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QoS-Driven Power Allocation Over Parallel Fading
Channels With Imperfect Channel Estimations in
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Xi Zhang, Senior Member, IEEE, and Jia Tang, Student Member, IEEE

Abstract— We propose the quality-of-service (QoS) driven
power allocation schemes for parallel fading channels when con-
sidering imperfect channel estimations. In particular, the parallel
communication model plays a fundamental role in physical-
layer evolutions of wireless networks. By integrating information
theory with the concept of effective capacity, our proposed
schemes aim at maximizing the system throughput subject to a
given delay constraint. Solving the original non-convex problem
by a 2-dimensional convex optimization approach, we develop
the optimal allocation algorithms under different QoS and power
constraints. Consistent with our previous work assuming perfect
channel state information (CSI), our analyses considering imper-
fect CSI demonstrate that when the QoS constraint becomes more
and more stringent, the optimal effective capacity decreases from
the ergodic capacity to the zero-outage capacity. Moreover, our
results indicate that the channel estimation error has a significant
impact on QoS provisioning, especially when the delay constraint
is stringent. Specifically, as long as the channel estimation is
not perfect, a positive zero-outage capacity is unattainable. On
the other hand, our simulations also suggest that a larger
number of parallel channels can provide higher throughput and
more stringent QoS, while offering better robustness against the
imperfectness of CSI.

Index Terms— Power control, quality-of-service (QoS), re-
source allocation and management, convex optimization, infor-
mation theory.

I. INTRODUCTION

THE EXPLOSIVE demand for wireless services motivates
a rapid evolution of wireless wideband communications.

In order to efficiently support a large number of distinct
wireless applications, such as wireless Internet, mobile com-
puting, and cellular telephoning, diverse quality-of-service
(QoS) guarantees play the increasingly important role to the
future wireless networks. Over the wireless environment, the
most scarce radio resources are power and spectral bandwidth.
In response, a great deal of research has been devoted to
the techniques that can enhance the spectral efficiency of
the wireless transmissions. The framework used to evaluate
these techniques is mainly based on information theory [1],
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using the concept of either ergodic capacity [2] [3] or outage
capacity [4] [5]. The ergodic capacity maximizes the average
spectral efficiency with an infinitely long delay. The outage
capacity, on the other hand, maintains a constant rate trans-
mission with a certain outage probability. From the delay
QoS point-of-view, such an information-theoretic framework
maximizes the system throughput either without any delay
constraint (i.e., ergodic capacity), or with a stringent delay
constraint (i.e., outage capacity). These two extremes may
not refine enough for the user’s satisfactions, where a wide
range of delay constraints may be requested for different
applications. Consequently, to provide diverse QoS guarantees,
it is necessary to take the QoS metrics into account when
applying the prevalent information theory.

In our companion papers [6] [7], we proposed QoS-
driven power allocation schemes for single-input-single-output
(SISO) and multiple-input-multiple-output (MIMO) systems,
respectively, when assuming perfect channel state information
(CSI) available at both the transmitter and receiver. The
proposed scheme aims at maximizing the system throughput
subject to a given delay constraint. Our results in [6] [7]
showed that the adaptive power allocation is critically impor-
tant for QoS provisioning. Specifically, by integrating infor-
mation theory with the concept of effective capacity [8] [9],
we convert the original problem to the one with the target at
maximizing the effective capacity through the optimal power
allocation, in which the delay QoS constraint is characterized
by the QoS exponent θ. Applying the effective capacity, a
smaller θ corresponds to a looser QoS guarantee, while a larger
θ implies a more stringent QoS requirement. In the limiting
case, when θ → 0, the system can tolerate an arbitrarily long
delay, which is the scenario to derive the ergodic capacity.
In contrast, when θ → ∞, the system cannot tolerate any
delay, which corresponds to the case to obtain the zero-outage
capacity. Thus, as θ dynamically varies, the optimal power
allocation builds up a bridge between the ergodic capacity
and the zero-outage capacity.

As the sequel of [6] and [7], this paper focuses on QoS
provisioning over parallel channels in the presence of channel
estimation errors. Our study is based on the block-fading (also
known as quasi-static) channel model. The physical validity
of this model is discussed in [10]. Due to its analytical
convenience, the block-fading channel model is commonly
used in literatures [4]–[9], [11]–[13], which also greatly sim-
plifies our analyses. We concentrate on communications over
parallel channels, since this is a fundamental communication
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Fig. 1. The point-to-point system model.

framework, where a large number of promising techniques
fall into this category. For instance, multicarrier systems em-
ploying orthogonal-frequency-division-multiplexing (OFDM)
can be considered as parallel communications at the fre-
quency domain [13][14]. In contrast, the MIMO system is
an typical example which utilizes spatial domain parallel
channels [2][5][11]. The emerging MIMO-OFDM architecture
combines parallel channels in a joint spatial-frequency domain.
On the other hand, the simple SISO system is also a special
case of parallel communications, where the number of parallel
channels is one.

The research of this paper is mainly motivated by a
practical concern, where a perfect CSI is hard to obtain in
real wireless networks [11]–[13], [15]. Therefore, it becomes
critically important to investigate how to deal with such an
imperfectness, and what its impact is on QoS provisioning.
Compared to the case with perfect CSI, imperfect CSI imposes
new challenges to our throughput maximization problem. In
particular, the problem is not convex in nature. To overcome
this mathematical difficulty, we decompose the original non-
convex optimization problem into two orthogonal optimization
sub-problems, each of which turns out to be convex and can
be solved efficiently. The main contributions of this paper can
be summarized as follows:

1) We derive the power allocation policy under the total
power constraint (Theorem 1), which shows that the
optimal policy is actually classic water-filling, regardless
of delay requirement.

2) We propose the power allocation scheme under the
average power constraint (Theorem 2), which shows that
as the QoS exponent θ increases from zero to infinity,
the optimal effective capacity decreases from the ergodic
capacity to the zero-outage capacity.

3) Under stringent delay requirement, we provide necessary
and sufficient conditions for the convergence of the aver-
age power (Theorem 3), which show that in the presence
of channel estimation errors, the average power always
diverges. Furthermore, a positive zero-outage capacity
is proved to be unattainable. Alternatively, we explicitly
obtain the power allocation scheme to minimize the
outage probability (Theorem 4).

Our results also suggest that a larger number of parallel
channels can provide higher throughput and support more
stringent QoS, while offering better robustness against the

wireless-channel estimation errors.
The rest of the paper is organized as follows. Section II

describes our parallel system model. Sections III derives the
optimal power allocation policy with different power con-
straints. Section IV discusses the power allocation strategy for
stringent QoS provisioning. Section V conducts simulations to
evaluate the performance of our proposed scheme. The paper
concludes with Section VI.

Notations. We use upper- and lower-case boldface letters to
denote matrices and vectors, respectively. R and C indicate
the space of real and complex numbers, respectively, with
possible superscript denoting the dimension of the matrices or
vectors. R+ and R++ represent the nonnegative and positive
real numbers, respectively. (x)+ , max{0, x}. E[·] stands
for the expectation, Ex[·] represents that the expectation is
with respect to x. IK denotes a K ×K identity matrix. x ∼
CN (u,Σ) means that the complex random vector x follows
a jointly Gaussian distribution with mean u and covariance
matrix Σ.

II. SYSTEM MODEL

The system model is illustrated in Fig. 1. We concentrate
on a discrete-time point-to-point link between the transmit-
ter and the receiver in wireless networks. In particular, the
transmitter and the receiver are communicating through M
parallel fading channels over spectral bandwidth B. As shown
in Fig. 1, a first-in-first-out (FIFO) buffer is equipped at the
transmitter, which buffers the data frames to be transmitted
to the receiver. Each frame consists of M × N symbols.
The frame duration is denoted by Tf , which is assumed to
be less than the fading coherence time, but sufficiently long
so that the information-theoretic assumption of infinite code-
block length (i.e., N → ∞) is meaningful [4][5]. The frame
is then divided into M substreams, each with N symbols
transmitted through one of the parallel channels. Based on
a given QoS constraint θ requested by the mobile session and
CSI fed back from the mobile receiver, the transmitter needs
to find an optimal codeword (implemented by the adaptive
modulation and coding) and a corresponding power allocation
strategy, which can maximize the throughput subject to the
QoS constraint θ.

The discrete-time channel process is assumed to be block-
fading. Specifically, the path gains are constant within a
frame’s duration Tf , but vary independently from one frame
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to another, following a certain continuous distribution. Note
that the most commonly used channel distributions, such as
Rayleigh, Rice, Nakagami, and Wishart, are all continuous
and thus belong to this category. The transmission for the nth
symbol of the ith frame can be modeled as

y[i, n] =
√
Γ[i]x[i, n] + z[i, n] (1)

where i = 1, 2, ... denotes the frame index, n = 1, 2, ..., N
denotes the symbol index, x[i, n] ∈ CM and y[i, n] ∈ CM

are complex channel input and output symbols, respectively,√
Γ[i] , diag{

√
γ1[i],

√
γ2[i], ...,

√
γM [i]} ∈ RM×M

+ de-
notes the diagonal channel gain matrix, and z[i, n]
∼ CN (0, IM ) is i.i.d. complex additive white Gaussian noise
(AWGN), which, by a properly transmit power scaling, can be
normalized to have the unit variance.

Let γ[i] , (γ1[i], γ2[i], ..., γM [i]) denote the instantaneous
CSI. When the receiver knows perfectly about γ[i], for a given
power allocation µ[i] , (P1[i], P2[i], ..., PM [i]) ∈ RM

+ , the
maximum instantaneous mutual information between channel
inputs and outputs, denoted by I(µ[i],γ[i]), can be expressed
as1

I(µ[i],γ[i]) , TfB

K

M∑
m=1

log2

(
1 + γm[i]Pm[i]

)
(2)

which can be achieved by the independent complex Gaussian
inputs x[i, n] ∼ CN (0,diag{µ[i]}). In Eq. (2), the parameter
K with 1 ≤ K ≤ M is a scaling constant dependent on
the specific parallel transmission scheme. For instance, when
γ[i] corresponds to M singular-values of the spatial MIMO
channel, we have K = 1. On the other hand, when γ[i]
corresponds to M subchannel gains of a multicarrier system,
K is equal to M .

In this paper, we are interested in the scenario where γ[i]
is imperfectly known to the receiver. Let γ̂[i] ∈ RM

+ denote
the estimation of the actual CSI γ[i]. Given µ[i] and γ̂[i],
the closed-form expression for the maximum instantaneous
mutual information between the channel inputs and outputs
turns out to be intractable, even in the simple case of M =
1 [12]. However, under sufficient conditions, a tight lower-
bound, denoted by Î(µ[i], γ̂[i]), can be obtained as [11]–[13]

Î(µ[i], γ̂[i]) , TfB

K

M∑
m=1

log2

(
1 +

γ̂m[i]Pm[i]

1 + σ2
e

∑M
m=1 Pm[i]

)
(3)

where σ2
e denotes the variance of the channel estimation

errors, which depends on the channel dynamics and channel
estimation schemes employed [11], and is assumed to be
known a priori at the both ends of the link. The mutual
information lower-bound in Eq. (3) can be achieved by the
independent complex Gaussian inputs and nearest neighbor
decoding rule, see, e.g., [11][15] for a detailed discussion. It
is also clear that when σ2

e → 0, we have γ̂m[i] → γm[i], and
Eq. (3) reduces to Eq. (2).

In this paper, we also make the following assumptions.

1Throughout this paper, the unit for the mutual information and transmis-
sion rate are “bits per frame”.

A1: We assume that the estimated CSI γ̂[i] is reliably fed
back to the transmitter without delay. The issues of feedback
delay and unreliable feedback channels can be modeled as a
channel mean feedback problem [18], which is not the focus
of this paper. In addition, the preliminary work about the
impact of feedback delay on the QoS provisioning can be
found in [19].

A2: We further assume that given a power allocation µ[i]
and the estimated CSI γ̂[i], the adaptive modulation and cod-
ing can choose an ideal channel code for each frame, such that
the transmission rate, denoted by R(µ[i], γ̂[i]), achieves the
mutual information lower-bound Î(µ[i], γ̂[i]) given in Eq. (3).
Based on this assumption, the derived effective capacity using
Eq. (3) also serves as a lower-bound for the optimal effective
capacity.

A3: In practice, the channel estimation itself may cause a
certain power loss. In this paper, since our focus is to study the
impact of imperfect CSI on QoS provisioning, we ignore such
a performance degradation factor. Based on our framework,
the results can be easily extended to the case considering the
cost of channel estimations.

In the following discussions, since the block-fading channel
process is i.i.d., its instantaneous marginal statistics is inde-
pendent of the frame index i, and thus we may omit the frame
index i for simplicity.

III. POWER ALLOCATION FOR QOS PROVISIONING

A. Problem Formulation

Let us define ν , (θ, γ̂) as network state information (NSI).
Then, based on Eq. (3) and assumption A2, the transmission
rate, denoted by R

(
µ(ν), γ̂

)
, can be expressed as

R
(
µ(ν), γ̂

)
=

TfB

K

M∑
m=1

log2

(
1 +

γ̂mPm(ν)

1 + σ2
e

∑M
m=1 Pm(ν)

)
(4)

where the power allocation policy µ(θ, γ̂) = µ(ν) =
(P1(ν), P2(ν), ..., PM (ν)) ∈ RM

+ is not only the function
of the estimated CSI γ̂, but also the function of the QoS
exponent θ. For a given QoS constraint specified by θ, in
order to find the optimal power allocation policy, denoted by
µ∗(ν), that maximizes the effective capacity expression (see,
e.g., [6, eq. (4)]), we can formulate a maximization problem
as follows:

µ∗(ν) = argmax
µ(ν)

{
−1

θ
log

(
Eγ̂

[
F
(
µ(ν), γ̂

)])}
(5)

where

F
(
µ(ν), γ̂

)
, e−θR

(
µ(ν), γ̂

)
=

M∏
m=1

(
1 +

γ̂mPm(ν)

1 + σ2
e

∑M
m=1 Pm(ν)

)−β

(6)

with β , θTfB/(K log 2) defined as normalized QoS ex-
ponent. Since log(·) is a monotonically increasing function,
for each given QoS constraint θ ∈ R++, the maximization
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problem above is equivalent to the following minimization
problem:

µ∗(ν) = argmin
µ(ν)

{
Eγ̂

[
F
(
µ(ν), γ̂

)]}
. (7)

In this paper, we mainly consider two different power
constraints. A simple and practical constraint is known as total
power constraint, also called short-term power constraint [4].
Specifically, the transmit power for each frame cannot exceed
a certain threshold Ptotal, i.e.,

M∑
m=1

Pm(ν) ≤ Ptotal (8)

for all realizations of γ̂ ∈ RM
+ .

On the other hand, the average power constraint, also
known as long-term power constraint [4], is often investigated
from an information-theoretic point-of-view. Under the aver-
age power constraint, the mean of the transmit power cannot
exceed a certain threshold Pavg, but no restriction is imposed
on the instantaneous transmit power, i.e.,

Eγ̂

[
M∑

m=1

Pm(ν)

]
≤ Pavg. (9)

A system may be subject to the total power or/and average
power constraints, which are elaborated on in the followings,
respectively.

B. Power Allocation With Total Power Constraint

We first consider the problem of minimizing Eq. (7) subject
to the total power constraint given by Eq. (8). It is clear that
Eq. (7) achieves its minimum when the constraint in Eq. (8)
is satisfied with equality. Accordingly, let us define a convex
set, denoted by S, for the power allocation policy as follows:

S ,
{
µ(ν) : µ(ν) ∈ RM

+ ,

M∑
m=1

Pm(ν) = Ptotal

}
. (10)

Then, we have the following lemma.
Lemma 1: The objective function Eγ̂ [F (µ(ν), γ̂)] given

in Eq. (7) is strictly convex on S.
Proof: It is easy to verify that R(µ(ν), γ̂) given in

Eq. (4) is strictly concave on S. On the other hand, f(x) =
e−θx is a strictly convex and non-increasing function for any
fixed θ ∈ R++. Using the property given by [20, eq. (3.10)],
we know that F (µ(ν), γ̂) = exp(−θR(µ(ν), γ̂)) is strictly
convex on S. Finally, since the expectation is a linear oper-
ation, it preserves the strictly convexity. The proof follows.

Since the objective function given in Eq. (7) is strictly
convex on S, we can use the standard Lagrangian method
to find the unique optimal power allocation policy, denoted by
µ∗

total(ν) ∈ S. Construct the Lagrange as follows:2

J1 = Eγ̂

[
M∏

m=1

(
1 +

γ̂mPm(ν)

1 + σ2
ePtotal

)−β
]
+ λ1

M∑
m=1

Pm(ν) (11)

2In this paper, the explicit Lagrangian multipliers corresponding to the
constraint µ(ν) ∈ RM

+ are omitted.

where λ1 denotes the Lagrangian multiplier. By solving the
Karush-Kuhn-Tucker (KKT) condition [20] of Eq. (11), we
obtain the optimal power allocation policy µ∗

total(ν), which
can be described by the following theorem.

Theorem 1: For each estimated fading state γ̂, let π(·) be
defined as a permutation of γ̂ such that γ̂π(1) ≥ γ̂π(2) ≥ · · · ≥
γ̂π(M). For notational convenience, we also define

γ̃π(m) ,
γ̂π(m)

1 + σ2
ePtotal

(12)

for all m = 1, 2, ...,M . Then, the π(m)-th component of
µ∗

total(ν), denoted by P ∗
π(m)(ν), follows the classic water-

filling formula and is determined by

P ∗
π(m)(ν) =

(
ω(ν, k)− 1

γ̃π(m)

)+

(13)

where ω(ν, k) denotes the time-varying water-level, which is
chosen such that the total power constraint is satisfied, and is
given by

ω(ν, k) =
1

k

(
Ptotal +

k∑
i=1

1

γ̃π(i)

)
. (14)

The parameter k in Eqs. (13) and (14) denotes the number
of active channels allocated with nonzero power, which is the
unique integer in {1, 2, ...,M} such that ω(ν, k) > 1/γ̃π(m)

for m ≤ k and ω(ν, k) ≤ 1/γ̃π(m) for m > k.
Proof: The proof is provided in Appendix I.

Remark 1: The water-level ω(ν, k) and the active channels
k are jointly determined by the channel state γ̂. As a result,
different fading states γ̂ correspond to different ω(ν, k) and
k. �

Remark 2: Although our objective is to maximize the
throughput subject to the QoS constraint θ, Theorem 1 states
that the optimal power allocation under the total power con-
straint is actually independent of θ. This implies that under
the total power constraint, the water-filling formula is always
the optimal power allocation policy, regardless of θ. On the
other hand, since this policy does not distinguish the services
with different QoS constraints, the power is not allocated in
favor of the QoS provisioning. �

Substituting Eqs. (13) and (14) into Eq. (7) with some
algebraic manipulations, we obtain the minimum objective
function under the total power constraint as follows:

Eγ̂

[
F (µ∗

total(ν), γ̂)
]
= Eγ̂

[{
kΣkΠk

(
1 + σ2

ePtotal

)
1 + (σ2

e +Σk)Ptotal

}kβ ]
(15)

where, for notational convenience, we define Σk ,
1/
(∑k

i=1 γ̂
−1
π(i)

)
and Πk ,

∏k
i=1 γ̂

−1/k
π(i) .

C. Power Allocation With Average Power Constraint

In this section, we focus on minimizing Eq. (7) subject to
the average power constraint given by Eq. (9). This problem is
more difficult than that under the total power constraint, since
when σ2

e > 0, the objective function in Eq. (7) is not convex
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on the entire space spanned by µ(ν) ∈ RM
+ . Alternatively, we

obtain the optimal solution by a two-step approach.
Noticing that for each given total power Ptotal, by Theo-

rem 1, we already know the optimal power allocation policy
µ∗

total(ν). However, under the average power constraint, the
instantaneous total power Ptotal changes with each fading
state. In response, we rewrite Ptotal by Ptotal(ν) to empha-
size such a temporal variation. To obtain the optimal power
allocation under the average power constraint, we can solve
the problem into two steps. The first step is to find the optimal
temporal power allocation policy, denoted by P ∗

total(ν) ∈ R+,
which minimizes the objective function Eq. (7) while meeting
the average power constraint:

Eγ̂ [P ∗
total(ν)] = Pavg. (16)

Once the optimal policy P ∗
total(ν) is obtained, the second step

is to assign power along the M parallel channels according to
the water-filling algorithm described in Theorem 1, satisfying∑M

m=1 P
∗
m(ν) = P ∗

total(ν).
Noting that when deriving the optimal policy P ∗

total(ν)
for the first step, an underlying assumption is that at the
second step, the policy µ∗

total(ν) is applied for each P ∗
total(ν).

Therefore, the objective function for the first step can be
expressed as Eq. (15), instead of the original one in Eq. (7).
Based on Eq. (15), we formulate the new optimization problem
as follows:

P ∗
total(ν) =

arg min
Ptotal(ν)

{
Eγ̂

[{
kΣkΠk

[
1 + σ2

ePtotal(ν)
]

1 + (σ2
e +Σk)Ptotal(ν)

}kβ ]}
(17)

subject to the average power constraint given in Eq. (16).
Let us define a convex set, denoted by S ′, for the temporal

power allocation policy as follows:

S ′ ,
{
Ptotal(ν) ∈ R+,Eγ̂ [Ptotal(ν)] = Pavg

}
. (18)

Then, we have the following lemma.
Lemma 2: The objective function given in Eq. (17) is

strictly convex on set S ′.
Proof: The proof is provided in Appendix II.

Due to the convexity of Eq. (17) on set S ′, we decompose
the original non-convex problem into two sub-problems, each
of which is convex. An illustration of the 2-dimensional
convex optimization is shown in Fig. 2. Although the objective
function is not convex, the two optimized dimensions are
always convex, respectively. From Lemma 2, once again, we
can use the Lagrangian technique to derive the unique optimal
temporal power allocation policy P ∗

total(ν) ∈ S ′. Construct the
Lagrange as follows:

J2 = Eγ̂

[{
kΣkΠk

[
1 + σ2

ePtotal(ν)
]

1 + (σ2
e +Σk)Ptotal(ν)

}kβ ]
+ λ2Eγ̂ [Ptotal(ν)] (19)

where λ2 denotes the Lagrangian multiplier. Solving the above
Lagrangian problem, we obtain the optimal temporal power
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allocation policy P ∗
total(ν) under the average power constraint,

which can be described by the following theorem.
Theorem 2: The optimal temporal power allocation policy

P ∗
total(ν) ∈ R++, if existing, is the unique positive solution

of the following equation:[
1 + (σ2

e +Σk)Ptotal(ν)
] kβ+1

Mβ+1

(kΣk)
kβ+1
Mβ+1 Π

kβ
Mβ+1

k [1 + σ2
ePtotal(ν)]

kβ−1
Mβ+1

= ω∗ (20)

where ω∗ ∈ R+ is a constant which is chosen such that
the average power constraint is satisfied. Otherwise, if such a
solution P ∗

total(ν) ∈ R++ does not exist, then P ∗
total(ν) = 0.

Proof: The proof is provided in Appendix III.
Remark 3: The constant ω∗ can be called water-level coef-

ficient, which is proportional to the average power constraint.
The higher the average power constraint Pavg, the larger
the water-level coefficient ω∗. Once ω∗ is determined, it
remains as a constant regardless of the instantaneous channel
realizations. �

Unfortunately, the general closed-form solution for Eq. (20)
turns out to be intractable. However, since the left-hand
side of Eq. (20) is a monotonically increasing function of
Ptotal(ν) ∈ R+, the solution, if existing, can be easily
obtained numerically. Moreover, under a number of special
cases, Eq. (20) can be solved in closed-form expressions.

1) β → 0: When the normalized QoS exponent β → 0,
Eq. (20) becomes a quadratic polynomial of Ptotal(ν) and
can be easily solved in closed-form. In this case, we get the
following optimal temporal power allocation policy:

P ∗
total(ν)

∣∣∣
β→0

=(
−(2σ2

e +Σk) +
√
Σ2

k + 4ω∗kΣkσ2
e(σ

2
e +Σk)

2σ2
e(σ

2
e +Σk)

)+
(21)

which is the optimal temporal power allocation policy given
by [11, eq. (17)] (and also [12, eq. (3)] for the case with M =
1) to achieve the ergodic capacity of the parallel channels with
channel estimation errors. This is expected since when β →
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0, implying that the system can tolerate an arbitrarily long
delay, the optimal effective capacity approaches the ergodic
capacity [6], [7].

2) β → ∞: When the normalized QoS exponent β → ∞,
implying stringent delay constraint, Eq. (20) becomes a linear
function of Ptotal(ν). The optimal temporal power allocation
policy can be easily derived as follows:

P ∗
total(ν)

∣∣∣
β→∞

=

(
ηk − 1

Σk − σ2
e (ηk − 1)

)+

(22)

where ηk , (ω∗)
M/k

kΣkΠk. Substituting Eq. (22) into
Eq. (13), the power assigned to each parallel channels can
be expressed as

P ∗
π(m)(ν)

∣∣∣
β→∞

=

((
1

Σk − σ2
e (ηk − 1)

)(
ηk
k

− Σk

γ̂π(m)

))+

.

(23)

The optimal effective capacity approaches the zero-outage
capacity3 as β → ∞ [6], [7]. Therefore, Eq. (23) provides
the optimal power allocation policy to achieve zero-outage
capacity lower-bound with channel estimation errors. The
details about zero-outage capacity and outage minimization
will be presented in the next section.

3) σ2
e → 0: When the channel estimation is perfect,

Eq. (20) also becomes a linear function of Ptotal(ν). Likewise,
the power assigned to each parallel channels can be obtained
as

P ∗
π(m)(ν)

∣∣∣
σ2
e→0

=

(
(ω∗)

Mβ+1
kβ+1 Π

kβ
kβ+1

k − 1

γ̂π(m)

)+

(24)

which becomes the optimal power allocation for parallel
channels under perfect CSI [7]. Moreover, in the limiting cases
for loose QoS constraint (i.e., β → 0), Eq. (24) reduces
to the classic water-filling to achieve the ergodic capacity,
which is expected, as discussed before. On the other hand,
for stringent QoS constraint (i.e., β → ∞), Eq. (24) reduces
to the power allocation policy given in [4, eq. (28)] and [5,
eq. (21)] to achieve the zero-outage capacity of the parallel
fading channels. This is also expected since when β → ∞,
implying that the system cannot tolerate any delay, the power
allocation needs to be designed to guarantee a zero-outage.

D. Power Allocation With Both Constraints

In this section, we consider the scenario where the system is
subject to both total power constraint Ptotal and average power
constraint Pavg. The motivation of this study is the following.
First, in practice, the system requires both total power and
average power constraints due to hardware limitations. More
importantly, as will be seen in the next section, under only an
average power constraint, the average power does not always
converge. When the average power cannot be bounded away
from infinity, it is necessary to impose a total power constraint
to avoid this divergence. In the following, we assume Ptotal ≥
Pavg. Otherwise, Pavg is unattainable.

3The zero-outage capacity is also termed delay-limited capacity [4], [5].

To address the total power constraint, let us define another
convex set, denoted by S ′′, for the temporal power allocation
policy as follows:

S ′′ ,
{
Ptotal(ν) : Ptotal(ν) ∈ S ′, Ptotal(ν) ≤ Ptotal

}
(25)

where S ′ is defined in Eq. (18). It is clear that S ′′ ⊆ S ′.
Now the problem becomes maximizing the objective given
in Eq. (17) on set S ′′, instead of on set S ′ investigated in
Section III-C. By the similar procedure used in Section III-
C, we derive the optimal temporal power allocation under
both constraints. The optimal temporal power assigned to
each fading state, denoted by P ∗

both(ν), is simply a truncated
version of the power derived from Theorem 2, i.e.,

P ∗
both(ν) = min {P ∗

total(ν), Ptotal} (26)

where P ∗
total(ν) is obtained by Theorem 2. Accordingly, the

water-level coefficient ω∗ needs to be recalculated to meet the
average power constraint.

IV. POWER ALLOCATION UNDER STRINGENT DELAY
CONSTRAINT

When designing the QoS-driven power allocation algorithm,
we are more interested in the region where the QoS constraint
is stringent. Therefore, in this section, we take a close look
at the power allocation performance under stringent delay
constraint.

A. Convergence Analyses for the Average Power

As the delay constraint becomes stringent (β → ∞),
Eq. (22) provides the optimal temporal power allocation.
However, using Eq. (22), the average power may diverge. In
other words, for a given Pavg, we probably cannot find ω∗

such that Eγ̂ [P ∗
total(ν)] = Pavg. In order to guarantee that

the average power converges, we need to upper-bound the
expectation of Eq. (22) away from infinity, which is equivalent
to

Eγ̂

[
ηk − 1

Σk − σ2
e (ηk − 1)

]+
< ∞ (27)

where E[x]+ , E [x|x ≥ 0]. Explicitly characterizing the left-
hand side of Eq. (27) is hard since k is time-varying depending
on γ̂. Alternatively, it is more convenient to find the necessary
and sufficient conditions for the convergence. The result can
be summarized in the following theorem.

Theorem 3: If ω∗ > 1, a necessary condition to guarantee
that the average power converges to a finite number is given
by

Eγ̂

[
1

γ̂π(1) − σ2
e(ω

∗ − 1)

]+
< ∞, (28)

while a sufficient condition is given by

Eγ̂

[
ΠM

1− σ2
e(ω

∗)MMΠM

]+
< ∞. (29)

Otherwise, if ω∗ ≤ 1, then Ptotal(ν) = 0 always holds, and
thus Eγ̂ [Ptotal(ν)] = 0.
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Proof: The proof is provided in Appendix IV.
Remark 4: When the channel estimation is perfect (σ2

e =
0), the sufficient condition given by Eq. (29) reduces to

Eγ̂ [ΠM ]
+
= Eγ̂ [ΠM ] < ∞ (30)

which is the condition termed regular fading in [5, def. 4]
to achieve a positive zero-outage capacity with perfect CSI.
Furthermore, when σ2

e = 0, it is easy to show that Eq. (30)
implies Eq. (28), which is also expected since Eq. (28) is a
necessary condition. �

Remark 5: For most commonly used channel distributions
(e.g., Rayleigh, Nakagami, Rice, and Wishart), if σ2

e = 0,
the sufficient condition given by Eq. (30) always fulfilled
(additional condition of M > 1 may be required). Therefore,
the average power always converges. However, if σ2

e > 0,
the necessary condition given by Eq. (28) cannot be fulfilled.
Thus, the average power always diverges. �

B. Outage Minimization

When β → ∞, substituting Eqs. (22) and (23) into Eq. (4)
with some algebraic manipulations, the instantaneous spectral
efficiency R/(TfB), denoted by C (bits/s/Hz), can be obtained
as

C =

{
M
K log2(ω

∗), if P ∗
total(ν) > 0

0, if P ∗
total(ν) = 0

(31)

which implies that the transmission is either with a constant
rate or in an outage. If the outage probability is nonzero,
we know from definition that the zero-outage capacity of the
system is zero. The following lemma describes the impact of
channel estimation error on system outage probability.

Proposition 1: If σ2
e > 0, then the outage probability is

nonzero.
Proof: The proof is provided in Appendix V.

Remark 6: As long as σ2
e > 0, from Proposition 1 we

know Pr{P ∗
total(ν) = 0} > 0. Any outage probability smaller

than Pr{P ∗
total(ν) = 0} is unattainable. In other words, the

probability Pr{P ∗
total(ν) = 0} indicates an outage floor. �

Corollary 1: If σ2
e > 0, then the system zero-outage

capacity is always zero, regardless of the channel fading
distributions.

Proof: The proof follows from Proposition 1.
Remark 7: As compared to the case with perfect CSI,

where the zero-outage capacity is always positive when the
channel is regular fading [5], the zero-outage capacity of the
system with imperfect CSI is always zero, due to the presence
of nonzero σ2

e . In this case, it makes more sense to study the
outage capacity, instead of zero-outage capacity. �

To transmit at a constant code rate R (bits/s/Hz), the
following theorem provides the optimal allocation policy that
minimizes the outage probability under an average power
constraint Pavg.

Theorem 4: The optimal temporal power allocation policy,
denoted by P ∗

out(ν), that minimizes the outage probability
while transmitting at a constant code rate R, can be expressed
as

P ∗
out(ν) =

{
P ∗
total(ν), if P ∗

total(ν) ≤ s∗

0, otherwise
(32)
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Fig. 3. The optimal effective capacity for a 4 × 4 MIMO system with
different power constraints. The average SNR is 0 dB for both cases.

where P ∗
total(ν) is the solution of Eq. (22) with ω∗ = 2RK/M ,

and s∗ ∈ R+ is a constant chosen such that the average
power constraint is satisfied. Based on this policy, the resulting
minimum outage probability, denoted by pout, is determined
by

pout = Pr{P ∗
total(ν) = 0}+ Pr{P ∗

total(ν) > s∗}. (33)
Proof: It can be easily observed from Eq. (31) that ω∗

should be chosen as ω∗ = 2RK/M . The rest of the proof is
based on the result of [4], which is omitted for lack of space.

Remark 8: The parameter s∗ has the same role as the total
power constraint Ptotal in previous sections. However, the
power allocation policies are different. In an effective-capacity
maximization problem, when the instantaneous power exceeds
Ptotal, the system still use the maximum available power to
transmit data [see Eq. (26)], avoiding the outage. In contrast,
in an outage minimization problem, when the instantaneous
power exceeds s∗, the system stops transmitting data to save
the transmit power [see Eq. (32)], making the system fall into
an outage. �

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our proposed
QoS-driven power allocation by simulations. As a typical
application over parallel Gaussian channels, we simulate the
MIMO system with Nt transmit antennas and Nr receive an-
tennas. The channels between all transmit and receive antenna
pairs are assumed to be i.i.d. complex Gaussian with CN (0, 1).
In this case, the parameters K = 1 and M = min{Nt, Nr}.
By using the minimum mean squared error (MMSE) estimator
at the receiver, the range of the error variance is 0 ≤ σ2

e ≤ 1,
and the estimated channels are i.i.d. with CN (0, 1 − σ2

e).
Furthermore, we set the product TfB = log 2 such that θ = β
for convenience. The other system parameters are detailed,
respectively, in each of the figures.

Fig. 3 plots the optimal effective capacity of a 4 × 4
MIMO system with different power constraints. When the
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under both total and average power constraints. The average power constraint
Pavg = 0 dB and the total power constraint Ptotal = 20 dB.

QoS constraint is loose, we can observe from Fig. 3 that
total power constraint and average power constraint have
neglectable performance difference. However, as the QoS
constraint becomes more stringent, the average power con-
straint shows significant performance advantages over the total
power constraint. In particular, the effective capacity under
the average power constraint virtually does not decrease as θ
increases, while the effective capacity under the total power
constraint drops quickly as θ increases, which verifies the
importance of temporal power allocation on QoS provisioning.
On the other hand, the impact of channel estimation error on
effective capacity is also significant.

Fig. 4 plots the optimal effective capacity under both
average power constraint and total power constraint, when σ2

e

ranges from 0 to 0.2. As shown by Fig. 4, for the 4×4 MIMO
system, the effective capacities are all virtually independent
of θ. On the other hand, for the 2 × 2 MIMO system, the
QoS constraint θ does not significantly affect the effective
capacity when the channel estimation is perfect (σ2

e = 0).
However, when σ2

e = 0.1 or σ2
e = 0.2, the effective capacities

significantly decrease as the QoS constraint becomes stringent.
Finally, for the 1 × 1 SISO system, all effective capacities
converges to zero as θ increases, even when the channel
estimation is perfect. Thus, Fig. 4 verifies that a larger number
of antennas not only provides the higher throughput, but also
offers better robustness against the channel estimation error,
in terms of supporting stringent QoS requirements.

Fig. 5 plots the effective capacity under different power allo-
cation strategies. Besides our proposed power allocation with
total power constraint (referred as “spatial water-filling”) and
with average power constraint (referred as “optimal policy”),
we also simulate equal power distribution strategy, and joint
spatial-temporal water-filling strategy. Note that equal power
distribution is the optimal power allocation without CSI at
the transmitter, and joint spacial-temporal water-filling is the
optimal power allocation to achieve the ergodic capacity of the
MIMO system. We can observe from Fig. 5 that for a given
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power allocation strategies. The average SNR is 0 dB for all the cases.
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σ2
e , our proposed optimal policy always achieves the highest

effective capacity among all power allocation strategies. The
advantage is more significant when the QoS constraint is
stringent.

Finally, Fig. 6 plots the outage probability for MIMO
systems with different channel estimation errors. Specifically,
when the channel estimation is perfect (σ2

e = 0), the outage
probability approaches zero when the average SNR is suffi-
ciently high, which means a positive zero-outage capacity is
achievable. However, when the channel estimation is imperfect
(σ2

e > 0), the outage floor prevents the outage probability from
further decreasing, no matter how much power is assigned.
Fig. 6 also demonstrates that for a given code rate, the
system with a larger number of antennas may tolerate severer
channel estimation errors, while still maintaining better outage
performance.
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VI. CONCLUSIONS

We proposed and analyzed QoS-driven power allocation
over parallel fading channels by taking the imperfect chan-
nel estimations into consideration. Solving the original non-
convex problem by a 2-dimensional convex optimization ap-
proach, we developed power allocation algorithms for different
QoS and power constraints in a general system setting. As the
QoS exponent θ increases from zero to infinity, the optimal
effective capacity function connects the ergodic capacity with
the zero-outage capacity, which is consistent with our previous
work in the case of perfect CSI. Our analyses indicate that
the imperfect channel estimations have a significant impact
on QoS provisioning, especially when the delay constraint
is stringent. In particular, a positive zero-outage capacity is
unattainable in the presence of channel estimation errors. On
the other hand, our simulation results for the MIMO systems
also suggest that a larger number of parallel channels can
provide higher throughput and more stringent QoS, while
offering better robustness against the channel estimation errors.

APPENDIX I
PROOF OF THEOREM 1

Proof: Assume that there are exactly k channels out
of M channels being assigned with nonzero power, where
1 ≤ k ≤ M . It can be easily shown by contradiction that these
k channels are γ̂π(1), γ̂π(2), ..., γ̂π(k). Thus, the Lagrangian J1

can be simplified to a new Lagrangian function, denoted by
J ′
1, as follows:

J ′
1 = Eγ̂

[
k∏

m=1

(
1 + γ̃π(m)Pπ(m)(ν)

)−β
]

+ λ1

k∑
m=1

Pπ(m)(ν) (34)

where γ̃π(m) is defined in Eq. (12). Differentiating the simpli-
fied Lagrangian J ′

1 with respect to Pπ(m)(ν) and setting the
derivative equal to zero, we can get a set of k equations:[

1 + γ̃π(m)Pπ(m)(ν)
]−(β+1)

k∏
i=1, i ̸=m

[
1 + γ̃π(i)Pπ(i)(ν)

]−β

=
λ1

βγ̃π(m)
, for all 1 ≤ m ≤ k. (35)

Solving Eq. (35) and considering the boundary conditions, we
obtain Eq. (13), where

ω(ν, k) =

(
β

λ1

) 1
kβ+1

k∏
i=1

γ̃
− β

kβ+1

π(i) . (36)

By choosing a proper λ1 in Eq. (36) to meet the total power
constraint, ω(ν, k) can be simplified to Eq. (14). The proof
follows.

APPENDIX II
PROOF OF LEMMA 2

Proof: Due to the linearity of the expectation, it is
sufficient to show that the objective function inside the expec-
tation is convex on Ptotal(ν) ∈ R+. Following the notation

of Eq. (15), we differentiate F (µ∗
total(ν), γ̂) with respect to

Ptotal(ν) and get the following:

∂F (µ∗
total(ν), γ̂)

∂Ptotal(ν)

= −
β(kΣk)

kβ+1
[
1 + σ2

ePtotal(ν)
]kβ−1

Π−kβ
k [1 + (σ2

e +Σk)Ptotal(ν)]
kβ+1

. (37)

In particular, by Theorem 1 we can show that, at the critical
point where the number of active channels k increases from ℓ
to ℓ+ 1 with 1 ≤ ℓ < M , the total power is equal to

Ptotal(ν) =
ℓΣℓ − γ̂π(ℓ+1)

Σℓγ̂π(ℓ+1) − σ2
e(ℓΣℓ − γ̂π(ℓ+1))

(38)

Substituting Eq. (38) into Eq. (37) and letting either k = ℓ or
k = ℓ+1, the derivative in Eq. (37) yields the same solution:

−βΠℓβ
ℓ γ̂ℓβ−1

π(ℓ+1)Σ
−2
ℓ

[
Σℓγ̂π(ℓ+1) − σ2

e(ℓΣℓ − γ̂π(ℓ+1))
]2

(39)

which implies that the derivative of the objective function
is continuous on Ptotal(ν) ∈ R+, even though the number
of active channels discretely increases. Once verified the
continuity, the twice differentiation for each given k can be
easily obtained as4

∂2F (µ∗
total(ν), γ̂)

∂P 2
total(ν)

=
β(kΣk)

kβ+1
[
1 + σ2

ePtotal(ν)
]kβ−2

Π−kβ
k [1 + (σ2

e +Σk)Ptotal(ν)]
kβ+2

·
{
Σk(kβ + 1) + 2σ2

e

[
1 + (σ2

e +Σk)Ptotal(ν)
]}

> 0 (40)

which demonstrates that Eq. (37) is a continuous and mono-
tonically increasing function of Ptotal(ν). Thus, the objective
function is strictly convex, and then the proof follows.

APPENDIX III
PROOF OF THEOREM 2

Proof: Differentiating the Lagrangian function J2 given
by Eq. (19) and setting the derivative equal to zero, we get

∂F (µ∗
total(ν), γ̂)

∂Ptotal(ν)
+ λ2 = 0. (41)

Plugging Eq. (37) into Eq. (41) with simple algebraic manipu-
lations, we obtain Eq. (20), where ω∗ , (β/λ2)

1
Mβ+1 . Similar

to the proof of Lemma 2, we can show that the left-hand
side of Eq. (20) is continuous and monotonically increasing
function at Ptotal(ν) ∈ R+, even though k changes discretely.
Therefore, the positive solution P ∗

total(ν) ∈ R++ and the
corresponding number of active channels k in {1, ...,M}, if
exist, are unique, respectively.

Otherwise, if we cannot find such k and P ∗
total(ν) that

satisfy the two-step power allocation, from the KKT conditions
and the constraint Ptotal(ν) ∈ R+, we know P ∗

total(ν) = 0.
Finally, the parameter ω∗ ∈ R+ should be chosen such that
the average power constraint is satisfied. The proof follows.

4The twice differentiation is not continuous at the critical point when k
changes. Moreover, since γ̂ ∈ RM

+ follows a certain continuous distribution,
we have Σk > 0 and Πk > 0 with probability 1.
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APPENDIX IV
PROOF OF THEOREM 3

Proof: The proof is based on the following lemma.
Lemma 3: For all k in {1, 2, ...,M}, the following inequal-

ity always holds:

kΣkΠk ≤ 1. (42)
Proof: It can be shown by definition that kΣk is the

harmonic mean of {γ̂π(i)}ki=1, while Π−1
k is the geometric

mean of {γ̂π(i)}ki=1. Using the well known result that the
harmonic mean is always less than or equal to the geometric
mean, we know the ratio kΣkΠk ≤ 1 always holds, with
equality if and only if γ̂π(1) = γ̂π(2) = · · · = γ̂π(k).5 The
proof of Lemma 3 follows.

Now, we prove Theorem 3. If ω∗ ≤ 1, from Lemma 3 we
know ηk = (ω∗)M/kkΣkΠk ≤ 1. Then, Ptotal(ν) = 0 always
holds, and Eγ̂ [Ptotal(ν)] = 0.

Otherwise, if ω∗ > 1, the convergence for the average power
is equivalent to the convergence of the average water-level
ω(ν, k) given in Eq. (14), since the power assigned to each
channel cannot exceed the water-level. Substituting Eq. (22)
into Eq. (14) and removing the irrelevant terms, we get the
following condition:

Eγ̂

[
ΣkΠk

Σk − σ2
e (ηk − 1)

]+
< ∞. (43)

To prove the necessary condition, we need to find a lower-
bound of Eq. (43), which is given by

Eγ̂

[
ΣkΠk

Σk − σ2
e (ηk − 1)

]+
= Eγ̂

[
Πk

1− σ2
e(ω

∗)M/kkΠk + σ2
e/Σk

]+
(a)

≥ Eγ̂

[
Π1

1− σ2
eω

∗Π1 + σ2
e/Σ1

]+
(44)

where (a) holds since Πk is a monotonically increasing
function of k, while (ω∗)M/k and Σk are monotonically
decreasing functions of k, respectively. Plugging Σ1 = γ̂π(1)
and Π1 = 1/γ̂π(1) into Eq. (44), and upper-bounding it away
from infinity, we get the necessary condition given in Eq. (28).

Similarly, to prove the sufficient condition, we need to find
an upper-bound of Eq. (43), which is given by

Eγ̂

[
ΣkΠk

Σk − σ2
e (ηk − 1)

]+
≤ Eγ̂

[
Πk

1− σ2
e(ω

∗)M/kkΠk

]+
≤ Eγ̂

[
ΠM

1− σ2
e(ω

∗)MMΠM

]+
. (45)

Upper-bounding Eq. (45) away from infinity, we get the
sufficient condition given in Eq. (29). The proof of Theorem 3
follows.

5Since Pr{γ̂π(1) = γ̂π(2) = · · · = γ̂π(k)} = 0 for k ≥ 2. Therefore, the
maximum kΣkΠk = 1 is achieved by k = 1 with probability 1.
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APPENDIX V
PROOF OF PROPOSITION 1

Proof: If ω∗ ≤ 1, from Theorem 3 we know that
P ∗
total(ν) = 0 always holds. Thus, the spectral efficiency

C given in Eq. (31) is always equal to zero. The outage
probability is equal to one. Otherwise, if ω∗ > 1, based on
Eq. (22), it is sufficient to construct a nonempty region such
that

0 ≤ max
k

{Σk} ≤ min
k

{
σ2
e(ηk − 1)

}
. (46)

Inside this region, there is no positive solution for Eq. (22) for
all k ∈ {1, 2, ...,M}, and thus P ∗

total(ν) = 0 always holds. It
is clear that in Eq. (46), maxk{Σk} = Σ1 = γ̂π(1). On the
other hand,

min
k

{
σ2
e (ηk − 1)

}
≥ σ2

e

(
ω∗γ̂π(M)/γ̂π(1) − 1

)
(47)

where the inequality holds since mink{(ω∗)M/k} = ω∗ due
to ω∗ > 1, mink{kΣk} ≥ γ̂π(M) from the definition of the
harmonic mean, and mink{Πk} = Π1 = 1/γ̂π(1). Combining
Eqs. (46) and (47), we can observe that Eq. (46) always holds
as long as the following stronger condition is satisfied:

γ̂π(1) ≤ σ2
e

(
ω∗γ̂π(M)/γ̂π(1) − 1

)
. (48)

Solving the inequalities given in Eq. (48) and noting that
γ̂π(1) ≥ γ̂π(M) ≥ 0, we get the boundary conditions for this
region as follows:{

0 ≤ γ̂π(M) ≤ σ2
e(ω

∗ − 1)
γ̂π(M) ≤ γ̂π(1) ≤ min

{
ω∗γ̂π(M), σ

2
e(ω

∗ − 1)
} (49)

As long as ω∗ > 1 and σ2
e > 0, the probability measure

of the region indicated by Eq. (49) is nonzero, which is a
lower-bound for the outage probability. Therefore, the outage
probability is nonzero. The proof follows. As an example,
Fig. 7 plots the constructed outage region for the case of
M = 2.
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