and �.

06. If j = Kmu, then j := 1; else j := j + 1.
! Let next user with lower priority to select BS.

07. End
08. ΩL := Ψ. ! Complete the BS selection and get ΩL.

Fig. 4. The pseudo codes to determine ΩL in each fading state by using
the priority BS-selection algorithm for the multi-user case.

We next study how to determine which transmission modes
will be used, and how to derive the corresponding resource
allocation strategy by integrating the block diagonalization
and the priority BS selection. Similar to the OGBS-PT
scheme for the single-user case, we also apply the prob-
abilistic transmission (PT) for the multi-user case, where
transmission mode L is used with a probability denoted by
φL, L = 1, 2, . . . , Kbs. Note that for each transmission
mode, there are Kmu coexisting links towards Kmu mobile
users. Consequently, we also need to determine how to al-
locate the total power PL to these Kmu coexisting links.
In particular, we describe the power allocation strategy in
a fading state by P �

(P1, P2, . . . , PKbs

)
with PL �(P(1)

L ,P(2)
L , . . . ,P(Kbs)

L

)
for L = 1, 2, . . . , Kbs, where P

denotes the power-allocation policy for the entire system
and the vector PL represents the power-allocation policy
for transmission mode L. Then, we formulate the following
optimization problem A3 to derive the optimal QoS-aware
probability-vector φ∗ � (φ∗

1, φ
∗
2, . . . , φ

∗
Kmu

) and its corre-
sponding power-allocation policy P∗.

A3 : min
(φ(H),P(H))

{
L
}

= min
(φ(H),P(H))

{
EH

{
Kbs∑
L=0

φL(H)L

}}

s.t.: 1).
Kbs∑
L=0

φL(H) = 1, ∀H; (32)

2).
Kmu∑
n=1

P(n)
L (H) = PL, ∀L, H; (33)

3). EH

{
Kbs∑
L=0

φL(H)e−θnR(n)
(
ΩL,P(n)

L (H)
)}

≤ e−θnCn , ∀n, (34)

where φ(H) and P(H) characterize the probabilistic trans-
mission vector and the power allocation policy described in
the beginning of Section V-C.1, both of which vary with H,
and R(n)

(
ΩL,P(n)

L (H)
)

is determined through Eq. (29). After
clearly defining φ(H) and P(H), we drop the symbol (H) in
problem A3 to simplify notations. We call the optimal solution
to A3 as the PBS-BD-PT scheme.

C.2. The Properties of R(n)
(
ΩL,P(n)

L

)
Before solving A3, we need to study the properties of
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R(n)
(
ΩL,P(n)

L

)
. Let us consider the nth user with Γ(n)

ΩL

not equal to zero. Similar to the results summarized in

Section IV-A, the nth user’s MIMO channel Γ̂
(n)

ΩL
(after

the block diagonalization) can be converted to Z
(n)
L parallel

Gaussian sub-channels, where Z
(n)
L is the rank of Γ̂

(n)

ΩL
, the

zth sub-channel’s SNR is equal to ε
(n)
L,z , and

√
ε
(n)
L,z is the zth

largest nonzero singular value of Γ̂
(n)

ΩL
. The optimal power

ρ
(n)
L,z allocated to the zth sub-channel follows the water-filling

allocation, which is equal to ρ
(n)
L,z =

[
μ

(n)
L − 1/ε

(n)
L,z

]+
, where

μ
(n)
L ≥ 1/ε

(n)
L,1 and μ

(n)
L is selected such that

∑Z
(n)
L

z=1 ρ
(n)
L,z =

P(n)
L . Since Γ̂

(n)

ΩL
has only Z

(n)
L non-zero singular values,

for presentation convenience, we define 1/ε
(n)
L,i � ∞ for

i = Z
(n)
L + 1. Accordingly, we can show that

dR(n)
(
ΩL,P(n)

L

)
dP(n)

L

=
BT

μ
(n)
L

(35)

holds and that R(n)
(
ΩL,P(n)

L

)
is strictly concave over P(n)

L .

Moreover, if μ
(n)
L ∈

[
1/ε

(n)
L,i, 1/ε

(n)
L,i+1

)
for i = 1, 2, . . . , Z

(n)
L ,

we get:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(a). P(n)

L = iμ
(n)
L −

i∑
j=1

1

ε
(n)
L,j

(b). R(n)
(
ΩL,P(n)

L

)
=BT log

(
i∏

j=1

ε
(n)
L,j

)
+BTi logμ

(n)
L .

(36)

C.3. The Optimal Solution to A3
Theorem 3: The optimal power-allocation policy P∗ for

optimization problem A3, if existing, is given as follows:

(
P(n)

L

)∗
= i∗

⎛⎝ i∗∏
j=1

ε
(n)
L,j

⎞⎠− BT θn
1+i∗BT θn (

ζ∗H,L

BTθnλ∗
n

)− 1
1+i∗BT θn

−
i∗∑

j=1

1

ε
(n)
L,j

, (37)

for all n, L, and H, where ε
(n)
L,j is the square of Γ̂(n)

ΩL
’s jth

largest singular value, and i∗ is the unique solution satisfying
the following condition:

μ
(n)
L ∈

[
1

ε
(n)
L,i∗

,
1

ε
(n)
L,i∗+1

)
, ∀n, L, H, (38)

where

μ
(n)
L

=max

⎧⎨⎩ 1

ε
(n)
L,1

,

(
i∗∏

j=1

ε
(n)
L,j

)− BTθn
1+i∗BTθn

(
ζ∗H,L

BTθnλ∗
n

)− 1
1+i∗BT θn

⎫⎬⎭ .

(39)

The corresponding optimal probability-transmission policy is
determined by

φ∗
L =

{
1, if L = L∗;
0, otherwise

(40)

with

L∗ = arg min
0≤L≤Kbs

{
L

+
Kmu∑
n=1

λ∗
ne

−θnBT
“
log

“Qi∗
j=1 ε

(n)
L,j

”
+i∗ log μ

(n)
L

”}
, ∀H, (41)

where given {λ∗
n}Kmu

n=1 for Eqs. (37)-(39), the optimal ζ∗H,L is

selected to satisfy the equation
∑Kmu

n=1

(P(n)
L

)∗ = PL for all L

and H; {λ∗
n}Kmu

n=1 are constants, which are selected such that
the equality of Eq. (34) holds.

Proof: We construct A3’s Lagrangian function, de-
noted by JA3(φ, P; λ, ζH), as JA3(φ, P; λ, ζH) =
EH {JA3(φ, P; λ, ζH)} with

JA3(φ, P; λ, ζH) �
Kmu∑
n=1

λn

[
Kbs∑
L=0

φLe−θnR(n)
(
ΩL,P(n)

L

)

− e−θnCn

]
+

Kbs∑
L=1

ζH,L

(
Kmu∑
n=1

P(n)
L −PL

)
+

Kbs∑
L=0

φLL (42)

under
∑Kbs

L=1 φL = 1, where λn ≥ 0 for n = 1, 2, . . . , Kmu

are the Lagrangian multipliers associated with Eq. (34),
which are constants over all fading states, and λ �
(λ1, λ2, . . . , λKmu); {ζH,L}Kbs

L=1 are the Lagrangian multipliers
associated with Eq. (33), which vary with H and L, and
ζH,L � (ζH,1, ζH,2, . . . , ζH,Kbs).

Problem A3’s Lagrangian dual function [12], [14], denoted
by J̃A3(λ, ζH), is determined by

J̃A3(λ, ζH) � min
(φ,P)

{
JA3(φ, P; λ, ζH)

}
= EH

{
min
φ,P

{
JA3(φ, P; λ, ζH)

}}
. (43)

We denote the minimizer pair in Eq. (43) by (φ̃, P̃). Then,
we can derive

φ̃ = arg min
φ:

PKbs
L=1 φL=1

{
Kbs∑
L=1

φL

(
L

+
Kmu∑
n=1

λne
−θnR(n)

“
ΩL, eP(n)

L

”)}
, ∀H, (44)

where Eq. (44) holds by plugging Eq. (42) into Eq. (43) and
removing the terms independent of φ. Solving Eq. (44), we
obtain

φ̃L =1, if L=arg min
1≤�≤Kbs

{
	+

Kmu∑
n=1

λne
−θnR(n)

“
Ω�, eP(n)

�

”}
;

(45)

otherwise, φ̃L = 0. Following the above derivations, P̃L needs
to minimize the function JA3(φ, P; λ, ζH) given φL = 1
and φj = 0 for all j �= L. Then, we define a set of
functions JA3,L(P; λ, ζH,L) for L = 1, 2, . . . , Kbs, where
JA3,L(P; λ, ζH,L) � JA3(φ, P; λ, ζH,L)|φL=1;φj=0,j �=L .

Taking the derivative of JA3,L(P ; λ, ζH,L) w.r.t. P(n)
L and

letting the derivative equal to zero, we get

ζH,L − BTλnθnμ
(n)
L e−θnR(n)

(
ΩL,P(n)

L

)
= 0 (46)
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for all n, L, and H, where μ
(n)
L = dR(n)

(
ΩL,P(n)

L

)
/dP(n)

L

as given in Eq. (35). Plugging Eq. (36)-(b) into Eq. (46) and
solving for the optimal μ

(n)
L under the boundary condition of

μ
(n)
L ≥ 1/ε

(n)
L,1, we obtain Eq. (39) with i = i∗. Since Eq. (36)

is obtained under the condition of μ
(n)
L ∈ [

1/ε
(n)
L,i, 1/ε

(n)
L,i+1

)
,

the variable i∗ in Eq. (39) must satisfy the condition of μ
(n)
L ∈[

1/ε
(n)
L,i∗, 1/ε

(n)
L,i∗+1

)
, as shown in Eq. (38). Moreover, we can

show that JA3,L(P; λ, ζH,L) is a strictly convex function, and
thus i∗ for Eq. (39) is unique.

The Lagrangian duality principle [12] shows that
J̃ (λ, ζH) = J (φ̃, P̃; λ, ζH) is concave over λ and
ζH. Moreover, the original problem (also called the
primal problem) A3’s dual problem is defined by
max(λ,ζH)

{J̃ (λ, ζH)
}

. We denote the optimal objective
of A3 by L

∗
. The equation L

∗ ≥ max(λ,ζH)

{J̃ (λ, ζH)
}

always holds [12], where the difference between L
∗

and
max(λ,ζH)

{J̃ (λ, ζH)
}

is known as the duality gap [12]. We
can further show that J̃ (λ, ζH) is differentiable w.r.t. λ and
ζH. Then, based on the Lagrangian duality principle [12],
we can obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂ eJ (λ,ζH)
∂λn

= EH

{∑Kbs
L=0 φ̃Le−θnR(n)

(
ΩL, eP(n)

L

)
−e−θnCn

}
, ∀n;

∂ eJ (λ,ζH)
∂ζH,L

=
(∑Kmu

n=1 P̃(n)
L − PL

)
g(H)dH, ∀L, H

(47)

where g(H) is the probability density function of H and dH
denotes the integration variable. As a result, the maximizer
ζ∗H,L must be selected such that

∑Kmu
n=1 P̃(n)

L −PL = 0. Such
a ζ∗H,L exists because ζH,L → 0 and ζH,L → ∞ leads to

P̃(n)
L → ∞ and P̃(n)

L → 0, respectively, as indicated by
Eqs. (36)-(a) and (39).

Having obtained ζ∗
H, we next focus on the optimal λ∗ to

maximize J̃ (λ, ζ∗
H). Due to the concavity of J̃A3(λ, ζH),

∂J̃ (λ, ζ∗
H)/∂λn is a decreasing function of λn. Also, we can

readily show that ∂J̃ (λ, ζ∗
H)/∂λn|λn=0 > 0. Then, if there

does not exist λ such that ∂J̃ (λ, ζ∗
H)/∂λn = 0 for all n, we

have λ∗
n → ∞ for some nth user and ∂J̃ (λ, ζ∗

H)/∂λn > 0
always holds. For this case, we get L

∗ ≥ J̃ (λ∗, ζ∗
H) → ∞,

implying that there is no feasible solution for A3.
In contrast, if there exists λ∗ such that ∂J̃ (λ∗, ζ∗

H)/∂λn =
0 for all n, the pair of (λ∗, ζ∗

H) is the optimal solution to the
dual problem given by Eq. (47). Plugging ∂J̃ (λ∗, ζ∗

H)/∂λn =
0 into Eq. (47), we can see that the effective-capacity con-
straint required by Eq. (34) is satisfied for every user. Also
note that the optimum for max(λ,ζH)

{J̃ (λ, ζH)
}

is achieved
by using (P̃, φ̃) under λ∗ and ζ∗

H, which satisfy the con-
straints imposed by Eqs. (32)-(33). Therefore, all constraints
for problem A3 are satisfied, implying that this policy is feasi-
ble to problem A3. As a result, L

∗
= max(λ,ζH)

{J̃ (λ, ζH)
}

holds with zero duality gap. Thus, this policy is the optimal
solution to A3. Then, setting P∗ = P̃ and φ∗ = φ̃ with λ∗

and ζ∗
H in Eq. (45), we obtain Eqs. (40)-(41). Further plugging

Eq. (39) into Eq. (36)-(a), we prove that Eq. (37) holds.
Finally, comparing ∂J̃ (λ∗, ζ∗

H)/∂λn = 0 with Eq. (47), we
show that the equality of Eq. (34) holds, which completes the
proof of Theorem 3.

Note that there are no closed-form solutions for the optimal
Lagrangian multipliers ζ∗

H,L and λ∗. However, we can deter-
mine the values of ζ∗

H,L and λ∗ by using the numerical search-
ing method similar to the approach given in Appendix B. The
detailed searching techniques are omitted due to lack of space,
but are provided on-line in the technical-report version [19]
of this paper.

D. The TDMA Based BS-Selection Scheme

We next propose the TDMA based QoS-aware BS-selection
scheme for the comparative analyses. In the TDMA based BS-
selection, we also apply the priority BS-selection algorithm
given by Fig. 4 when transmission mode L is specified. For
transmission mode L, we further divide each time frame into
Kmu time slots for data transmissions to Kmu users, respec-
tively. The nth user’s time-slot length is set equal to T × tL,n

for n = 1, 2, . . . , Kmu, where tL,n is the normalized time-slot
length. Moreover, we still use the probabilistic transmission
strategy across different transmission modes, where the proba-
bility of using transmission mode L to transmit data is equal to
φL. Then, we derive the TDMA and probabilistic transmission
policies through solving the following optimization problem
A4.

A4 : min
(t(H),φ(H))

{
L
}

= min
(t(H),φ(H))

{
EH

{
Kbs∑
L=0

LφL(H)

}}

s.t.: 1).
Kbs∑
L=0

φL(H) = 1, ∀H, (48)

2).
Kmu∑
n=1

tL,n(H)=1, ∀H, L=1, 2, . . . , Kbs, (49)

3). EH

{
Kbs∑
L=0

φL(H)e−θntL,n(H)R(n)(ΩL,PL)

}
≤ e−θnCn , ∀n, (50)

where φ(H) and t(H) are the probabilistic transmission
vector and the time-division policy. In particular, in prob-
lem A4 we have φ(H) � (φ0(H), φ1(H), . . . , φKmu(H))
and t(H) � (t1(H), t2(H), . . . , tKbs(H)) with tL �
(tL,1(H), tL,2(H), . . . , tL,Kbs(H)). We use φ(H) and t(H)
to denote the probabilistic transmission vector and the time-
division policy to address that they are function of H. When
the context is clear, we drop the symbol (H) in problem A4
to simplify notations. We call the optimal solution of problem
A4 as the PBS-TDMA-PT scheme.
Theorem 4: Problem A4’s optimal solution pair (t∗, φ∗),

if existing, is determined by

t∗L,n =

[
1

θnR(n) (ΩL,PL)
log

(
λ∗

nθnR(n) (ΩL,PL)
δ∗H,L

)]+

, (51)

for all L, n, and H, and

φ∗
L =

⎧⎪⎪⎨⎪⎪⎩
1, if L = arg min

�=0,1,...,Kbs

{
	

+
∑Kmu

n=1 λ∗
ne−θnt∗L,nR(n)(Ω�,P�)

}
;

0, otherwise

(52)
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Fig. 5. The deployment of BS’s and the positions of mobile users.
(a) Single-user case: Kbs = 5 BS’s, whose coordinates are (37.96,−21.56),
(−7.83, 13.33), (25.50,−22.49), (17.98, 25.00), and (−26.34, 11.62); the
mobile station’s coordinates are (4,−11). (b) Multi-user case: Kbs = 6,
whose coordinates are (35.77, 22.69), (13.06,−37.45), (27.15,−26.33),
(−40.28,−0.14), (−32.86,−28.65), and (−5.10, 29.98); Kmu = 3,
whose coordinates are (−11, 0), (3, 5), and (2,−12).

for all L and H, where δ∗H,L under given {λ∗
n}Kmu

n=1 is

determined by satisfying
∑Kmu

n=1 t∗L,n = 1, and {λ∗
n}Kmu

n=1 needs
to be selected such that the equality of Eq. (50) holds.

Proof: The detailed proof of Theorem 4 is omitted due to
lack of space, but is provided on-line in the technical-report
version [19] of this paper.

VI. SIMULATION EVALUATIONS

We use simulations to evaluate the performances of our
proposed QoS-aware BS-selection schemes for distributed
MIMO links. In particular, for the single-user case, the BS’s
deployment and the mobile user’s position are shown in
Fig. 5(a), where Kbs = 5. For the multi-user case, the BS’s
deployment and the mobile users’ positions are given by
Fig. 5(b), where Kbs = 6 and Kmu = 3. Moreover, we set
T = 10 ms and B = 105 Hz throughout the simulations. In the
simulations, we focus on the case that the positions of users
do not change. This can be mapped to the scenarios where
users move slowly (e.g., pedestrians) or do not move. In such
scenarios, the users’ statistical channel conditions, depending
on the distances between users and distributed BS’s, often
change very slightly in tens of seconds, during which many
(thousands of) packets will be transmitted before the users’
statistical channel conditions vary significantly. Then, our
developed statistical delay-QoS aware BS-selection schemes,
which are based on the current statistical channel information,
can effectively guarantee the corresponding delay QoS during
this period. For the scenarios that the users move quickly, the
delay-QoS performances high depend on the users’ moving
speeds and trajectories, which are unlike the evaluations for
the average transmission error rate in cellular networks, where
only the distribution information of users’ positions is needed.
Thus the delay-QoS-aware BS-selection schemes which need
to be re-designed, which will be studied in our future work.

In the simulations, we employ the following average power
degradation propagation model [15]. For the given reference
distance dref , if the transmission distance, denoted by d, is
smaller than or equal to dref , the free-space propagation model
is used; if d > dref , the power degradation is proportional to
(d/dref)η , where η is the path loss exponent and typically
varies from 2 to 6 indoor environments without LOS [15].
Accordingly, the variance hn,m of Hn,m’s elements can be
determined by

hn,m =

⎧⎨⎩Gd−2
n,m, if dn,m ∈ (0, dref ];

G
(

dref
dn,m

)η

, if dn,m ∈ (dref ,∞),

where dn,m is the distance between the mobile user and the
mth BS, and G is the aggregate power gain generated by
the antenna and other factors. In simulations, we set dref =
1 m [15] and η = 3. Furthermore, we select G such that
hn,m = 0 dB at dn,m = 50 m. Also, we set σ2

th = 0 dB for the
evaluation of the average interfering range (see Section II-C
for its definition).

We also consider the following baseline BS-selection
schemes for comparative analyses:
1). Base-Station Selection with Fixed Cardinality for Single-

User Cases
This scheme does not change the selected BS-subsect’s

cardinality over all fading states. The fixed cardinality, denoted
by Lfix, is determined by

Lfix = min
{
L
∣∣∣EH

{
e−θ1R(ΩL)

}
≤ EH

{
e−θ1C1

}
, L is fixed

}
, (53)

where ΩL for each H is determined through the ordered-gain
based BS-selection algorithm given by Section IV-A, as also
used by our derived OGBS-PT scheme.
2). Optimal Time-Sharing Based Scheme for Single-User

Cases
The optimal time-sharing (TS) based scheme is the same

to our proposed IBS-TS scheme except that it uses exhaustive
search to find the optimal ΩL for Eq. (13) in each fading
state. It is clear that the optimal TS based scheme provides
the lower-bound of the average BS usage for our proposed
IBS-TS scheme.
3). Semi-Random BS-Selection Scheme for Multi-user Cases
In this scheme, given the cardinality L, the central controller

randomly selects ΩL with the uniform distribution across
all BS’s. Furthermore, the cardinality L of the selected BS
subset is determined by using the algorithm derived through
Theorem 3. We call this scheme as the semi-random BD-
PT scheme in that the selection of L is not in a complete
random manner. We evaluate the semi-random BD-PT scheme
to provide an upper-bound of the average BS-usage for our
derived priority BS-selection algorithm given in Fig. 4. This
semi-random strategy can be also applied to the TDMA based
scheme, where ΩL is randomly selected and L is determined
by using the algorithm obtained through Theorem 4.

Figures 6(a) and 6(b) plot the average BS usage and the
average interfering range, respectively, versus the incoming
traffic loads for the single-user case. As shown in Fig. 6(a),
our proposed IBS-TS and OGBS-PT schemes both effectively
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Fig. 6. Simulations of the single-user case for the specified delay-QoS requirements given by D(1)
th = 50 ms and ξ1 = 10−4 , where Kbs = 5, each BS has

two transmit antennas, the mobile user has two receive antennas, Pref = 4, and κ = 2.4. (a) Average BS usage versus traffic load. (b) Average interfering
range versus traffic load.

0 0.5 1 1.5 2 2.5 3 3.2
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

κ

A
ve

ra
ge

 B
S 

us
ag

e

Fixed cardinality
OGBS−PT scheme
IBS−TS scheme
Optimal TS scheme

40 60 80 100 120 140 160 180 200
1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

Required delay bound (ms)

A
ve

ra
ge

 B
S 

us
ag

e
OGBS−PT scheme
IBS−TS scheme
Optimal TS scheme

C1=600 Kbps

(a) (b)

Fig. 7. Simulation results for single-user case varying the specified delay-QoS requirements and system parameters, where Kbs = 5, each BS has two
transmit antennas, the mobile user has two receive antennas. (a) Average BS usage versus κ, where D(1)

th = 50 ms, ξ1 = 10−4, C1 = 1.1 Mbps, and
Pref = 1. (b) Average BS usage versus delay-bound QoS requirements, where ξ1 = 10−6 , C1 = 600 Kbps, κ = 0.4, and Pref = 1.

decrease the average BS usage and the interfering range as
compared to the fixed BS-selection scheme. This is expected
because our proposed BS-selections can adaptively adjust BS
selection in each fading state based on the CSI, traffic loads,
and the QoS requirements. In contrast, the resulted average
BS usage and the interfering range by applying the fixed
BS-selection scheme cannot smoothly vary with traffic loads,
which may cause unnecessary BS usage with more power con-
sumption and thus larger interferences to the entire wireless
networks. We also observe from Fig. 6 that the IBS-TS scheme
needs less BS usage than the OGBS-PT scheme to support the
incoming traffic loads under the specified QoS requirements
and therefore generates lower interferences accordingly, which
verifies our discussions in Sections IV-A and IV-B. However,
we can see that the performance differences between the IBS-
TS and OGBS-PT schemes are slight, especially when the
incoming traffic loads are relatively high. In addition, we can

observe from Fig. 6 that the BS-usage performance and the
interfering range of our proposed IBS-TS scheme are almost
the same as compared to the optimal TS scheme, which
verifies the effectiveness of our proposed IBS-TS scheme.

Figure 7(a) depicts the dynamics of the average BS usage
and the interfering range as functions of κ, where κ is the
power increasing rate against the number of selected BS’s
as defined in Eq. (3). When κ gets larger, the power budget
used for distributed MIMO transmission in each fading state
increases. As a result, the average BS usage is reduced
correspondingly for all schemes, as illustrated in Fig. 7(a).
Again, Fig. 7(a) demonstrates the inflexibility of the fixed
BS-selection, and the significant BS-usage reduction and the
interfering-range reduction as a result of using our proposed
IBS-TS and OGBS-PT schemes.

Figure 7(b) illustrates the impact of delay-QoS require-
ments on the average BS-usage among different BS-selection
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Fig. 8. Simulation results of the multi-user case for the specified delay-QoS requirements given by ξn = 10−4 for all n and D(1)
th = D

(2)
th = 50 ms and

D
(3)
th = 40 ms, where Kbs = 6, Kmu = 3, Nn = 2 for all n = 1, 2, . . . ,Kmu, Pref = 4, κ = 1.2, and Mm is the same for all users. (a) Average BS

usage versus traffic load. (b) Average interfering range versus traffic load.
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Fig. 9. Simulation results for impact of QoS requirement on the multi-user case, where Kbs = 6, Kmu = 3, and Nn = 2 for all n = 1, 2, . . . , Kmu and
Mm = 6 for all m = 1, 2, . . . , Kbs; {ξn}Kmu

n=1 are equal; {D(n)
th }Kmu

n=1 are equal; {Cn}Kmu
n=1 are equal. (a) Average BS usage versus delay-bound QoS

requirements, where C = 300 Kbps, ξn = 10−4, κ = 0.1, and Pref = 1. (b) Average BS usage versus κ, where C = 600 Kbps and Pref = 4.

algorithms. As shown in Fig. 7(b), the average BS-usage
decreases as the required delay-bound increases, which is
expected because of the following reasons. When the delay
QoS constraint becomes looser, suggesting a larger delay
bound, the central controller does not have to use more BS’s
to improve the transmission rate when the wireless channel
experiences deep fading. Correspondingly, the efficiency of
using the distributed BS’s can be improved, thus reducing
the average BS usage. The above observations verify that our
proposed BS-selection algorithms can effectively adapt to the
variation of delay QoS requirements. Also, from Fig. 7(b) we
can observe again that the IBS-TS results in less BS usage
than the OGBS-PT scheme, and the IBS-TS scheme achieves
almost the same performance as the optimal TS scheme.

Figures 8(a) and 8(b) compare the average BS usage and
interfering range among our proposed BS-selection scheme for
multi-user case under various system parameters. Figures 8(a)

and 8(b) show that as the traffic loads increase, all schemes’
average BS usages and interfering ranges increase to satisfy
the specified QoS requirements for the incoming traffic loads.
Moreover, the PBS-TDMA-PT scheme’s BS usage increases
much more rapidly than the PBS-BD-PT scheme. As shown
in Fig. 8(a), the PBS-BD-PT scheme results in less average
BS usage than the PBS-TDMA-PT scheme when the traffic
load is high. The superiority of the PBS-BD-PT over the
PBS-TDMA-PT scheme gradually vanishes as the traffic loads
become low. Furthermore, we can observe that given Mm = 6,
the PBS-BD-PT scheme achieves lower BS usage than the
PBS-TDMA-PT scheme under various traffic loads. This is
expected since it has been demonstrated that the BD technique
usually outperforms the TDMA technique in achieving high
throughput. However, for Mm = 4, the PBS-TDMA-PT
scheme leads to less BS usage when the traffic load is rela-
tively low. The above result is caused by the following reasons.
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In order to support simultaneous transmissions across multiple
users by using the BD technique, a necessary condition is that
the total number of transmit antennas over all distributed BS’s
can provide enough freedoms for spatial multiplexing. Thus,
if the number Mm of transmit antenna per BS is smaller,
more BS’s have to involve the transmission to gain enough
spatial-multiplexing freedoms, even when the traffic load is
low. In contrast, when the traffic load is very low, TDMA does
not have such requirement on spatial multiplexing because
it achieves cross-interference-free transmissions through time-
slot division. The above observations will motive us to develop
hybrid TDMA-BD BS-selection schemes in future studies.

Figure 8(a) further illustrates that our proposed PBS-BD-PT
and PBS-TDMA-PT schemes in general yields less BS usages
than the semi-random BD-PT and the semi-random TDMA-
PT schemes, respectively. Note that when Mm = 4, the BS-
usages of the semi-random BD-PT scheme and our proposed
PBS-BD-PT scheme are the same, which also increase very
slowly as the traffic loads increase. This is because for small
number of transmit antennas, more BS’s are needed to support
the space-multiplexing, as aforementioned. When more BS’s
are used, the achievable rate for each dimension/user often
exceed the traffic load for the corresponding user when the
traffic load is low. In such a case, even randomly selecting BS
can satisfy the specified delay-QoS constraint under the given
traffic loads. However, even when the BS usages of the semi-
random BD-PT scheme and our proposed PBS-BD-PT scheme
are the same, we can see from Fig. 8(b) that the PBS-BD-PT
scheme results in a smaller interfering range by selecting the
BS based CSI.

Figure 9(a) plots the dynamics of the BS usage versus the
required delay bound. As depicted in Fig. 9(a), the larger
delay bound leads to less BS usage for all schemes, which
demonstrates that our proposed schemes can effectively adjust
the BS selections to meet diverse QoS requirements across
multiple co-existing users. Also, we can see that the semi-
random based schemes cause significantly higher BS-usages
than our derived PBS based schemes. Fig. 9(b) illustrates
our proposed PBS-BD-PT scheme and PBS-TDMA-PT based
scheme’s performances versus κ (see Eq. (3)) under diverse
QoS requirements. Similar to the single-user case, the average
BS usage deceases as κ gets larger. Moreover, as shown
in Fig. 9, the lower delay bound and the smaller violation
probability threshold, implying more stringent delay-QoS re-
quirements, cause more BS usages and thus larger interfering
ranges.

VII. CONCLUSIONS

We proposed the QoS-aware BS-selection schemes for the
distributed wireless MIMO downlink to minimize the BS
usages and to reduce the interfering range affected by the
distributed MIMO system, while satisfying diverse statistical
delay-QoS constraints characterized by the delay-bound vi-
olation probability and the effective capacity technique. For
the single-user scenario, we developed the scheme using the
incremental BS selection and time-sharing strategy and also
developed the scheme employing the ordered-gain based BS-
selection and probabilistic transmission strategy. The former
scheme archives better performance, while the latter scheme

is easier to implement. For the multi-user scenario, we de-
veloped the joint priority BS-selection, block-diagonalization
precoding, and probabilistic transmission schemes. We also
studied the TDMA based BS-selection scheme for multi-user
link. The extensive simulation results show that our proposed
schemes can effectively support the incoming traffic loads for
the specified QoS requirements and significantly outperform
baseline schemes in terms of minimizing the average BS usage
and decreasing the interfering range.

APPENDIX A
PROOF OF THEOREM 1

Proof: We construct the Lagrangian function of A1,
denoted by JA1(L, λ), given as JA1(L, λ) = EH{JA1(L, λ)}
with

JA1(L, λ) = L + λ
(
e−θ1 eR(L) − e−θ1C1

)
, (54)

where λ is the Lagrangian multiplier associated with the
constraint of A1′. Then, the optimal L∗ and the optimal
Lagrangian multiplier λ∗ are solutions to the following equa-
tions [12]:{

0 ∈ ∂LJA1(L, λ), ∀H;

0 = EH

{
e−θ1 eR(L) − e−θ1C1

}
.

(55)

where ∂LJA1(L, λ) denotes the subdifferential [12] of the
function JA1(L, λ) with respect to L. Note that the subdiffer-
ential is defined for nondifferentiable convex functions (e.g.,
piece-wise linear functions), which is the counterpart concept
for the gradient of differentiable convex functions. Based
on [12], for a convex function h(b) defined on b ∈ B ⊂ R

n,
where R is the real-number set and B is a convex set, an
n × 1 real-valued vector � is a subgradient of h(b) if
h(b′) ≥ h(b) + �τ (b′ − b) for all b′ ∈ B. Accordingly, the
collection of subgradients at b is the subdifferential of h(b).
For more details and properties of subdifferential, please refer
to [12].

Applying the piece-wise linear property and the concavity
of R̃(L), we derive

∂LJA1(L, λ)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
1 − θ1λνje

−θ1 eR(mj), 1 − θ1λνj+1e
−θ1 eR(mj)

)
,

if L = mj , j = 0, 1, . . . ,K;{
1 − θ1λνje

−θ1 eR(L)
}

,

if L∈(mj−1, mj), j = 1, . . . ,K.

(56)

Plugging Eq. (56) into Eq. (55) and solving for the optimal
solution, we get Eq. (23). Also, the equality of Eq. (22) needs
to hold as required by Eq. (55). which completes the proof of
Theorem 1.

APPENDIX B
THE NUMERICAL-TRACKING METHOD TO DERIVE λ∗ AND

DISCUSSIONS ON ITS COMPLEXITY

As defined in Appendix A, the Lagrangian function under
the optimal solution derived in Theorem 1 is given by
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JA1(L∗, λ) = EH{L∗} + λEH

{
e−θ1 eR(L∗) − e−θ1C1

}
.

Note that in this equation we remove the superscript (·)∗
of λ∗ because we have not obtained the actual value of
λ∗. Based on the convex optimization theory, JA1(L∗, λ),
known as the Lagrangian dual function [12], [14], is concave
over λ. We can show that the derivative dJA1(L∗, λ)/dλ =
EH

{
e−θ1 eR(L∗) − e−θ1C1

}
. Moreover, if the optimal solution

exists, JA1(L∗, λ) reaches its maximum at λ = λ∗ with
EH

{
e−θ1 eR(L∗) − e−θ1C1

}
= 0. Therefore, we can use the

gradient descent method [14] to search for λ∗ numerically. The
gradient descent method is implemented through the following
iterative equation:

λ := λ + εEH

{
e−θ1 eR(L∗) − e−θ1C1

}
,

where ε is a positive real number much smaller than 1. For the
fast tracking of λ∗, we can use the time average via the first-
order autoregressive low-pass filter to estimate and replace the
expectation EH

{
e−θ1 eR(L∗) − e−θ1C1

}
for the above gradient

descent method. In particular, we generate a large number
(more than 104) of channel realizations, representing different
fading states, which are indexed by time sequence k =
1, 2, . . .. Denoting the estimate of EH

{
e−θ1 eR(L∗) − e−θ1C1

}
at the k-th time by J ′

λ[k], we use the following first-order
autoregressive low-pass filter to update J ′

λ[k]:

J ′
λ[k] = ϑJ ′

λ[k − 1]

+(1 − ϑ)
(
e−θ1 eR(L∗[k]) − e−θ1C1

)∣∣∣
H=H[k]

,

where ϑ ∈ (0, 1) is a real number close to 1, L∗[k] is
determined by using Eq. (23) under the current λ of the kth
time frame, and H[k] denotes the CSI at the kth time frame.
With appropriately selected ε and ϑ, the above algorithm can
converge and oscillate around the optimal λ∗ within a small
range. The above tracking method has been used and validated
in many optimization problems for resource allocation over
fading channels. By using this algorithm, we can conveniently
find the optimal solution without deriving the closed-form
expressions for the expectation and λ∗, which are usually hard
to obtain for general fading channel models.

Under the above strategy, the computational complexity
for our proposed BS-selection scheme in each fading state
is dominated by: 1). the incremental BS-selection algorithm
given in Fig. 2 to determine ΩL; 2). singular value decom-
position (SVD) of the channel matrix to calculate the MIMO
capacity [5]; 3). the procedures to find the convex hull of{(

L, R̃(L)
)}Kbs

i=0
for deriving Eq. (19). It is not difficult

to see that the complexity of the incremental algorithm is
upper-bounded by O(K2

bs); the complexity for SVD is known
upper-bounded by O(K3

Σ), where KΣ �
∑Kbs

m=1 Mm; the
complexity to identify the convex hull is upper-bounded by
O(Kbs log(Kbs)). Therefore, the total complexity for each
fading state is upper-bounded by O(K3

Σ), implying the major
computational complexity is caused by the calculation for the
MIMO capacity.

REFERENCES

[1] A. Sanderovich, S. Shamai (Shitz), and Y. Steinberg, “Distributed
MIMO receiver–Achievable rates and upper bounds,” IEEE Trans. Inf.
Theory, vol. 55, no. 10, pp. 4419-4438, Oct. 2009.

[2] D. Richard Brown III and H. Vincent Poor, “Time-slotted round-
trip carrier synchronization for distributed beamforming,” IEEE Trans.
Signal Process., vol. 56, no. 11, pp. 5630-5643, Nov. 2008.

[3] R-Mudumbai, D.R. Brown III, U. Madhow, and H.V. Poor, “Distributed
transmit beamforming: Challenges and recent progress,” IEEE Commun.
Mag., vol. 47, no. 2, pp. 102-110, Feb 2009.

[4] P. Shang, G. Zhu, L. Tan, G. Su, and T. Li, “Transmit antenna selec-
tion for the distributed MIMO systems,” International Conference on
Networks Security, Wireless Communications and Trusted Computing,
2009, pp. 449-453.

[5] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Trans. Telecomm., vol. 10, no. 6, pp. 585C596, Nov. 1999.

[6] S. Sanayei and A. Nosratinia, “Antenna selection in MIMO systems,”
IEEE Commun. Mag., no. 10, pp. 68-73, October 2004.

[7] M. Gharavi-Alkhansari, A. B. Gershman, “Fast antenna subset selection
in MIMO systems,” IEEE Trans. Signal Process., vol. 52, no. 2, pp.
339-347, Feb. 2004.

[8] C.-S. Chang, Performance Guarantees in Communication Networks,
Springer-Verlag London, 2000.

[9] D. Wu and R. Negi, “Effective capacity: A wireless link model for
support of quality of service,” IEEE Trans. on Wireless Commun., vol. 2,
no. 4, July 2003, pp. 630-643.

[10] X. Zhang, J. Tang, H.-H. Chen, S. Ci, and M. Guizni, “Cross-layer-based
modeling for quality of service guarantees in mobile wireless networks,”
IEEE Commun. Mag., pp. 100-106, Jan. 2006.

[11] Q. Du and X. Zhang, “Cross-layer design based rate control for mobile
multicast in cellular networks,” in Proc. IEEE GLOBECOM 2007,
Washington DC, USA, Nov. 26-30, 2007, pp. 5180-5184.

[12] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Program-
ming: Theory and Algorithms, 3rd ed., John Wiley & Sons, Inc., 2006.

[13] J. Tang and X. Zhang, “Quality-of-service driven power and rate
adaptation over wireless links,” IEEE Trans. Wireless Commun., vol. 6,
no. 8, pp. 3058-3068, Aug. 2007.

[14] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge Uni-
versity Press, 2004.

[15] T. S. Rappaport, Wireless Communications: Principles & Practice,
Prentice Hall, 1996.

[16] H. Weingarten, Y. Steinbergand S. Shamai “The capacity region of
the Gaussian multiple-input multiple-output broadcast channel,” IEEE
Trans. Inf. Thoery, vol, 52, no. 9, pp. 3936-3964, Sep. 2006.

[17] Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, ”Zero-Forcing meth-
ods for downlink spatial multiplexing in multisuer MIMO channels,”
IEEE Trans. Signal Process., vol. 52, no. 2, Feb. 2004.

[18] C. Meyer, Matrix Analysis and Applied Linear Algebra, Society for
Industrial and Applied Mathematics, 2000.

[19] Q. Du and X. Zhang, “QoS-Aware Base-Station Selections for Dis-
tributed MIMO Links in Broadband Wireless Networks,” Network-
ing and Information Systems Labs., Dept. Electr. and Comput. Eng.,
Texas A&M Univ., College Station, Tech. Rep. [Online.] Available:
http://www.ece.tamu.edu/∼xizhang/papers/distributed mimo.pdf.

[20] Z.-L. Zhang, End-to-end support for statistical quality-of-service guar-
antees in multimedia networks, Ph.D. dissertation, Department of Com-
puter Science, University of Massachusetts Amherst, 1997.

[21] J. Tang and X. Zhang, “Cross-Layer Modeling for Quality of Service
Guarantees Over Wireless Links,” IEEE Trans. Wireless Commun., vol.
6, no. 12, pp. 4504–4512, Dec. 2007.

[22] J. Wang and L.B. Milstein, “CDMA overlay situations for microcellular
mobile communications,” IEEE Trans. Commun., vol. 43, no. 234, pp.
603-614, Feb./Mar./Apr. 1995.



1138 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 29, NO. 6, JUNE 2011

Qinghe Du [S’09] received the B.S. and M.S. de-
grees from Xi’an Jiaotong University, China, in 2001
and 2004, respectively, both in electrical engineer-
ing, and the Ph.D. degree in computer engineering
from Texas A&M University, College Station, Texas,
USA, in 2010.

He joined Department of Information and Com-
munications Engineering, Xian Jiaotong University,
China, in 2011. His research interests include mobile
wireless communications and networks with empha-
sis on mobile multicast, statistical QoS provisioning,

QoS-driven resource allocations, cognitive radio techniques, and cross-layer
design over wireless networks. His work co-authored with his Ph.D. advisor
Prof. Xi Zhang received the Best Paper Award in the IEEE GLOBECOM 2007
for the paper “Cross-Layer Design Based Rate Control for Mobile Multicast
in Cellular Networks”. He has published multiple papers in IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS, IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY, IEEE Communications Magazine, IEEE INFO-
COM, IEEE GLOBECOM, IEEE ICC, etc. He is serving as the Publicity
Chairs for IEEE GLOBECOM 2011 and ICST WICON 2011, respectively,
and has served as a Publicity Co-Chair for the ICST QShine 2010. He
has served as the Technical Program Committee (TPC) member for IEEE
GLOBECOM, IEEE ICC, IEEE WCNC, IEEE PIMRC, etc.

Xi Zhang (S’89-SM’98) received the B.S. and M.S.
degrees from Xidian University, Xi’an, China, the
M.S. degree from Lehigh University, Bethlehem,
PA, all in electrical engineering and computer sci-
ence, and the Ph.D. degree in electrical engineer-
ing and computer science (Electrical Engineering-
Systems) from The University of Michigan, Ann
Arbor.

He is currently an Associate Professor and the
Founding Director of the Networking and Informa-
tion Systems Laboratory, Department of Electrical

and Computer Engineering, Texas A&M University, College Station. He was
an Assistant Professor and the Founding Director of the Division of Computer
Systems Engineering, Department of Electrical Engineering and Computer
Science, Beijing Information Technology Engineering Institute, China, from
1984 to 1989. He was a Research Fellow with the School of Electrical
Engineering, University of Technology, Sydney, Australia, and the Department
of Electrical and Computer Engineering, James Cook University, Australia,
under a Fellowship from the Chinese National Commission of Education.
He was with the Networks and Distributed Systems Research Department,
AT&T Bell Laboratories, Murray Hills, NJ, and with AT&T Laboratories
Research, Florham Park, NJ, in 1997. He has published more than 190
research papers in the areas of wireless networks and communications
systems, mobile computing, network protocol design and modeling, statistical
communications, random signal processing, information theory, and control
theory and systems.

Prof. Zhang received the U.S. National Science Foundation CAREER
Award in 2004 for his research in the areas of mobile wireless and multicast
networking and systems. He is an IEEE Communications Society Distin-
guished Lecturer. He received the Best Paper Awards in the IEEE WCNC
2010, IEEE GLOBECOM 2009, and the IEEE GLOBECOM 2007, respec-
tively. He also received the TEES Select Young Faculty Award for Excellence
in Research Performance from the Dwight Look College of Engineering at
Texas A&M University, College Station, in 2006. He is currently serving as an
Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS, an Editor for
the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, an Associate
Editor for the IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, a Guest
Editor for the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

for the special issue on “Broadband Wireless Communications for High Speed
Vehicles”, a Guest Editor for the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS for the special issue on “Wireless Video Transmissions”,
an Associate Editor for the IEEE COMMUNICATIONS LETTERS, a Guest
Editor for the IEEE Communications Magazine for the special issue on
“Advances in Cooperative Wireless Networking”, a Guest Editor for the
IEEE Wireless Communications Magazine for the special issue on “next
generation of CDMA versus OFDMA for 4G wireless applications”, an Editor
for the JOHN WILEY’S JOURNAL ON WIRELESS COMMUNICATIONS AND

MOBILE COMPUTING, an Editor for the JOURNAL OF COMPUTER SYSTEMS,
NETWORKING, AND COMMUNICATIONS, an Associate Editor for the JOHN
WILEY’S JOURNAL ON SECURITY AND COMMUNICATIONS NETWORKS,
an Area Editor for the ELSEVIER JOURNAL ON COMPUTER COMMUNICA-
TIONS, and a Guest Editor for JOHN WILEY’S JOURNAL ON WIRELESS

COMMUNICATIONS AND MOBILE COMPUTING for the special issue on
“next generation wireless communications and mobile computing”. He has
frequently served as the Panelist on the U.S. National Science Foundation
Research-Proposal Review Panels.

Prof. Zhang is serving or has served as the Technical Program Com-
mittee (TPC) Co-Chair for the IEEE INFOCOM 2013, the TPC Chair for
the IEEE GLOBECOM 2011, Area TPC Chair for the IEEE INFOCOM
2012, the General Chair for IEEE ICC 2011 - Workshop on Advanced
Networking Technologies for Smart-Services Based Clouding Computing,
TPC Co-Chair for the IEEE ICDCS 2011 - Workshop on Data Center
Performance, Panel/Demo/Poster Chairs for the ACM MobiCom 2011, TPC
Vice-Chair for IEEE INFOCOM 2010, General Chair for the ACM QShine
2010, TPC Co-Chair for IEEE INFOCOM 2009 Mini-Conference, TPC Co-
Chair for IEEE GLOBECOM 2008 - Wireless Communications Symposium,
TPC Co-Chair for the IEEE ICC 2008 - Information and Network Security
Symposium, Symposium Chair for IEEE/ACM International Cross-Layer
Optimized Wireless Networks Symposium 2006, 2007, and 2008, respectively,
the TPC Chair for IEEE/ACM IWCMC 2006, 2007, and 2008, respectively,
the Demo/Poster Chair for IEEE INFOCOM 2008, the Student Travel Grants
Co-Chair for IEEE INFOCOM 2007, the General Chair for ACM QShine
2010, the Panel Co-Chair for IEEE ICCCN 2007, the Poster Chair for
IEEE/ACM MSWiM 2007 and IEEE QShine 2006, Executive Committee
Co-Chair for QShine, the Publicity Chair for IEEE/ACM QShine 2007 and
IEEE WirelessCom 2005, and the Panelist on the Cross-Layer Optimized
Wireless Networks and Multimedia Communications at IEEE ICCCN 2007
and WiFi-Hotspots/WLAN and QoS Panel at IEEE QShine 2004. He has
served as the TPC members for more than 90 IEEE/ACM conferences,
including IEEE INFOCOM, IEEE GLOBECOM, IEEE ICC, IEEE WCNC,
IEEE VTC, IEEE/ACM QShine, IEEE WoWMoM, IEEE ICCCN, etc.

Prof. Zhang is a Senior Member of the IEEE and a Member of the
Association for Computing Machinery (ACM).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Cadmus MediaWorks settings for Acrobat Distiller 8)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


