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Quality-of-Service Driven Power and
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Jia Tang, Student Member, IEEE, and Xi Zhang, Senior Member, IEEE

Abstract— We propose a quality-of-service (QoS) driven power
and rate adaptation scheme over wireless links in mobile wireless
networks. Specifically, our proposed scheme aims at maximizing
the system throughput subject to a given delay QoS constraint.
First, we derive an optimal adaptation policy by integrating
information theory with the concept of effective capacity for a
block fading channel model. Our analyses reveal an important
fact that there exists a fundamental tradeoff between throughput
and QoS provisioning. In particular, when the QoS constraint
becomes loose, the optimal power-control policy converges to
the well-known water-filling scheme, where Shannon (ergodic)
capacity can be achieved. On the other hand, when the QoS
constraint gets stringent, the optimal policy converges to the
total channel inversion scheme under which the system operates
at a constant rate. Inspired by the above observations, we
then consider a more practical scenario where variable-power
adaptive modulation is employed over both block fading and
Markov correlated fading channels. In both cases, we derive
the associated power and rate adaptation policies. The obtained
results suggest that the channel correlation has a significant
impact on QoS-driven power and rate adaptations. The higher
the correlation is, the faster the power-control policy converges
to the total channel inversion when the QoS constraint becomes
more stringent. Finally, we conduct simulations to verify that the
adaptation policy proposed for Markov channel models can also
be applied to the more general channel models.

Index Terms— Mobile wireless networks, quality-of-service
(QoS), effective capacity, power control, adaptive modulation,
information theory, cross-layer design and optimization.

I. INTRODUCTION

QUALITY-OF-SERVICE (QoS) guarantees play a criti-
cally important role in future mobile wireless networks.

Depending on their distinct QoS requirements, differentiated
mobile users are expected to tolerate different levels of delay
for their service satisfactions. For instance, non-real-time
services such as data disseminations aim at maximizing the
throughput with a loose delay constraint. In contrast, for real-
time services like multimedia video conference, the key QoS
metric is to ensure a stringent delay-bound, rather than to
achieve high spectral efficiency. There also exist some services
falling in between, e.g., paging and interactive web surfing,
which are delay-sensitive but whose delay QoS requirements
are not as stringent as those of real-time applications. The
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diverse mobile users impose totally different and sometimes
even conflicting delay QoS constraints, which impose great
challenges to the design of future mobile wireless networks.

Unlike its wired counterparts, supporting diverse delay
QoS in wireless environment is much more challenging since
the wireless channel has a significant impact on network
performance. In particular, a deterministic delay-bound QoS
guarantee over wireless networks is practically infeasible due
to the time-varying nature of fading channels. Alternatively,
a more practical solution is to provide the statistical QoS
guarantees [1], where we guarantee the given delay-bound
with a small violation probability.

Furthermore, for wireless communications, the most scarce
radio resources are power and spectral bandwidth [2]. As
a result, a great deal of research has been devoted to the
techniques that can enhance the spectral efficiency of wireless
systems [3]. The framework used to evaluate these techniques
is mainly based on information theory, using the concept of
Shannon capacity [4]. Among a large number of promising
schemes, power and rate adaptation has been widely consid-
ered as one of the key solutions to improve the spectral effi-
ciency. In [5], [6], the authors showed that the optimal power
and rate control policy which maximizes spectral efficiency is
the so-called water-filling algorithm. The water-filling scheme
assigns more power when the channel is in good condition and
less power when the channel becomes worse. In the case that
the channel quality is below a certain threshold, no information
is transmitted. On the other hand, a different idea of power
and rate adaptation is the scheme referred as total channel
inversion [5], [6], where the system assigns more power to
combat with deep fading and less power for the good channel
in order to maintain a constant signal-to-noise ratio (SNR),
such that a constant rate service process can be obtained.
Clearly, from the information-theoretic viewpoint, water-filling
is better than total channel inversion since the former provides
higher spectral efficiency. However, a natural question that
follows is whether the former is also better than the latter in
terms of QoS guarantees?

It is important to note that Shannon theory does not place
any restrictions on complexity and delay [6]. Consequently,
in order to answer the above question, it is necessary to take
the QoS metrics into account when applying the prevalent
information-theoretic results. Thanks to the dual concepts of
effective bandwidth and effective capacity, we obtain a power-
ful approach to evaluate the statistical QoS performance from
the networking perspective. The effective-bandwidth theory
has been extensively studied in the early 90’s with the empha-
sis on wired asynchronous transfer mode (ATM) networks [7]–
[11]. This theory enables us to analyze network statistics
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such as queue distributions, buffer overflow probabilities, and
delay-bound violation probabilities, which are important for
statistical QoS guarantees. In [12], Wu and Negi proposed
an interesting concept termed effective capacity, which turns
out to be the dual of the effective bandwidth. The effective-
capacity approach is particularly convenient for analyzing the
statistical QoS performance of wireless transmissions where
the service process is driven by the time-varying wireless
channel.

Integrating information theory with the effective capacity,
in this paper we investigate the QoS-driven power and rate
adaptation over wireless links in mobile wireless networks.
The problem we are interested in is how to maximize the
throughput subject to a given delay QoS constraint. We first fo-
cus on uncorrelated fading channels (also termed block fading
or quasi-static fading channels) and investigate corresponding
power and rate adaptation polices. Our analyses reveal an
important fact that there exists a fundamental tradeoff between
the throughput and the QoS provisioning. In particular, the
higher throughput gain comes at the price of sacrificing more
QoS provisioning, and vice versa. When the QoS constraint
becomes loose, the optimal power-control law converges to
the water-filling scheme, where Shannon (ergodic) capacity
can be achieved. On the other hand, when the QoS constraint
gets stringent, the optimal power-control law converges to
the total channel inversion such that the system operates at
a constant service rate. Motivated by the above observations,
we then consider a more practical scenario where variable-
power adaptive-modulation is applied over both uncorrelated
and correlated fading channels. For simplicity, we use finite-
state Markov chain (FSMC) to model the correlated channel
processes. The FSMC-based channel model was previously
proposed by Wang and Moayeri [13]. Then, this model has
been extensively studied for both Rayleigh and Nakagami-m
fading channel (e.g., see [14], [15] and references therein). For
both block fading and FSMC-correlated fading channels, we
derive the corresponding power and rate adaptation policies.
Our obtained results suggest that channel correlation has a
significant impact on QoS-driven power and rate allocations.
The higher the correlation is, the faster the power-control
policy converges to the total channel inversion as the QoS
constraint becomes more stringent. Finally, we conduct sim-
ulations to verify that although the FSMC-based channel
model is not perfectly accurate, the power-control law derived
from it can be applied to the more general Jake’s channel
model [16], which has been widely used and extensively
studied in literatures.

The rest of the paper is organized as follows. Section II de-

scribes our system model. Sections III introduces the statistical
QoS guarantees and the concept of effective capacity. Sec-
tion IV develops the optimal power and rate adaptation scheme
that can maximize the effective capacity. Section V applies
the above analyses to a more practical adaptive modulation-
based scheme. Section VI discusses the impact of channel
correlation on the power and rate adaptations. Section VII
conducts simulations to evaluate the validity of our proposed
adaptive schemes on the more general Jake’s channel model.
The paper concludes with Section VIII.

II. SYSTEM MODEL

The system model is illustrated in Fig. 1. We concentrate
on the discrete-time system over a point-to-point wireless link
between the transmitter and the receiver. Let us denote the
system’s total spectral bandwidth by B, the mean transmit
power by P , and the power density of the complex additive
white Gaussian noise (AWGN) by N0/2 per dimension, re-
spectively. First, the upper-protocol-layer packets are divided
into frames at the datalink layer, which forms the “data source”
as shown in Fig. 1. We assume that the frames have the same
time duration, which is denoted by Tf . The frames are stored
at the transmit buffer and then split into bit-streams at the
physical layer. Based on the QoS constraint and the channel-
state information (CSI) fed back from the receiver, the adaptive
modulation and power control are employed, respectively, at
the transmitter. The reverse operations are executed at the
receiver side. Finally, the frames are recovered at the “data
sink” for further processing.

The discrete-time channel fading process is assumed to be
stationary and ergodic, which is invariant within a frame’s
time-duration Tf , but varies from one frame to another.
Moreover, the wireless channel is flat-fading with its enve-
lope following Nakagami-m distribution.1 The Nakagami-m
channel model is very general and often best fits land-mobile
and indoor-mobile multipath propagations [17], [18]. As the
parameter m varies, where m ∈ [1/2, +∞), the model spans
a wide range of fading environments, including one-sided
Gaussian fading channel (m = 1/2, the worst fading case),
Rayleigh fading channel (m = 1), approximations of Rician
and lognormal fading channels (m > 1), and additive white
Gaussian noise (AWGN) channel (m = ∞, no fading).

Denote the channel envelope process by {α[i], i = 1, 2, ...},
where i is the time index of the frame. If we use constant

1The power and rate adaptation scheme discussed in this paper can be
applied to any other continuous channel distributions. We use Nakagami-m
distribution in this paper as a general example.
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power assignment, then the instantaneous transmit power,
denoted by P [i], is equal to P [i] = P . The instantaneous
received SNR, denoted by γ[i], can be expressed as γ[i] =
Pα2[i]/(N0B), with its mean γ = PE{α2[i]}/(N0B), where
E{·} denotes the expectation. The probability density function
(pdf) of γ[i], denoted by pΓ(γ), can be expressed as [17]

pΓ(γ) =
γm−1

Γ(m)

(
m

γ

)m

exp
(
−m

γ
γ

)
, γ ≥ 0 (1)

where Γ(·) represents the Gamma function and m denotes
the fading parameter of Nakagami-m distribution. Throughout
this paper, we assume that the CSI is perfectly estimated at
the receiver and reliably fed back to the transmitter without
delay. The discussions of the imperfect CSI are not the focus
of this paper. We also assume that the datalink-layer buffer
size is infinite.

III. STATISTICAL QOS GUARANTEES AND

EFFECTIVE CAPACITY

A. The Concept of Statistical QoS Guarantees

During the early 90’s, statistical QoS guarantees have been
extensively studied in the contexts of effective bandwidth the-
ory [7]–[11]. The literature on effective bandwidth is abundant.
The readers are referred to Chang [7] and Kelly et. al. [8] for
a comprehensive review.

Based on large deviation principle (LDP), Chang showed
that [7], for a dynamic queueing system with stationary er-
godic arrival and service processes, under sufficient conditions,
the queue length process Q(t) converges in distribution to a
random variable (r.v.) Q(∞) such that

− lim
x→∞

log (Pr{Q(∞) > x})
x

= θ. (2)

To be more specific, the above theorem states that the probabil-
ity of the queue length exceeding a certain threshold x decays
exponentially fast as the threshold x increases. Note that in
(2), the parameter θ (θ > 0) plays a critically important role
for statistical QoS guarantees, which indicates the exponential
decay rate of the QoS violation probabilities. A smaller θ
corresponds to a slower decay rate, which implies that the
system can only provide a looser QoS guarantee, while a
larger θ leads to a faster decay rate, which means that a more
stringent QoS requirement can be supported. In particular,
when θ → 0, the system can tolerate an arbitrarily long delay,
which corresponds to the scenario studied in information
theory. On the other hand, when θ → ∞, the system cannot
tolerate any delay, which corresponds to an extremely stringent
delay-bound. Due to its close relationship with statistical QoS
provisioning, θ is called the QoS exponent [12]. Based on the
concept of QoS exponent, the effective bandwidth is defined as
the minimum constant service rate required by a given arrival
process for which the QoS exponent θ is fulfilled.

B. The Effective Capacity

Inspired by the effective bandwidth, Wu and Negi proposed
effective capacity [12], which is the dual of the original
effective bandwidth. The effective capacity is defined as the
maximum constant arrival rate that a given service process can

support in order to guarantee a QoS requirement specified by
θ. Analytically, the effective capacity can be formally defined
as follows.

Let the sequence {R[i], i = 1, 2, ...} denote a discrete-time
stationary and ergodic stochastic service process and S[t] �∑t

i=1 R[i] be the partial sum of the service process over time
sequence of i = 1, 2, ..., t. Assume that the Gärtner-Ellis limit
of S[t], expressed as ΛC(θ) = limt→∞(1/t) log

(
E
{
eθS[t]

})
exists and is a convex function differentiable for all real θ [7,
pp. 921]. Then, the effective capacity of the service process,
denoted by EC(θ), where θ > 0, is defined as [12, eq. (12)]

EC(θ) � −ΛC(−θ)
θ

= − lim
t→∞

1
θt

log
(

E

{
e−θS[t]

})
. (3)

When the sequence {R[i], i = 1, 2, ...} is an uncorrelated
process, it is clear that the effective capacity EC(θ) reduces
to

EC(θ) = −1
θ

log
(

E

{
e−θR[i]

})
. (4)

In this paper, our original problem is maximizing the through-
put subject to a given delay QoS constraint. Notice that
the effective capacity can be considered as the maximal
throughput under the constraint of QoS exponent θ. Therefore,
by interpreting θ as the QoS constraint in our original problem,
we can formulate an equivalent new problem, which is to
maximize the effective capacity for a given θ. In the following
sections, we will focus on this new problem and design the
corresponding resource allocation algorithms.

IV. OPTIMAL POWER AND RATE ADAPTATION FOR

QOS GUARANTEES

Conventionally, the power-control law can be expressed
as a function of the instantaneous SNR γ[i]. However, our
power-adaptation policy, denoted by μ (θ, γ[i]), is a function
of not only the instantaneous SNR γ[i], but also the QoS
exponent θ. Applying the power adaptation, the instantaneous
transmit power becomes P [i] = μ (θ, γ[i])P . Note that the
mean transmit power is upper-bounded by P . Therefore, the
power-control law needs to satisfy the mean power constraint:∫ ∞

0

μ(θ, γ)pΓ(γ)dγ ≤ 1, for all θ > 0. (5)

In this section, we also make the following two assumptions:
A1: We first assume that the channel is block fading.

We make such an assumption due to the following reasons.
First, the effective capacity expression (4) in uncorrelated
case only depends on marginal statistics of a service process,
which is much simpler than the general expression given by
(3), where the higher order statistics of the service process
are required. Second, we will show in Section VI that the
resource allocation policy derived for block fading channel
can be applied to correlated fading channel with a certain
modifications.

A2: We further assume that given the instantaneous SNR
γ[i] and the corresponding power-control law μ (θ, γ[i]), the
adaptive modulation and coding scheme can achieve the
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instantaneous capacity. Thus, the instantaneous service rate
R[i] of the frame i can be expressed as2

R[i] = TfB log2

(
1 + μ (θ, γ[i]) γ[i]

)
. (6)

In the following discussions, we omit the discrete time-index
i for simplicity. Using (4), (5), and (6), we can formally
formulate our maximization problem as follows:

Eopt
C (θ) = max

μ(θ,γ):
�∞
0 μ(θ,γ)pΓ(γ)dγ=1

{
−1

θ

· log
(∫ ∞

0

e−θTf B log2

(
1+μ(θ,γ)γ

)
pΓ(γ)dγ

)}
.

(7)

where Eopt
C (θ) denotes the maximum effective capacity

achieved by the optimal policy. We derive the following
theorem to characterize the optimal power and rate adaptation
policy.

Theorem 1: The optimal power-control policy, denoted by
μopt(θ, γ), which maximizes the effective capacity given in
(7), is determined by

μopt(θ, γ) =

⎧⎨⎩
1

γ
1

β+1
0 γ

β
β+1

− 1
γ

, γ ≥ γ0

0, γ < γ0

(8)

where we define β � θTfB/log 2 as the normalized QoS
exponent and γ0 as the cutoff SNR threshold, which can be
numerically obtained by meeting the mean power constraint:∫ ∞

γ0

⎛⎝ 1

γ
1

β+1
0 γ

β
β+1

− 1
γ

⎞⎠ pΓ(γ)dγ = 1. (9)

Proof: The proof is provided in Appendix I.
Theorem 1 gives the optimal power-control policy which

maximizes the effective capacity. We can observe from (8)
that as θ → 0, the optimal policy μopt(θ, γ) converges to

lim
θ→0

μopt(θ, γ) =

⎧⎨⎩
1
γ0

− 1
γ

, γ ≥ γ0

0, γ < γ0

(10)

which is just the water-filling formula in [6, eq. (5)]. Thus,
our QoS-driven power and rate adaptation scheme reduces to
the water-filling algorithm when the system can tolerate an
arbitrarily long delay, which is expected since water-filling
is well-known the optimal power allocation strategy without
delay constraint. On the other hand, as the QoS exponent
θ → ∞, the cutoff threshold γ0 → 0 (note that γ0 = λ/β
as detailed in Appendix I). Therefore, the system does not
enter the outage state almost surely. The optimal power control
μopt(θ, γ) converges to

lim
θ→∞

μopt(θ, γ) =
σ

γ
(11)

where σ = (m − 1)γ/m for m ≥ 1, which becomes the
policy of the total channel inversion. Thus, for stringent delay

2Note that in our model, the unit for the service rate R[i] and the effective
capacity EC(θ) is “bits per frame”.
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Fig. 2. The optimal power-adaptation policy. The fading parameter m = 2
and the average SNR γ = 0 dB.

QoS constraints, the optimal power control becomes the total
channel inversion. Note that if the fading parameter m < 1,
implying that the fading is severer than Rayleigh, then no
total channel inversion scheme exists since the transmit power
is not enough to totally invert the channel. In this case, the
cutoff threshold γ0 will converge to a small positive number
as θ → ∞. Thus, the optimal power and rate adaptation policy
becomes truncated channel inversion [6]. It is also worth
noting that the optimal power-adaptation policy μopt(θ, γ)
depends on frame duration Tf and spectral bandwidth B
through the parameter β, where a system with larger value
of TfB can support more stringent QoS requirements.

In all the following numerical solutions or simulation re-
sults, which are presented in Fig. 2 through Fig. 9, we set
the frame duration Tf = 2 ms and the spectral bandwidth
B = 105 Hz. The other system parameters are detailed
respectively in each of these figures. Using (8), we plot
the instantaneous power assignments of the optimal power-
adaptation policy in Fig. 2. We can observe from Fig. 2 that
for small θ, the power control assigns more power to the better
channel and less power to the worse channel. In contrast, for
large θ, the power control assigns less power to the better
channel, but more power to the worse channel. As the QoS
exponent θ varies between (0,∞), reflecting different delay
QoS constraints, the corresponding optimal power-adaptation
policy swings between the water-filling and the total channel
inversion schemes.

Given the optimal power and rate adaptation policy, we can
derive the closed-form expression for the maximum effective
capacity Eopt

C (θ) as follows:

Eopt
C (θ) = −1

θ
log
(∫ ∞

0

e−β log
(
1+μopt(θ,γ)γ

)
pΓ(γ)dγ

)
= −1

θ

{
log

([
mγ0

γ

] β
β+1

Γ
(

m − β

β + 1
,
mγ0

γ

)

+ γ

(
m,

m

γ
γ0

))
− log

(
Γ(m)

)}
. (12)

where γ(·, ·) and Γ(·, ·) denote the lower and upper incomplete
Gamma functions, respectively.
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Fig. 3. The Shannon-capacity-based effective capacity under different power and rate adaptation policies. The average SNR γ = 0 dB.

For comparison purposes, we also derive the closed-form
expressions of the effective capacity for other commonly used
power-control policies, including the water-filling scheme, the
constant power approach, and the total channel inversion.
Omitting the derivation details, we obtain the closed-form
expressions of the the effective capacity for water-filling,
denoted by EWF

C (θ), as follows:

EWF
C (θ) = −1

θ

{
log

([
mγ0

γ

]β

Γ
(

m − β,
mγ0

γ

)

+γ

(
m,

m

γ
γ0

))
− log

(
Γ(m)

)}
, (13)

and the effective capacity for the constant power approach,
denoted by Econst

C (θ), as follows:

Econst
C (θ) = −1

θ
log

(
Γ(β − m)

Γ(β)

(
m

γ

)m

· 1F1

(
m; m − β + 1;

m

γ

)
+

Γ(m − β)
Γ(m)

·
(

m

γ

)β

1F1

(
β; β − m + 1;

m

γ

))
(14)

respectively, where 1F1 (·; ·; ·) denotes the confluent Hyperge-
ometric function [19]. Finally, the effective capacity of total
channel inversion is simply a constant equal to TfB log2(1 +
σ).

The normalized effective capacity (which is defined as the
effective capacity divided by B and Tf , and thus has the unit
of “bits/sec/Hz”) comparisons between different power and
rate adaptation schemes are shown in Fig. 3. As expected, our
proposed optimal power and rate adaptation always achieves
the maximum effective capacity among all control policies.
The optimal scheme converges to the water-filling for small θ
and to the total channel inversion for large θ (when the total
channel inversion exists). Note that for one-sided Gaussian
channel (m = 0.5) and Rayleigh channel (m = 1), even using
the optimal policy, the effective capacity also converges to zero
as the QoS exponent θ → ∞. However, this is the best that
the power control can do to maximize the effective capacity.
This implies that no matter how much power and spectral
bandwidth resource are assigned and no matter how elegant
coding/modulation is employed, if no other technique (e.g.,

diversity or multiplexing) helps to compensate for the fading
effect, Nakagami-m channels with m ≤ 1 cannot support
stringent delay QoS requirement when θ is large, which is
also coincident with the fact that the zero-outage capacity of
Rayleigh fading channel is zero [20].

V. QOS-DRIVEN POWER AND RATE ADAPTATION FOR

ADAPTIVE MQAM

Based on Shannon theory and the concept of effective ca-
pacity, Section IV discusses the resource allocation when using
ideal channel codes. In this section, we study the scenario
where the transmitter employs adaptive MQAM modulation.

A. Continuous Constellation MQAM

We first assume that there is no restriction on the constella-
tion size of adaptive MQAM, which implies that the rate of the
service process can be adapted continuously. In [6], Goldsmith
and Chua showed that the continuous rate adaptive MQAM
has a constant power loss as compared to the Shannon capac-
ity, where the constant only depends on bit-error rate (BER)
requirement. Specifically, for each given received SNR γ and
power-control policy μ (θ, γ), the corresponding constellation
size, denoted by M(γ), is determined by [6, eq. (20)]

M(γ) = 1 + Kμ (θ, γ) γ (15)

where K is defined as K � −1.5/ log(5BER), with BER
denoting the required bit-error rate. Note that continuous
rate MQAM is originally proposed to investigate the insight
relationship between the Shannon capacity and the achievable
spectral efficiency of MQAM modulation [6]. In practice, the
constellation size M(γ) can only be selected from a finite
discrete set, which will be detailed in Section V-B.

Using (15), the service rate of continuous rate MQAM,
denoted by RM, can be expressed as

RM = TfB log2

(
1 + Kμ (θ, γ) γ

)
. (16)

Comparing (16) with (6), we can find that the only difference
between these two is a constant power loss of K . Thus, the
problem of maximizing the effective capacity for continuous
MQAM can be solved in a similar manner to that for deriving
the maximum effective-capacity in Section IV. Skipping the
detailed derivations, we obtain the optimal power and rate
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γ = 10 dB and the fading parameter m = 2.

adaptation policy for continuous rate adaptive MQAM, de-
noted by μM

opt(θ, γ), as follows:

μM
opt(θ, γ) =

⎧⎨⎩
1

Kγ
1

β+1
K γ

β
β+1

− 1
Kγ

, γ ≥ γK

0, γ < γK

(17)

where γK is the new cutoff threshold, which needs to meet
the mean power constraint:∫ ∞

γK

⎛⎝ 1

Kγ
1

β+1
K γ

β
β+1

− 1
Kγ

⎞⎠ pΓ(γ)dγ = 1. (18)

Once γK is obtained, we can show the resulting expression
of the effective capacity is the same as (12), except that γ0

in (12) should be replaced by γK . It is clear that the power
adaptation law of (17) also follows the same trends as (8),
which adjusts the power assignment between the water-filling
and the total channel inversion, depending on the specific
value of θ. Similarly, for the other non-optimal power and
rate adaptation policies, we can also derive their corresponding
effective capacity expressions, which are omitted for lack of
space, but are evaluated by the numerical solutions as shown
in Fig. 4.

Fig. 4 illustrates the normalized effective capacity com-
parisons between the Shannon theory-based upper-bound and
the continuous rate adaptive MQAM. We can observe that as
the BER requirement becomes more stringent, the effective
capacities of both optimal and non-optimal schemes decrease
accordingly. However, our proposed power and rate adapta-
tions are always the optimal schemes in each group with the
same BER requirement. Agreeing with our observations, the
effective capacities of the optimal scheme converge to the
water-filling for small θ and to the total channel inversion
for large θ, respectively.

B. Discrete Constellation MQAM

The continuous rate assumption for the adaptive MQAM is
not too practical. In this section, we relax this assumption by

requesting that there be only N possible constellation sizes
available. Specifically, we partition the entire SNR range by
N non-overlapping consecutive intervals, resulting in N + 1
boundary points denoted by {Γn}N

n=0, where Γ0 < Γ1 <
· · · < ΓN with Γ0 = 0 and ΓN = ∞. Correspondingly, the
adaptive modulation is selected to be in mode n if the SNR
γ falls into the range Γn ≤ γ < Γn+1. The constellation used
for the zero-th mode is M0 = 0 and for the nth mode is
Mn-QAM, where Mn = 2n with n = 1, 2, ..., N − 1. Thus,
the spectral efficiency by using the nth mode is n bits/sec/Hz.
The service rate of the nth mode, denoted by νn, is given by

νn = TfBn, for n = 0, 1, ..., N − 1. (19)

To find the optimal power and rate adaptation policy for
discrete rate adaptive MQAM, we first need to know how
to choose the boundary points {Γn}N−1

n=1 to maximize the
effective capacity. Substituting (17) into (15), we get

M(γ) =
(

γ

γK

) 1
β+1

=⇒ γ = [M(γ)]β+1
γK . (20)

Although (20) is originally derived from continuous rate
adaptive MQAM, it provides the guideline in choosing the
boundaries for the discrete rate MQAM. Based on (20), we
obtain the SNR boundaries {Γn}N−1

n=1 for discrete rate MQAM
as follows:

Γn = Mβ+1
n γ∗

K (21)

where γ∗
K denotes the new cutoff threshold for discrete rate

MQAM. For each given γ∗
K , the boundaries {Γn}N−1

n=1 are
determined by (21). Then, the power-control policy is to retain
a constant power for each mode n > 0 such that the BER
requirements are satisfied. Thus, we obtain the optimal policy
for the nth mode, denoted by μn

opt(θ, γ), as follows:

μn
opt(θ, γ) =

⎧⎨⎩
(Mn − 1)

Kγ
, 1 ≤ n ≤ N − 1

0, n = 0.
(22)

Let us further define MN � ∞. Then, the cutoff threshold γ∗
K

is determined by the mean power constraint

N−1∑
n=0

∫ Mβ+1
n+1γ∗

K

Mβ+1
n γ∗

K

μn(θ, γ)pΓ(γ)dγ = 1 (23)

which can be solved numerically.
We can observe from (21) that as θ → 0, the boundary

selection policy becomes:

lim
θ→0

Γn = Mnγ∗
K (24)

which is same as the selection policy for the discrete rate
water-filling algorithm [6, eq. (29)]. On the other hand, as
θ → ∞, the threshold γ∗

K vanishes to zero, making mode 0
infinitely small. At the same time, one of the other (N − 1)
modes dominates the entire SNR range. Again, the power-
control policy converges to the total channel inversion in this
case.

Using (22), we plot the instantaneous power assignments of
the optimal power-adaptation policy in Fig. 5. We can observe
from Fig. 5 that the power control curve has the zigzag shape



3064 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 8, AUGUST 2007

10
−4

10
−3

10
−2

10
−1

2
5

8
11

14
17

0

2

4

6

Instantaneous SNR (dB)

QoS Exponent θ

In
st

an
ta

ne
ou

s 
po

w
er

Fig. 5. The power-adaptation strategy for discrete rate adaptive MQAM.
The average SNR γ = 10 dB, the fading parameter m = 2, BER= 10−3,
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Fig. 6. The effective capacity with continuous rate and discrete rate using
different power-control policies. The average SNR γ = 15 dB, the fading
parameter m = 2, BER= 10−3, and the number of modes N = 4.

due to the constellation constraint. However, the power control
policy still varies between the discrete rate water-filling at
small θ and the total channel inversion at large θ, which is
consistent with that of the continuous rate MQAM.

Using (4), we derive the effective capacity under the optimal
policy, denoted by Êopt

C (θ), as follows:

Êopt
C (θ) = −1

θ
log

(
N−1∑
n=0

πne−θνn

)
(25)

where νn is given by (19) and

πn =
∫ Γn+1

Γn

pΓ(γ)dγ

=
1

Γ(m)

[
γ

(
m,

m

γ
Γn+1

)
− γ

(
m,

m

γ
Γn

)]
(26)

with {Γn}N
n=0 given by (21).

Fig. 6 compares the normalized effective capacities between
continuous rate MQAM and discrete rate MQAM using both

the optimal and non-optimal policies. As shown by Fig. 6, the
discrete rate MQAM under the optimal policy suffers from a
certain loss in performance as compared to the continuous rate
MQAM due to the discrete constellation constraint. However,
such a performance loss is not significant. An interesting
phenomenon is that the effective capacity of discrete rate
water-filling is even larger than that of the continuous rate
water-filling for large θ, which is because the service rate
of discrete rate scheme has smaller variance than that of the
continuous rate scheme, where a service process with smaller
variance can support more stringent delay QoS requirement.

VI. THE IMPACT OF CHANNEL CORRELATION

A. Effective Capacity for FSMC-Based Channel Process

We derive the above analytical results by using a block
fading channel model. However, this model is not always
valid. In most scenarios, it is more practical to consider the
correlated wireless channel models. There exist a number of
models characterizing the correlated channel fading processes.
For instance, the Jake’s model [16] has been widely accepted
as an accurate modeling approach. Based on the Jake’s model,
the autocorrelation of the channel gain, denoted by Ag(τ),
can be expressed as Ag(τ) = J2

0 (2πfdτ) [16], where J0(·)
denotes the zero-th order Bessel function of the first kind and
fd is the maximum Doppler frequency. However, if using the
Jake’s model in our systems, it is hard to derive the effective
capacity expression from (3). Then, it is even harder to find
the power and rate adaptation policies. Therefore, we apply
FSMC to model the correlated service process for simplicity.

Integrating the FSMC model with our discrete rate adaptive
MQAM, the state of FSMC corresponds to the mode of
adaptive modulation. Let pi,j denote the transition probability
from state i to state j. We assume a slow-fading channel
model such that transition only happens between adjacent
states [13], [14]. Under this assumption, we have pij = 0,
if |i− j| > 1, ∀i, j ∈ {0, 1, ..., N −1}. The adjacent transition
probabilities can be approximated as follows [13]:{

pn,n+1 ≈ NΓ(Γn+1)Tf

πn
, for n = 0, 1, ..., N − 2,

pn,n−1 ≈ NΓ(Γn)Tf

πn
, for n = 1, 2, ..., N − 1

(27)

where {Γn}N−1
n=0 and {πn}N−1

n=0 are given by (21) and (26),
respectively, and NΓ(γ) is the level-crossing rate (LCR)
calculated at SNR value of γ, which is given by [17]

NΓ(γ) =
√

2πfd

Γ(m)

(
mγ

γ

)m− 1
2

exp
(
−mγ

γ

)
. (28)

Then, the remaining transition probabilities can be derived by
using (27) as follows:⎧⎨⎩

p0,0 = 1 − p0,1

pN−1,N−1 = 1 − pN−1,N−2

pn,n = 1 − pn,n−1 − pn,n+1, n = 1, ..., N − 2.
(29)

Thus, applying (27) and (29), we obtain the transition prob-
ability matrix of the FSMC, which is denoted by P =
[pij ]N×N . Based on FSMC-modeled service process, we de-
rive the following proposition to obtain the effective capacity
of the service process:
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Proposition 1: If we define the diagonal matrix Φ(θ) �
diag

{
e−ν0θ, e−ν1θ, ..., e−νN−1θ

}
, where {νn}N−1

n=0 is given by
(19), then the effective capacity EC(θ) of an FSMC-modeled
service process is determined by

EC(θ) = −1
θ

log
(

ρ
{
PΦ(θ)

})
(30)

where P is the transition probability matrix of the FSMC
mentioned above, and ρ{·} denotes the spectral radius of the
matrix. Note that the spectral radius of a matrix is defined as
the maximum of the absolute values of the eigenvalues for
that matrix.

Proof: The proof is similar to [7, Example 3.3], which is
omitted for lack of space.

B. Power and Rate Adaptation for FSMC-Based Channel
Service Process

Although we employ the FSMC-model-based service
process, it is still difficult to directly derive the power and rate
adaptation policy to maximize the effective capacity described
by (30). Fortunately, the wireless channel offers a unique
feature that allows us to obtain the simple but near-optimal
solution. We observe that the FSMC-modeled service process
satisfy the properties described by the following proposition.

Proposition 2: If we denote the effective capacity functions
of two FSMC-based service processes by EC1(θ) and EC2(θ),
and they have the same marginal statistics, but differ in
Doppler frequencies denoted by fd1 and fd2 , respectively, then
the following equation holds:

EC1(θ) ≈ EC2

(
fd2

fd1

θ

)
(31)

Proof: The proof is provided in Appendix II.
Remarks: Proposition 2 says that EC1(θ) is approximately a
horizontal-shifted version of EC2(θ) along θ-axis (when θ-
axis uses the logarithmic scale), where the difference between
these two functionals is 10 log10 (fd2/fd1) dB. Specifically, if
(fd2/fd1) > 1, then EC1(θ) is a left-shifted version of EC2(θ);
otherwise, EC1(θ) is a right-shifted version of EC2(θ).

It is well known that the Doppler frequency fd characterizes
the time correlation of channel fading processes. The larger
the Doppler frequency fd, the lower the correlation of the
service process. When the Doppler frequency is large enough,
the channel process can be approximately considered as un-
correlated, just like the block fading channel. For example,
based on our system parameters and the standard Jake’s
channel model, the autocorrelation Ag(Tf ) passes through
its first zero-point at the Doppler frequency of 191.25 Hz,
which we denote by fJake

d . However, due to the inaccuracy of
the FSMC-based channel model, such a Doppler frequency,
denoted by fFSMC

d , is about fFSMC
d = 300 Hz with the same

system parameters. In the following discussions, when it is
unnecessary to distinguish between these two, we denote both
fJake

d and fFSMC
d by f∗

d , which characterizes the Doppler
frequency where the channel process can be approximately
considered as uncorrelated, like the block fading channel.

Let E∗
C(θ) denote the effective capacity in a block fading

channel model. Then, based on Proposition 2, for an FSMC-
correlated channel with the same marginal statistics and a
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Fig. 7. The effective capacity with different power and rate control policies.
The average SNR γ = 10 dB, the fading parameter m = 2, BER= 10−3,
fFSMC

d = 300 Hz, and the number of modes for adaptive MQAM N = 5.

Doppler frequency fd (fd � f∗
d ), its effective capacity,

denoted by E(fd)
C (θ), can be approximated as E(fd)

C (θ) ≈
E∗

C(κθ), where

κ =
f∗

d

fd
. (32)

Likewise, for each power-adaptation policy μ(θ, γ) that is used
for block fading channels, the new policy μ(κθ, γ) can be
applied to the correlated channels with Doppler frequency
fd. This policy generates a new effective-capacity functional,
which is approximately a left-shifted version of the origi-
nal one for the block fading channel, with a difference of
10 log10(κ) dB along θ-axis. Thus, given the optimal power-
adaptation policy μopt(θ, γ) for block fading channel, the
optimal power-adaptation policy for correlated channel is
approximately μopt(κθ, γ). Note that κ > 1 due to fd < f∗

d in
(32), as θ increases, the policy μopt(κθ, γ) makes the power-
control policy converge faster to the total channel inversion
than the case under the block fading channel model. The
higher the correlation is, the faster the power-control policy
converges to the total channel inversion. Specifically, for our
FSMC-based channel model with Doppler frequency fd, the
policy of choosing the boundary points {Γn}N−1

n=1 becomes:

Γn = Mκβ+1
n γ∗

K(κθ) (33)

where γ∗
K(κθ) denotes the cutoff threshold obtained by (21)

at the QoS exponent of κθ.
Proposition 2 plays an important role in deriving the power-

control policy for the correlated channel. Applying Proposi-
tion 2, we can simply shift the existing optimal power-control
policy for 10 log10(κ) dB to obtain the new policies. However,
since (31) given in Proposition 2 is only an approximation
result, our obtained new power and rate adaptation policy is
just a near-optimal solution.

Fig. 7 shows the normalized effective capacities of both
block fading channel and FSMC-based correlated channel
under different power-adaptation policies. The optimal policy
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μopt(θ, γ) for the block fading channel is derived from Sec-
tion V, which generates the highest effective-capacity curve
as shown by the solid line in Fig. 7. Then, according to the
analyses in this section, we apply the policy μopt(κθ, γ) to the
correlated channel, which numerically generates a group of
effective-capacity curves as shown by a set of dashed lines in
Fig. 7. These dashed lines are virtually “parallel to” the solid
line of the original block fading channel effective capacity.
This is consistent with Remarks on Proposition 2. However, if
we apply the block fading channel policy μopt(θ, γ) directly
to the correlated channel, the resulting effective capacities
decrease significantly, as shown by a group of dotted lines
in Fig. 7.

VII. SIMULATION RESULTS

Using FSMC-based channel model, we obtain the analytical
expression for the effective-capacity and the near-optimal
power and rate adaptation policies. However, it is important
to verify that the policy derived from the FSMC model can
also be applied to the more general scenarios, e.g., the Jake’s
model, without losing the performance satisfactions. Thus,
in this section we simulate the Jake’s channel process and
compare its outcomes with the analytical results obtained in
previous sections.

Applying the optimal power and rate adaptation policy
given by (33), Fig. 8 shows the normalized effective capac-
ity comparisons between the Jake’s channel model and the
FSMC-based channel model. We can observe from Fig. 8 that
for the block fading channel, the simulation results perfectly
match with the numerical results. On the other hand, when
considering the channel correlation, the outcomes from sim-
ulations and numerical solutions for these two models share
the same trends but differ very slightly. Such a difference can
be explained as follows. As stated in Section VI, due to the
inaccuracy of the channel model, the Jake’s model and the
FSMC model have different f∗

d ’s, where fFSMC
d ≈ 300 Hz and
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Fig. 9. The effective capacity of constant power approach. The average SNR
γ = 10 dB, the fading parameter m = 1 (Rayleigh channel).

fJake
d = 191.25 Hz, respectively. Thus, for the same Doppler

frequency fd, the resulting κ in (32) is different. Theoretically,
the difference of the effective-capacity curves between these
two models is 10 log10

(
fFSMC

d /fJake
d

)
= 1.96 dB, which is

consistent with the effective capacity difference observed in
Fig. 8.

The above analyses described in Fig. 8 verify that the
power-adaptation policy derived by using the FSMC model
can be well applied to the general Jake’s channel model,
where the system employs the discrete rate MQAM. In the
following, we further show that the policy can also be applied
to the general Jake’s channel model where the system uses
continuous rate transmission. Fig. 9 plots the normalized
effective capacity of the constant-power approach, where we
assume that the Shannon capacity can be achieved for each
channel realization. For block fading channel, the simulated
effective capacity agrees well with the analytical results. On
the other hand, for the correlated fading channel, as the
Doppler frequency fd increases, the effective capacity also
increases, with the resulting effective-capacity curves roughly
“parallel to” each other. This observation implies that the
effective capacity of general channel process also follows the
similar trends as described in Proposition 2. Therefore, for
continuous rate transmissions, the near-optimal power and rate
adaptation law also has the form similar to μopt(κθ, γ) for a
certain coefficient κ, where μopt(θ, γ) is given by (8).

VIII. CONCLUSION

In this paper, we proposed and analyzed the QoS-driven
power and rate control policies by applying the concept of
effective capacity. Our analyses in block fading channel iden-
tified the key fact that there exists a fundamental tradeoff be-
tween spectral efficiency and QoS provisioning. Depending on
the specific QoS requirements, the optimal power-adaptation
policy dynamically changes between water-filling and channel
inversion. For the more practical adaptive MQAM modulation-
based systems, we also developed the corresponding optimal
power and rate adaptation scheme. When taking the channel
correlation into consideration, we proposed the simple, but
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efficient, power-control scheme for Markov modeled fading
channels. The simulation results verified that such an approach
can also be applied to the more general channel models.

APPENDIX I
PROOF OF THEOREM 1

Proof: Since log(·) is a monotonically increasing func-
tion, for each given θ > 0, the maximization problem of (7)
can be converted into a minimization problem as follows:

min
μ(θ,γ):

�∞
0 μ(θ,γ)pΓ(γ)dγ=1

{ ∫ ∞

0

e−θTfB log2

(
1+μ(θ,γ)γ

)
·pΓ(γ)dγ

}
. (34)

It is clear from [21, Sec. 3.2] that in (34), the objective
function is strictly convex and the constraint is linear with
respect to μ(θ, γ). Thus, the minimization problem has a
unique optimal solution. Then, we can form the Lagrangian
function, denoted by J , as follows:

J =
∫ ∞

0

e−β log
(
1+μ(θ,γ)γ

)
pΓ(γ)dγ

+ λ

(∫ ∞

0

μ(θ, γ)pΓ(γ)dγ − 1
)

. (35)

where β � θTfB/log 2 is defined as the normalized QoS
exponent. Differentiating the Lagrangian function given by
(35) and setting the derivative equal to zero [22, Sec. 4.2.4],
we get

∂J
∂μ(θ, γ)

=
{

λ − βγ [1 + μ(θ, γ)γ]−β−1
}

pΓ(γ) = 0. (36)

Defining γ0 � λ/β and solving (36), we can obtain the
optimal power and rate adaptation policy as shown by (8),
where γ0 is determined by the mean power constraint of (9).
The proof follows.

APPENDIX II
PROOF OF PROPOSITION 2

Proof: In order to prove Proposition 2, we first introduce
the following lemma.

Lemma 1: Let a channel service process be modeled as
a continuous-time FSMC with N states, the service rate of
the nth state be denoted by ν̃n, (n ∈ {0, 1, ..., N − 1}),
and the corresponding generating matrix of the continuous-
time FSMC be represented by Q, respectively. If we define
R � diag{ν̃0, ν̃1, ..., ν̃N−1}, then the effective capacity of this
process, denoted by ẼC(θ), is determined by3

ẼC(θ) = −1
θ
δ {Q− θR} (37)

where δ{·} denotes the maximum real eigenvalue of the
matrix.

Proof: The proof is similar to [10, Appendix], which is
omitted for lack of space.

3Note that for continuous-time FSMC, the unit for the service rate �νn and
the effective capacity �EC(θ) is “bits per second”.

There exists the close relationship between continuous-time
FSMC and discrete-time FSMC. Under appropriate conditions,
the discrete-time FSMC can be considered as the “samples” of
the embedded continuous-time FSMC. Based on our system
model, the sample interval is Tf and the service rate νn =
ν̃nTf .

The relationship between transition probability matrix P
of a discrete-time FSMC and generating matrix Q of a
continuous-time FSMC can be expressed as

P(Tf ) = eQTf = I + QTf + o(T 2
f ) (38)

where we rewrite P by P(Tf ) in (38) to emphasize that the
sample interval is Tf . Given the transition probability matrix
P, the first-order approximation of the generator matrix Q is
determined by

Q ≈ P(Tf ) − I
Tf

. (39)

It is clear that the generating matrix Q can be expressed as
Q = fdA, where A only depends on the marginal statistics of
the channel. Thus, we can approximate the effective capacity
of a discrete-time FSMC by the effective capacity of a
continuous-time FSMC as follows:

EC(θ) ≈ ẼC(θ)Tf . (40)

Based on the continuous-time FSMC approximation given by
(40), we prove Proposition 2 as follows. From Lemma 1, we
have

ẼC1(θ) = −1
θ
δ {Q1 − θR}

= −1
θ
δ {fd1A− θR}

= −1
θ
δ

{
fd1

fd2

(fd2A) − fd1

fd2

(
fd2

fd1

θR
)}

= −
(

fd1

fd2

)
1
θ
δ

{
fd2A − fd2

fd1

θR
}

= − 1(
fd2
fd1

θ
)δ

{
Q2 −

(
fd2

fd1

θ

)
R
}

= ẼC2

(
fd2

fd1

θ

)
. (41)

Plugging the approximate relationship given by (40) into (41),
the proof for Proposition 2 follows.
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