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Abstract—Mobile-edge computing (MEC) and intelligent reflect-
ing surface (IRS) have been recognized as two key technologies
for 6G mobile networks. Consequently, we propose the IRS-
based MEC schemes for the delay-constrained quality-of-service
(QoS) provisioning over radio frequency (RF) powered 6G mobile
networks with non-linear energy harvesting (EH) model. Using the
IRS technique, multiple mobile users (MUs) first harvest energy
from a multi-antenna base station (BS) equipped with an MEC
server and then transmit their data to the BS for data-processing.
We first formulate a delay minimization problem for MUs under
their QoS requirements, by jointly optimizing the IRS’s phase-shift
matrices, the MEC server’s finite computation resource allocation,
the MIMO based BS’s multi-MU detection (MUD) coefficients, and
the energy/data transmission time and task allocation coefficient of
each MU. We define the total delay of each MU as the sum of its EH
time, data-transmission time, and data-processing time. Since our
formulated joint-optimization problem is non-convex with multiple
coupled variables, we apply the block coordinate descending (BCD)
method to decompose it into several subproblems which then can
be iteratively solved by a low complexity algorithm. Moreover,
we also extend our proposed scheme to IRS-based MEC over
Terahertz (THz) wideband mobile networks. Finally, we validate
and evaluate our developed delay minimization schemes through
numerical analyses, which show that the total delay of the RF-
powered MUs can be significantly reduced by using our proposed
schemes.

Index Terms—IRS-Based MEC, Delay-Bounded QoS, RF-
Powered 6G Mobile Wireless Networks, MIMO, THz.

I. INTRODUCTION

NOWADAYS, a variety of intelligent services, e.g, smart
home and telemedicine, have imposed great challenges

for energy and computing-power constrained mobile users
(MUs) [1]–[2]. Mobile-edge computing (MEC) together with
radio frequency (RF) based wireless energy transfer have been
recognized as two promising techniques to solve the above-
mentioned issues [2]–[3]. However, due to the poor propaga-
tion environments between MUs and energy sources (or MEC
servers), the data offloading rates and the amount of harvested
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energy of MUs may still be restrained, and thus the advantage
of RF-powered MEC cannot be fully utilized.

Recently, the intelligent reflecting surface (IRS) mechanism
has been considered as an innovative 6G technique to recon-
figure and enhance the wireless propagation environments [2]–
[5] for supporting the delay constrained QoS provisioning [6]–
[8]. An IRS consists of a large number of low-cost passive
or active reflecting elements that can be controlled by an
intelligent controller. The controller can automatically adjust
the phase shifts of the reflecting elements and then reconfigure
and enhance wireless propagation environments dynamically.
The IRS is able not only to reflect and enhance signals from
different paths, but also to reflect signals at a certain angle to
avoid obstacles. Therefore, the strength of the received signals
at the information receivers can be significantly enhanced.

There have been a large number of research works study-
ing the potentials of IRSs in enhancing wireless information
and energy transmissions. By using IRSs to help information
transmission, the authors of [9]–[10] studied the MUs’ sum
rate maximization problem by optimizing the IRS’s phase shifts
and the precoding matrices of the base station (BS). In [11]–
[12], the authors studied the BS’s transmit power minimization
problem by optimizing the BS’s power allocation and the IRS’s
phase shifts. Besides, the authors of [13] addressed the system
energy efficiency maximization problem by optimizing the BS’s
beamforming vectors and the IRS’s phase shifts. Unlike [13],
the authors of [14] maximized the minimum energy efficiency
for an IRS-based heterogeneous network by taking into account
channel uncertainties and transceivers’ hardware impairments.
The authors of [15] proposed a joint radio resource allocation
and phase shifts optimization scheme for an IRS-based wireless-
powered communication system to improve system energy
efficiency, where the IRS is used to help multiple MUs harvest
RF energy. Moreover, under the energy efficiency and spectral
efficiency constraints, the authors of [16] minimized the number
of reflecting elements required in an IRS-based wireless system
with one source node and one destination node. However,
how to utilize IRSs to improve both information and energy
transmissions is not considered in [9]– [16]. Therefore, in [17]–
[19], the authors leveraged the IRS to enhance both the energy
harvesting (EH) efficiency of the EH MUs and the information
transmission rates of the information decoding MUs. In [20]–
[21], the IRS was first utilized to improve the amount of energy
harvested by MUs in the wireless power transfer (WPT) phase,
and then was used to improve the information transmission
rates of MUs in wireless information transmission (WIT) phase,
where the IRS’s phase shifts in the WPT and WIT phases
were jointly optimized. However, the authors of [17]–[21]
did not consider MEC and the beneficial role of IRSs for
MEC over RF-powered 6G mobile networks. Besides, since
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MUs’ computation offloading and IRSs’ phase shifts affect each
other, the IRSs’ phase shifts selection schemes and/or resource
allocation schemes proposed in [17]–[21] may not be suitable
for IRS-aided MEC.

In [5], the authors provided an overview of the IRS-aided
MEC. The authors of [22]–[23] minimized the maximum learn-
ing error of all MUs by optimizing MUs’ transmit powers,
the BS’s beamforming vector, and the IRS’s phase shifts,
where the IRS is employed to transmit MUs’ machine learning
tasks to the MEC server co-located with the BS. The authors
of [24] studied the MUs’ delay minimization problem by jointly
optimizing system computation resources and the IRS’s phase
shifts. In [25], the authors maximized the total completed
task-input bits of MUs by jointly optimizing the IRS’s phase
shifts, the receive beamforming vectors at the access point
(AP), and MUs’ energy partition for local computing and data
offloading. In [26]–[28], the authors minimized the energy con-
sumption of IRS-aided MEC by optimizing the MEC server’s
computation resource allocation and the IRS’s phase shifts.
However, in [5] and [22]–[28], IRSs are only used for enhancing
data transmission between MUs and MEC servers. Therefore,
utilizing IRSs for both data and energy transmissions, the
authors of [29] maximized MUs’ task computation rates by
jointly optimizing the WPT-time allocation, the IRS’s phase
shifts, and MUs’ offloading decision, where each MU can
process task locally or offload task to the MEC server. While
the authors of [2] studied the system energy minimization
for IRS-aided and RF-powered MEC in the case of partial
offloading, by jointly optimizing the IRS’s phase shifts in both
energy and data transmission phases, and the system com-
munication and computation resources. Similarly, the authors
of [30] considered the total computation bits maximization
problem for IRS-aided and RF-powered MEC, where the IRS’s
phase shifts in energy transfer and data transmission phases
are also jointly optimized. However, for simplicity, the authors
of [2], [29]–[30], and the above-mentioned [17] and [20]–[21]
all calculated MUs’ harvested energy based on the ideal EH
model, where each MU’s energy conversion efficiency is a
constant. In fact, the practical RF-based EH circuits exhibit
the non-linear characteristics of wireless energy harvesting,
where each MU’s RF energy conversion efficiency changes with
the received RF power level [31]. Besides, the authors of [2]
and [29]–[30] ignored the time and energy required for data
(the offloaded data) processing at the MEC servers, and then
did not consider the MEC servers’ resource allocation which is
very important for MEC with finite computation resources [3].
In addition, the authors of [2] and [30] only considered the
scenarios when the BS and/or AP is equipped with a single
antenna, and then multiple MUs transmit data to the MEC
server based on the orthogonal multiple access technique, e.g.,
the frequency division multiple access (FDMA), to avoid the
mutual interference among MUs.

Consequently, for MEC over RF-powered mobile networks
with non-linear EH model, we employ an IRS to help to
improve both the EH efficiency and transmission rates of
multiple MUs. For the considered IRS-aided MEC, all MUs
offload data simultaneously to a multi-antenna BS equipped
with an MEC server, and the BS applies the multi-MU detection

(MUD) technique to reduce the co-channel interference among
MUs. Then, taking into account the quality-of-service (QoS)
requirements of MUs, we develop delay minimization schemes
for the IRS-aided and RF-powered MEC by jointly optimizing
the IRS’s phase-shift matrices, the MEC server’s computation
resource, the MIMO based BS’s MUD coefficients, and the
energy/data transmission time and task allocation coefficient
of each MU. Here, we define the total delay of each MU as
the sum of MU’s EH time, data-transmission time, and data-
processing time. Also, we extend our work to IRS-aided MEC
over Terahertz (THz) wideband mobile networks. Our main
contributions can be summarized as follows:

• Taking into account the QoS requirements of MUs, we
minimize the MUs’ delay for IRS-aided MEC over RF-
powered 6G mobile networks with non-linear EH model,
where an IRS is used to improve both the EH efficiency
and data-transmission rates between multiple MUs and
a multi-antenna BS equipped with an MEC server. In
our considered multi-antenna communication scenario, all
MUs offload data to the multi-antenna BS simultaneously
over the same spectrum, where the MUD technique is used
to reduce the co-channel interference among MUs.

• Since our formulated joint-optimization problem is non-
convex with multiple coupled variables, we apply the block
coordinate descending (BCD) method to decompose it into
several subproblems which can be iteratively solved by a
low complexity algorithm. Then, we propose a delay min-
imization scheme to jointly optimize the IRS’s phase-shift
matrices, the MEC server’s finite computation resource
allocation, the MIMO-based BS’s MUD coefficients, and
the energy/data transmission time and task allocation co-
efficient of each MU.

• To further reduce MUs’ total delay, under the non-linear
EH model, we also extend our work to IRS-aided MEC
over THz wideband mobile networks, where using FDMA,
we divide the total bandwidth of the used THz band into
several orthogonal sub-bands to combat the frequency-
selective fading. Using the BCD method, we also propose
a delay minimization scheme.

• Finally, we validate and evaluate our proposed delay
minimization schemes through numerical analyses, which
show that using our proposed schemes, the EH efficiency
and data-transmission rates of all MUs can be significantly
improved, and then MUs’ total delay can be significantly
reduced. Besides, numerical results also show that MUs’
total delay can be reduced generally by employing the
multi-antenna BS and the linear EH model.

The rest of the paper is organized as follows: Section II
builds up the system model. Section III develops the delay
minimization schemes using MUD. Section IV investigates
the delay minimization schemes under THz communications
architectures. Section V conducts the numerical analyses. The
paper concludes with Section VI. Moreover, for ease of reading,
we list the abbreviations in TABLE I.

Notation: CN×M is the space of N × M complex-valued
matrices. RN×M

+ is the space of N ×M positive real-valued
matrices. The bold-face lower-case and bold-face upper-case
letters, e.g., x and X, denote the vector and matrix, respectively.
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TABLE I
SUMMARY OF ABBREVIATIONS

MEC Mobile-edge computing
IRS Intelligent reflecting surface
MUs Mobile users
QoS Quality-of-service
EH Energy harvesting
BS Base station

MUD Multi-MU detection
BCD Block coordinate descending
Thz Terahertz
RF Radio frequency

WPT Wireless power transfer
WIT Wireless information transmission
AP Access point

FDMA Frequency division multiple access
MIMO Multiple-input multiple-output

CSI Channel state information
AWGN Additive white Gaussian noise

i.i.d. Independent and identically distributed
CPU Central processing unit
KKT Karush-Kuhn-Tucker
BSM Bisection search method
MSE Mean-square error
SCA Successive convex approximation
SDP Semi-definite programming
UHF Ultra High Frequency

TDMA Time division multiple access
NOMA Non-orthogonal multiple access

RP Relaxation and projection
SIC Successive interference cancellation

XH is the conjugate transpose matrix of X. |x| denotes the
vector element-wise absolute value of x. ||x|| denotes the
Euclidean norm of vector x and diag(x) denotes a diagonal
matrix with each diagonal entry being the corresponding entry
in x. For a matrix X, tr(X) stands for its trace, whereas [X]pq
represents its element in the p-th row and q-th column. Also,
arg(x) denotes the phase extraction operation, and CN (µ, σ2)
denotes the complex Gaussian distribution with mean µ and
variance σ2.

II. SYSTEM ARCHITECTURE MODELS

A. Network Architecture

We consider an IRS aided MEC over an RF powered mobile
wireless network as shown in Fig. 1, which is composed of one
BS equipped with M antennas using the MIMO techniques,
K single-antenna-equipped MUs, and an IRS consisting of N
reflecting elements [19]. We define the set of the BS’s antennas
as M , {1, 2, · · · ,m, · · · ,M} and the set of MUs as K ,
{1, 2, · · · , k, · · · ,K}. Because of limited computing capability,
each MU may offload a fraction of its computing tasks to the
MEC server for data processing via the BS. We assume that
the distance between the BS and the MEC server is very short,
so that the transmission time between them can be ignored.
Moreover, we use the terms “the BS” and “the MEC server”
interchangeably for simplicity. Due to the substantial path loss,
we only consider the first-time signal reflection by the IRS and
ignore signals that are reflected thereafter in a way similar to
the one used in [21].

The system is time-slotted, and each slot is divided into two
phases. In the first phase with duration t1, the BS sends RF
energy signals to all MUs in K and each MU harvests energy. In
the meantime, the IRS reflects the energy signals to all MUs. In

Fig. 1. The system architecture model for our proposed IRS-aided MEC
over RF-powered 6G mobile networks, where an IRS assists the computation
offloading and EH between K single-antenna MUs and a multi-antenna BS.

the second phase, the MUs use the harvested energy to offload
information to the BS, and the IRS reflects MUs’ signals to
the BS. Then, the MEC server helps to process data for the
MUs. Let t2,k and t3,k denote the data-transmission time of
MU k and the data-processing time at the MEC server for MU
k, respectively. Furthermore, we assume that all channels are
quasi-static within each time slot duration [21].

Let Gb,i ∈ CM×N , hb,k ∈ CM×1, and hi,k ∈ CN×1

denote the channel matrices or vectors between the BS and
the IRS, between the BS and MU k, and between the IRS
and MU k, respectively. We assume that system channel state
information (CSI), i.e., Gb,i, hb,k, and hi,k, ∀k ∈ K, can be
perfectly known at the BS using the recently proposed channel
estimation techniques in [32] for IRS-aided systems. Hence,
the results obtained in this paper actually provide theoretical
performance upper bounds for the considered system. In the
performance evaluation section, we will evaluate the effect of
CSI estimation errors on system performance. We define the
phase-shift matrices of the IRS in the first and second phases
respectively, as follows:{

Φ1 , diag
(
β1,1e

jθ1,1 , β1,2e
jθ1,2 , · · · , β1,Nejθ1,N

)
, (1)

Φ2 , diag
(
β2,1e

jθ2,1 , β2,2e
jθ2,2 , · · · , β2,Nejθ2,N

)
, (2)

where θ1,n, θ2,n ∈ [0, 2π],∀n ∈ N , {1, 2, · · · , N}, are the
phase shifts of the n-th reflecting element of the IRS in the
first and second phases, respectively. The reflection amplitudes
of each reflecting element in the first and second phases are
denoted as β1,n and β2,n, respectively, which can be adjusted
for different purposes. In this paper, each reflecting element
n of the IRS is typically designed to maximize the reflection
strength. Thus, similar to [20], we assume that β1,n = β2,n = 1,
∀n ∈ N . Moreover, we assume that the channel reciprocity
holds between the forward and reverse links, and consider both
the small scale fading and the large scale path loss for the
transmission channel [24]. The main symbols used in this paper
are listed in TABLE II.

B. Communication Model
During the first phase with duration t1, the BS transmits

energy signals with a fixed power level Pb. We denote the
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TABLE II
SYSTEM VARIABLES

Symbol Description
Gb,i Channel coefficients between the BS and the IRS
hb,k Channel coefficients between the BS and MU k
hi,k Channel coefficients between the IRS and MU k
N Number of the IRS’s reflecting elements
K Number of MUs
M Number of BS’s antennas
Φ1 IRS’s phase-shift matrix in the first phase
Φ2 IRS’s phase-shift matrix in the second phase
Pb BS’s transmit power
P t
k MU k’s transmit power

t1 Energy harvesting time
t2,k MU k’s signal transmission time

t3,k
Information processing time
at the MEC server for MU k

wk MU k’s MUD coefficients
sk MU k’s data/information signal
Eh

k Harvested energy at MU k
De

k Edge computing time for MU k

DL
k MU k’s local computing time

Lk MU k’s total information (in bits)
ck Proportion of MU k’s data offloaded to the MEC server
ak MU k’s CPU cycles to process one bit of data

Le
k

MU k’s information volume offloaded to
the MEC server (in bits)

LL
k MU k’s local computation volume (in bits)

f e
k Computation resource allocated to MU k

fL
k MU k’s local computing capability

χk Computation energy efficiency of MU k’s processor chip
Rk Achievable information rate from MU k to the BS
T Set of MUs’ information transmission time
C Set of data allocation proportions of MUs
W Set of MUD coefficients for MUs
F Set of computation resources allocated to MUs
Enl

k Amount of harvested energy at MU k
Pmax
k MU k’s maximum transmit power

Pmin
k MU k’s minimum transmit power
εk Ratio of channel bandwidth allocated to MU k

energy signal as x0 (E[|x0|2] = 1), where E[·] is the expectation
operation. Then, we can express the received energy signal at
MU k, denoted by yk, as:

yk = (Gb,iΦ1hi,k + hb,k)
√
Pbx0 + nk, (3)

where nk ∼ CN
(
0, σ2

k

)
denotes the independent and identi-

cally distributed (i.i.d.) additive white Gaussian noise (AWGN)
at MU k with zero mean and variance σ2

k [19]. Then, we can
write the RF power received at MU k, denoted by P h

k , as:

P h
k = E[|yk|2]
= |Gb,iΦ1hi,k + hb,k|2 Pb. (4)

Unlike the traditional linear EH model, similar to [31], we
apply a more general and more practical non-linear EH model,
which is given by:

Enl
k =

Ψnl
k − ΛkΩk

1− Ωk
, (5)

where  Ψnl
k = Λk

1+e
−gk(P h

k
−vk)

, (6)

Ωk = 1
1+egkvk

. (7)

Moreover, Enl
k denotes the amount of harvested energy at MU k,

Ψnl
k is the traditional logistic function, Ωk is a constant to

guarantee a zero input/output response, and Λk is the maximum

harvested power of MU k when its non-linear EH circuit satu-
rates. By adjusting the parameters Λk, gk, and vk, the non-linear
EH model given by Eq. (5) is able to characterize the joint
effects of various non-linear phenomena caused by hardware
limitations [33]. Therefore, we can express the harvested energy
at MU k in the first phase, denoted by Eh

k, as:

Eh
k = t1E

nl
k . (8)

In the second phase with duration t2,k, MU k uses a part of
harvested energy to transmit information. We denote the amount
of energy used by MU k for local computing as E2,k. By
exhausting the harvested energy, the transmit power of MU k,
denoted by P t

k, can be given by:

P t
k =

Eh
k − E2,k

t2,k
=

t1E
nl
k − E2,k

t2,k
. (9)

Let sk, where E[|sk|2] = 1, denotes the data/information
signal of MU k. Moreover, we use the conventional continuous
linear MUD technique [24] to reduce the interference among
different MUs, and denote W , {wk,wk ∈ CM×1, ∀k ∈ K}
as the set of MUD vectors for MUs, where wk is the MUD
vectors for MU k. Then, the signal received at the BS from
MU k, denoted by yk,b, can be written as:

yk,b = wH
k

[
(Gb,iΦ2hi,k + hb,k)

√
P t
ksk

+
∑

j∈K,j ̸=k

√
P t
jsk (Gb,iΦ2hi,k + hb,j) + nb

]
, (10)

where nb ∼ CN
(
0, σ2

b

)
denotes the i.i.d. AWGN at the BS

with zero mean and variance σ2
b . Therefore, we can write the

received SINR at the BS for MU k as:

γk =
P t
k

∣∣wH
k (Gb,iΦ2hi,k + hb,k)

∣∣2∑
j∈K,j ̸=k

P t
j

∣∣wH
k (Gb,iΦ2hi,k + hb,j)

∣∣2 + σ2
b

∣∣wH
k

∣∣2 .
(11)

Let the bandwidth of the system be B, and then the achievable
information rate from MU k to the BS is

Rk = B log2 (1 + γk) . (12)

C. Computation Model

In the following, we introduce the detailed computation mod-
els for the local computing and edge computing, respectively.

• Edge Computing: For MU k, we denote Lk, ak, and
Le
k as the total information (in bits) to be processed, the

number of central processing unit (CPU) cycles required
to process one bit of data, and the information volume
offloaded to the MEC server, respectively. For the MEC
server, we denote its maximum computing capability in
terms of CPU cycles per second as f e

total, and use f e
k(∑

j∈K f e
j ≤ f e

total

)
to denote the computation resource

allocated to MU k. Moreover, we denote ck as the pro-
portion of MU k’s data offloaded to the MEC server,
and denote C , {ck, ck ∈ [0, 1],∀k ∈ K} as the set of
data allocation proportions of MUs. Then, for MU k, the
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information volume offloaded to the MEC serve, i.e., Le
k,

can be given by Le
k = ckLk. Besides, we can write the

data-transmission time of MU k as t2,k = ckLk/Rk, and
the data-processing time of the MEC server for MU k as
t3,k = ckLkak/f

e
k. Given that the computation result is

typically of a small size [34], we neglect the feedback
delay. Defining the total delay of MU k as the sum of
its EH time, data-transmission time, and data-processing
time. Then, the total delay of MU k in edge computing,
denoted by De

k, is given by De
k = t1 + t2,k + t3,k.

• Local Computing: For MU k, we use LL
k to denote the lo-

cal computation volume of MU k, where LL
k = (1−ck)Lk.

Besides, we denote the computing capability at MU k in
terms of the number of CPU cycles per second as fL

k .
Since we aim to minimize the total delay of MUs and the
timeliness of information processing is highly required, we
take fL

k as MU k’s maximum computing capability. Then,
the data-processing time and the energy consumption of
MU k in local computing are tL

k = LL
kak/f

L
k and E2,k =

χk

(
fL
k

)3
tL
k, respectively, where χk is the computation

energy efficiency of the processor chip. Letting DL
k denote

the total delay of MU k in edge computing, we then have
DL

k = t1 + tL
k.

Based on the above discussion, we can write the total delay
of MU k, denoted by Dk, as follows:

Dk = max
{
De

k, D
L
k

}
= max

{
t1 + t2,k + t3,k, t1 + tL

k

}
= max

{
t1 +

ckLk

Rk
+

ckLkak
f e
k

, t1 +
(1− ck)Lkak

fL
k

}
.

(13)

III. DELAY MINIMIZATION SCHEME FOR MUS USING MUD
A. Optimization Problem Formulation

In this paper, we aim to minimize the total delay of all MUs
under their QoS requirements, by jointly optimizing the EH
time t1, the data-transmission time in T , {t2,k, t2,k ≥ 0, ∀k ∈
K}, the task allocation proportions in C, the MUD coefficients
in W , the IRS’s phase-shift matrices Φ1 and Φ2, and the
MEC server’s computation resource allocation coefficients in
F , {f e

k, f
e
k ∈ [0, f e

max],∀k ∈ K}, where f e
max is the maximum

computation resource that the MEC server can allocate to MU k.
Then, we can formulate the considered optimization problem as
follows:

min
t1,T ,C,F,W,Φ1,Φ2

{∑
k∈K

τkDk

}
(14)

s.t. C1 : t1, t2,k, f
e
k ≥ 0, ∀k ∈ K,

C2 :
∑
k∈K

f e
k ≤ f e

total,

C3 : 0 ≤ θz,n ≤ 2π, |ejθz,n | = 1, z = 1, 2, ∀n ∈ N ,

C4 : 0 ≤ P h
k ≤ Pmax

h , ∀k ∈ K,
C5 : Pmin

k

∣∣wH
k (Gb,iΦ2hi,k + hb,k)

∣∣2 ≥ X1, ∀k ∈ K,

C6 :
∑

j∈K,j ̸=k

Pmax
k

∣∣wH
k (Gb,iΦ2hi,k + hb,j)

∣∣2 ≤ X2,

∀k ∈ K,

where τk is a constant, which represents the weight of MU k,
Pmax
k and Pmin

k are the upper and lower bounds of MU k’s
transmit power, respectively, and Pmax

h denotes the upper bound
of the RF power received at MU k, whose specific value
is related to MU k’s non-linear circuit, etc. Moreover, C1
indicates that t1, t2,k, and f e

k are non-negative. C2 ensures
that the sum of computation resources allocated to all MUs
should not be larger than the maximum computing capability
f e

total of the MEC server. C3 specifies the range of the phase
shifts of the IRS. C4 indicates the range of P h

k . C5 and C6
are QoS constraints of MU k. C4 ensures that the received
signal power at the BS from MU k must be not less than
the threshold X1, while C6 guarantees that the interference to
MU k’s data transmission from other MUs must not be larger
than the threshold X2.

To tackle the formulated optimization problem specified by
Eq. (14), we first fix t1 = t1, and apply the classic BCD method
to decouple the optimization problem given by Eq. (14) into
several subproblems, by alternatively optimizing all variables.
Specifically, we firstly optimize the computation resource allo-
cation variables in F and the task allocation proportions in C,
for given MUD coefficients inW , the IRS’s phase-shift matrices
Φ1 and Φ2, and the transmission time in T . Then, we optimize
{W,Φ1,Φ2, T } for given F and C.

B. Joint Optimization of Computation Resource Allocation F
and Task Allocation C

We first optimize the computation resource allocation vari-
ables in F and the task allocation variables in C for given MUD
coefficients in W , IRS’s phase-shift matrices Φ1 and Φ2, and
transmission time in T . Then, we can simplify the optimization
problem given by Eq. (14) as:

min
F,C

{∑
k∈K

τkDk

}
(15)

s.t. C1, C2.

Relying on the aforementioned BCD technique, we can
optimize F and C as follows:

1) Optimization of C: We can optimize C based on the
following proposition similar to [24].

Proposition 1: For given W , Φ1, Φ2, T , and F , the optimal
allocation proportion c∗k for MU k is given by:

c∗k = argmin
ck
{Dk} , (16)

where (·)∗ denotes the optimal solution or suboptimal solution
of one function. Moreover, c∗k ensures that the value of DL

k is
equivalent to that of De

k, i.e., DL
k = De

k. Using Eq. (13), we
can obtain that

c∗k =
akRkf

e
k

akRk

(
f e
k + fL

k

)
+ f e

kf
L
k

. (17)

Proof: Please see Appendix A.
2) Optimization of F: We fixW , Φ1, Φ2, and T to optimize

the computation resource allocation variables in F . We plug c∗k
into the optimization problem given by Eq. (17). Since the EH
time t1 is fixed, we can reformulate the optimization problem
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given by Eq. (15) as follows:

min
F

{∑
k∈K

τk
(
akLkf

e
k + Lka

2
kRk

)
akRk

(
f e
k + fL

k

)
+ f e

kf
L
k

}
(18)

s.t. C1− C2.

Proposition 2: The optimization problem given by Eq. (18)
is a convex optimization problem.

Proof: Please see Appendix B.
Since the optimization problem given by Eq. (18) is convex,

it satisfies the Slater’s condition [35]. Then, we can obtain the
optimal solution to the optimization problem given by Eq. (18)
by using the Karush-Kuhn-Tucker (KKT). Specifically, we can
write the Lagrangian function of the optimization problem given
by Eq. (18) as follows:

L (f e
k, µ) =

∑
k∈K

τk
(
akLkf

e
k + Lka

2
kRk

)
akRk

(
f e
k + fL

k

)
+ f e

kf
L
k

+µ

(∑
k∈K

f e
k − f e

total

)
, (19)

where the variable µ ≥ 0 is the Lagrange multiplier associated
with C2. For givenW , Φ1, Φ2, and T , the optimal computation
resource (f e

k)
∗ allocated to MU k by the MEC server and

the optimal Lagrange multiplier µ∗ satisfy the following KKT
conditions:

∂L
∂f e

k

=
−τkLka

3
kR

2
k

akRk

(
f e
k + fL

k

)
+ f e

kf
L
k

+ µ∗ = 0, ∀k ∈ K, (20)

µ∗

(∑
k∈K

(f e
k)

∗ − f e
total

)
= 0, ∀k ∈ K, (21)

(f e
k)

∗ ≥ 0, ∀k ∈ K. (22)

The optimal Lagrange multiplier µ∗ is not equal to 0, i.e.,
µ∗ ̸= 0. Otherwise using Eq. (20), we can obtain Rk = 0,
∀k ∈ K, which is contrary to Proposition 1 from which we can
obtain DL

k = De
k and Rk ̸= 0, ∀k ∈ K. For given µ, the value

of f e
k can be directly derived from Eq. (20) and is given by:

f e
k =

√
τka3

kLkR2
k

µ − akRkf
L
k

fL
k + akRk

, ∀k ∈ K. (23)

To ensure f e
k ≥ 0 in Eq. (23), we have

√
τka3

kLkR2
k

µ −
akRkf

L
k ≥ 0, and then we can obtain µ ≤ τkakLk

(fL
k)

2 . Since

µ ̸= 0 in Eq. (23), the optimal µ∗ belongs to the interval

(µmin, µmax] =

(
0,min

k

{
τkakLk

(fL
k)

2

}]
. Since f e

k is monotonically

decreasing with respect to (w.r.t.) µ, we can use the well-known
bisection search method (BSM) to derive µ∗, and then derive
(f e

k)
∗ and c∗k, ∀k ∈ K, for given W , Φ1, Φ2, and T . We

summarize the algorithm for solving the optimization problem
specified by Eq. (15) in BSM-CRA/TA, where the BSM is
used to determine the computation resource allocation variables
in F and the task allocation variables in C. Moreover, in BSM-
CRA/TA, ρ denotes the iteration index and obj (f e

k) denotes
the objective function of the optimization problem given by
Eq. (18).

BSM-CRA/TA: Joint Optimization of F and C for given
Φ1, Φ2, W , and T

1 Input: The EH time t1 = t1, the phase-shift matrices
Φ1 and Φ2, MUD coefficients in W , the transmission
time in T , and the termination coefficient ϵ.

2 Output: F∗ and C∗ for given Φ1, Φ2, W , and T ;

3 Initialization
4 Initialize: ρ← 0, (f e

k), µmin, and µmax;
5 Repeat
6 Calculate c

(ρ)
k by using Eq. (17) for given (f e

k)
(ρ);

7 µ(ρ) = µmin+µmax
2 ;

8 Calculate (f e
k)

(ρ+1) by using Eq. (23) for given µ(ρ);
9 if obj((f e

k)
(ρ+1)

)− obj((f e
k)

(ρ)
) ≤ 0;

10 µmax = µ(ρ);
11 else
12 µmin = µ(ρ);
13 end
14 ρ = ρ+ 1;
15 Until The optimal objective value of the optimization

problem given by Eq. (15) converges;
16 Return F∗ and C∗ for given Φ1, Φ2, W , and T .

C. Joint Optimization of MUD Coefficients in W , IRS Phase-
Shift Matrices Φ1 and Φ2, and Transmission Time in T

Under the independence assumption of sk and n2 [20], [36],
we can write the mean-square error (MSE) of MU k, denoted
by ek, k ∈ K, as follows:

ek = E{|yk,b − sk|2}

=

∣∣∣∣wH
k (Gb,iΦ2hi,k + hb,k)

√
P t
k − 1

∣∣∣∣2
+

∑
j∈K,j ̸=k

∣∣wH
k (Gb,iΦ2hi,k + hb,j)

∣∣2 P t
j

+σ2
b

∣∣wH
k

∣∣2 . (24)

Moreover, based on Eq. (13), to minimize Dk for given t1, C,
and F , we only need to maximize Rk. Then, we can convert
the optimization problem given by Eq. (14) into the following
problem:

max
Φ1,Φ2,W,T

{∑
k∈K

Rk

}
(25)

s.t. C1− C6.

Based on the above introduced ek and the problem given by
Eq. (25), we first give the following Proposition 3.

Proposition 3: By using the MSE method, the maximization
optimization problem given by Eq. (25) is equivalent to the
following optimization problem:

min
Φ1,Φ2,W,T ,Q

{∑
k∈K

[qkek − log qk − 1]

}
(26)

s.t. C1, C3− C6,

where qk is a positive auxiliary variable and Q , {qk, qk ≥
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0, ∀k ∈ K}.

Proof: Please see [20] and references therein.

With the above transformation, we can use the BCD method
to solve the optimization problem given by Eq. (26) to obtain
Q, T , W , Φ1, and Φ2.

1) Optimization of the transmission time T for given
{W,Φ1,Φ2, C,F}: we first optimize T and the auxiliary
variables in Q for given W , Φ1, Φ2, C, and F . For given W ,
Φ1, Φ2, C, and F , we can re-write the optimization problem
given by Eq. (26) as the following equivalent optimization
problem:

min
T ,Q

{∑
k∈K

[qkek − log qk − 1]

}
(27)

s.t. C1,

where we re-write ek defined by Eq. (24) as follows:

ek =

∣∣∣∣wH
k bk

√
P t
k − 1

∣∣∣∣2 + ∑
j∈K,j ̸=k

∣∣wH
k bj

∣∣2 P t
j + σ2

b

∣∣wH
k

∣∣2
=
∑
j∈K

∣∣wH
k bj

∣∣2 P t
j − 2wH

k bk

√
P t
k + 1 + σ2

b

∣∣wH
k

∣∣2 , (28)

where bk , Gb,iΦ2hi,k + hb,k, ∀k ∈ K. Then, the objective
function of the optimization problem given by Eq. (27) is
convex w.r.t. each of the optimization variables in T and Q.
For simplicity of illustration, we denote the objective function
of the problem given by Eq. (27) as follows:

H(T ,Q) ,
∑
k∈K

[qkek − log qk − 1] . (29)

The function H (T ,Q) given by Eq. (29) is continuously
differentiable. Then, by checking the first-order optimality con-
ditions for minimizing the objective function w.r.t. qk and t2,k,
respectively, we can obtain that

∂H
∂qk

= ek − 1
qk

,

∂H
∂t2,k

= qk

(
wH

k bkt
− 3

2

2,k

√
E3,k −

∑
j∈K

∣∣wH
k bj

∣∣2 E3,k

t22,k

)
,

where E3,k , Eh
k − E2,k, ∀k ∈ K. Letting ∂H

∂qk
= 0 and

∂H
∂t2,k

= 0, we can then obtain the optimal q∗k and t∗2,k, k ∈ K,
for given W , Φ1,Φ2, C,F , which are given by:

q∗k = 1
ek
, ∀k ∈ K, (30)

t∗2,k =

( ∑
j∈K

√
E3,k|wH

k bj|2

wH
k bk

)2

, ∀k ∈ K. (31)

2) Optimization of the MUD coefficients in W for given
{T ,Φ1,Φ2, C,F}: Here, we optimize W for given Q, T , Φ1,
Φ2, C, and F . For given Q, T , Φ1, Φ2, C, and F , we can

re-write the optimization problem given by Eq. (26) as follows:

min
W

{∑
k∈K

[qkek − log qk − 1]

}
(32)

s.t. C7 : Pmin
k

∣∣wH
k bk

∣∣2 ≥ X1, ∀k ∈ K,

C8 :
∑

j∈K,j ̸=k

Pmax
k

∣∣wH
k bj

∣∣2 ≤ X2,∀k ∈ K,

where C7-C8 are derived from C5-C6, respectively, based
on the definition of bk , Gb,iΦ2hi,k + hb,k. Since C7 is
a non-convex constraint, the optimization problem given by
Eq. (32) is non-convex, which is difficult to solve. Therefore,
we use the first-order Taylor expansion to convert C7 into a
linear constraint, and use the successive convex approxima-
tion (SCA) method to solve the problem given by Eq. (32).
Converting C7 into a linear constraint around W(l−1) ,{

w(l−1)
k ,w(l−1)

k ∈ CM×1, ∀k ∈ K
}

, we can re-write the opti-
mization problem given by Eq. (32) as follows:

min
W

{∑
k∈K

[qkek − log qk − 1]

}
(33)

s.t. C8,

C9 : Pmin
k

∣∣∣∣(w(l−1)
k

)H
bk

∣∣∣∣2 − νk (wk − w(l−1)
k

)
≥ X1,

∀k ∈ K,

where W(l−1) and w(l−1)
k denote the values of W and wk,

respectively, in the (l− 1)-th iteration of the SCA method, and
νk ∈ C1×M is given by:

νk = 2

∣∣∣∣(w(l−1)
k

)H
bk

∣∣∣∣bH
k .

Moreover, C9 is derived from C7 by using the first-order Taylor
expansion to the left-hand side of C7 around W(l−1). Then,
the optimization problem given by Eq. (33) is convex w.r.t. W
around W(l−1), and thus it can be efficiently solved by using
CVX.

3) Optimization of the IRS’s phase-shift matrices {Φ1,Φ2}
for given {C,W, T ,F}: Now, we optimize the IRS phase-shift
matrices Φ1 and Φ2 by solving the optimization problem given
by Eq. (26) for given Q, C,W, T , and F . However, since
P t
k is a non-convex function w.r.t. Φ1, analyzing Eq. (11),

we can know that the N × N complex-valued matrices Φ1

and Φ2 are tightly coupled. Moreover, C3-C5 are non-convex
constraints w.r.t. Φ1 and Φ2. Hence, it is challenging to
directly obtain Φ1 and Φ2. For ease of calculation, we define
v1,n , ejθ1,n and v2,n , ejθ2,n , ∀n ∈ N , which satisfy
|v1,n| = 1 and |v2,n| = 1. Then, the IRS’s phase-shift matrices
Φ1 and Φ2 can be re-written as Φ1 = diag (v1,1, · · · , v1,N )
and Φ2 = diag (v2,1, · · · , v2,N ), respectively. Besides, we
denote vz , [vz,1, · · · , vz,n, · · · , vz,N ]T , z = 1, 2, and Hk ,
Gb,idiag(hH

i,k) ∈ CM×N , ∀k ∈ K. Then, we can re-write
Gb,iΦ1hi,k + hb,k in Eq. (4) and Gb,iΦ2hi,k + hb,k in Eq. (11),
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respectively, as follows:
Gb,iΦ1hi,k + hb,k = Gb,idiag

(
hH

i,k

)
v1 + hb,k (34)

= Hkv1 + hb,k,
Gb,iΦ2hi,k + hb,k = Gb,idiag(hH

i,k)v2 + hb,k (35)
= Hkv2 + hb,k.

To tackle the non-convex modulus constraint C3 in the opti-
mization problem given by Eq. (26), we denote vz , [vz, 1]

H ∈
C(N+1)×1, Vz , vzvHz ∈ C(N+1)×(N+1), z = 1, 2, and
Hk , [Hk,hb,k] ∈ CM×(N+1). Then, we have∣∣wH

k (Gb,iΦ2hi,k + hb,k)
∣∣2 =

∣∣wH
k (Hkv2 + hb,k)

∣∣2
=
∣∣wH

k Hkv2

∣∣2
= tr

(
V2HH

k wkwH
k Hk

)
. (36)

Similarly, we can re-write Eq. (4) as follows:

P h
k = E[|yk|2]
= |Gb,iΦ1hi,k + hb,k|2 Pb

= tr
(

V1HH
k Hk

)
Pb. (37)

Moreover, consider the following transformation:∣∣∣∣wH
k (Gb,iΦ2hi,k + hb,k)

√
P t
k − 1

∣∣∣∣2
=

∣∣∣∣wH
k (Hkv2 + hb,k)

√
P t
k − 1

∣∣∣∣2
=

∣∣∣∣wH
k Hkv2

√
P t
k + wH

k hb,k

√
P t
k − 1

∣∣∣∣2
= ||δkv2||2

= tr (V2ψk) , (38)

where δk ,
[
wH

k Hk

√
P t
k,wH

k hb,k
√

P t
k − 1

]
∈ C1×(N+1) and

ψk , δHk δk ∈ C(N+1)×(N+1), ∀k ∈ K. Then, based on
Eqs. (36)-(38), we can re-write the MSE in Eq. (24) as follows:

ek(V1,V2) =

∣∣∣∣wH
k (Gb,iΦ2hi,k + hb,k)

√
P t
k − 1

∣∣∣∣2
+

∑
j∈K,j ̸=k

∣∣wH
k (Gb,iΦ2hi,j + hb,j)

∣∣2 P t
j

+σ2
b

∣∣wH
k

∣∣2
= ||δkv2||2 +

∑
j∈K,j ̸=k

∣∣∣∣wH
k Hjv2

∣∣∣∣2 P t
j

+σ2
b

∣∣∣∣wH
k

∣∣∣∣2
= tr (V2ψk) +

∑
j∈K,j ̸=k

tr
(

V2HH
j wkwH

k Hj

)
P t
j

+σ2
b tr
(
wkwH

k

)
. (39)

Notice that [Vz]n,n = 1, z = 1, 2, ∀n ∈ N , which follows
from the modulus constraint of vz,n [20]. Moreover, V1 and V2

satisfy rank (V1) = 1 and rank (V2) = 1. Furthermore, based
on Eqs. (36)-(37), we can transform the non-convex constraint
C4-C5 as linear constraints. Then, treating P h

k in the expression
of P t

k given by Eq. (9) as an auxiliary variable, we can re-write

the optimization problem given by Eq. (26) as follows:

min
{V1,V2≽0,Ph}

{∑
k∈K

[qkek (V1,V2)− log qk − 1]

}
(40)

s.t. C1,

C10 : 0 ≤ tr
(

V1HH
k Hk

)
Pb ≤ Pmax

h , ∀k ∈ K,

C11 : Pmin
k tr

(
V2HH

k wkwH
k Hk

)
≥ X1, ∀k ∈ K,

C12 :
∑

j∈K,j ̸=k

Pmax
k tr

(
V2HH

j wkwH
k Hj

)
≤ X2, ∀k ∈ K,

C13 : [Vz]n,n = 1, z = 1, 2, ∀n ∈ N ,

C14 : Rank (V1) = 1,

C15 : Rank (V2) = 1,

where Ph ,
{
P h
k , 0 ≤ P h

k ≤ Pmax
h , ∀k ∈ K

}
and C10-C12 are

derived from C4-C6, respectively. We will solve the opti-
mization problem given by Eq. (40) by using the method of
semi-positive definite relaxation. We first drop the non-convex
rank-one constraint and remove the terms irrelevant to V1

and V2. Then, we can re-write the optimization problem given
by Eq. (40) as the following optimization problem:

min
{V1,V2≽0,Ph}

{∑
k∈K

[qkek (V1,V2)]

}
(41)

s.t. C1, C10− C13.

Since P t
j , ∀j ∈ K, j ̸= k, given by Eq. (9) is a

non-convex function w.r.t. P h
j , when P h

j ≥ vj , the term

tr
(

V2HH
j wkwH

k Hj

)
P t
j in Eq. (39) is not jointly convex w.r.t.

V1, V2, and Ph when P h
j ≥ vj . Thus, ek (V1,V2) given by

Eq. (39) is not jointly convex w.r.t. V1, V2, and Ph when
P h
j ≥ vj . In this case, similar to Subsection III-C.2, we

can convert ek (V1,V2) into a jointly convex function w.r.t.
V1, V2, and Ph by using the first-order Taylor expansion to
convert P t

j into a linear function of P h
j . Then, we can use

the SCA method to iteratively solve the problem given by
Eq. (41). Converting ek (V1,V2) into a convex function around
a fixed point

(
V(l)

1 ,V(l)
2 ,
(
Ph
)(l))

, then we can transform the
optimization problem given by Eq. (41) as a semi-definite
programming (SDP) problem which can be solved by using
CVX [35]. Let’s denote the optimal solution of the optimization
problem given by Eq. (41) as {V∗

1,V∗
2} for given C,W, T ,

and F . Generally, the relaxed optimization problem given by
Eq. (41) may not yield a rank-one solution [20]. Therefore,
the obtained {V∗

1,V∗
2} is generally a suboptimal solution to the

problem given by Eq. (40). To recover the suboptimal v∗z from
V∗

z , we first calculate the eigenvalue decomposition of V∗
z , i.e.,

V∗
z = UzΣzUH

z , where z = 1, 2, and Uz ∈ C(N+1)×(N+1)

and Σz ∈ C(N+1)×(N+1) denote a unitary matrix and a
diagonal matrix, respectively. Then, using the standard Gaussian
randomization method [37], we calculate vz based on the
equation vz = UzΣ

1/2
z xz, z = 1, 2, where xz ∈ C(N+1)×1 is a

random vector generated from xz ∼ CN (0, IN+1). Among all
candidate solutions vz’s, we select the best v∗z , which minimizes
the objective function of the optimization problem given by
Eq. (41). Finally, we can obtain v∗z = ejarg([v∗z ](1:N)/v∗z ,N+1),



9

based on which we can obtain the suboptimal Φ∗
1 and Φ∗

2 for
given C, W , T , and F .

We summarize the algorithm to solve the optimization prob-
lem given by Eq. (14) in IRS-DT/EH, where the IRS is
employed to help both data transmission and energy harvesting.
In IRS-DT/EH, we use ρ̃ to denote the iteration index. We
decompose the optimization problem given by Eq. (14) into
two optimization sub-problems given by Eq. (15) and Eq. (26),
respectively. The optimization problem given by Eq. (26) is
further divided into three optimization sub-problems given by
Eq. (27), Eq. (33), and Eq. (41), respectively. Specifically,
given t1 = t1, the algorithm starts with certain feasible
values of Φ

(0)
1 , W(0), T (0), and Φ

(0)
2 . Given a fixed solution

{Φ(ρ̃)
1 ,Φ

(ρ̃)
2 ,W(ρ̃), T (ρ̃)} in the ρ̃-th iteration, we can obtain

the optimal values C(ρ̃+1) and F (ρ̃+1) by using BSM-CRA/TA.
Based on the obtained C(ρ̃+1) and F (ρ̃+1), we obtain T (ρ̃+1)

for given {W(ρ̃),Φ
(ρ̃)
1 ,Φ

(ρ̃)
2 , C(ρ̃+1),F (ρ̃+1)}, and then we can

obtain W(ρ̃+1) for given {Φ(ρ̃)
1 ,Φ

(ρ̃)
2 , C(ρ̃+1),F (ρ̃+1), T (ρ̃+1)}.

In particular, we update the phase-shift matrices Φ
(ρ̃+1)
1 and

Φ
(ρ̃+1)
2 by solving the problem given by Eq. (41) using the

SDP approach in the (ρ̃+ 1)-th iteration. Finally, we obtain the
optimal EH time t1 that minimizes the objective function of the
problem given by Eq. (14) via a simple one-dimensional search
method over the interval (0, T ), e.g., the golden-section search
or the data-driven-based search [38], where T is a upper-bound
of t1.

IRS-DT/EH: Joint Optimization of Φ1, Φ2, F , W , C,
and T for given t1 = t1

1 Input: The EH time t1 = t1, the weight value τk, the
channel coefficients Gb,i, hi,k, and hb,k.

2 Output: The solution {Φ1,Φ2,F , T ,W, C} to the
problem given by Eq. (14) for given t1 = t1;

3 Initialization
4 Initialize: ρ̃← 0,Φ

(0)
1 ,Φ

(0)
2 ,w(0)

k , t
(0)
2,k, and (f e

k)
(0);

5 Repeat
6 Calculate c

(ρ̃+1)
k and (f e

k)
(ρ̃+1) using BSM-CRA/TA;

7 Calculate t
(ρ̃+1)
2,k and q

(ρ̃+1)
k for given c

(ρ̃+1)
k ,

(f e
k)

(ρ̃+1), w(ρ̃)
k , Φ(ρ̃)

1 , and Φ
(ρ̃)
2 ;

8 Calculate w(ρ̃+1)
k for given c

(ρ̃+1)
k , (f e

k)
(ρ̃+1), t(ρ̃+1)

2,k ,
Φ

(ρ̃)
1 , and Φ

(ρ̃)
2 ;

9 Calculate V (ρ̃+1)
1 and V (ρ̃+1)

2 by solving the
optimization problem given by Eq. (41);

10 Calculate Φ
(ρ̃+1)
1 and Φ

(ρ̃+1)
2 using V (ρ̃+1)

1 and
V

(ρ̃+1)
2 ;

11 ρ̃ = ρ̃+1;
12 Until The objective value of the optimization problem

given by Eq. (14) for given t1 = t1 converges;
13 Return The obtained solution {Φ1,Φ2,F , T ,W, C}

to the problem given by Eq. (14) for given t1 = t1.

D. Convergence and Complexity Analyses
In IRS-DT/EH, we first optimize {C,F} for given
{T ,W,Φ1,Φ2} by solving the problem given by Eq. (15)

using BSM-CRA/TA, and then optimize {T ,W,Φ1,Φ2} for
given {C,F} by solving the problem given by Eq. (26).
In BSM-CRA/TA, we need to solve the problem given by
Eq. (18) to obtain F for given {T ,W,Φ1,Φ2}. According
to [24], since the problem given by Eq. (18) is a mini-
mization problem which is convex and the obtained value of
its objective function is bounded, the obtained

{
F (ρ̃)

}
is a

monotone decreasing sequence and can converge to the optimal
F∗ for given {T ,W,Φ1,Φ2}. Then, the optimal C∗ for given
{T ,W,Φ1,Φ2} can be obtained by using Eq. (17). Therefore,
BSM-CRA/TA can converge. Similarly, since the optimization
problem given by Eq. (26) is a minimization problem, and
the obtained value of the objective function decreases as the
iteration number of IRS-DT/EH, i.e., ρ̃, increases following
Theorem 3 in [36]. Moreover, due to C1 and C3 − C6, the
objective function of the problem given by Eq. (26) is bounded.
Therefore, we can conclude that the proposed IRS-DT/EH
converges.

We assume that the iteration numbers of BSM-CRA/TA
and IRS-DT/EH are Ia and Ib, respectively. The computa-
tional complexity of BSM-CRA/TA mainly lies in calculat-
ing f e

k and µ by using Eq. (23) and the bisection search
method, respectively. Then, the total computational complexity
of BSM-CRA/TA is O

(
Ia log2

(
µmax−µmin

ϵ

)
K
)

[24], where ϵ
is a termination coefficient, and µmax and µmin can be ob-
tained through BSM-CRA/TA. We assume that the itera-
tion numbers of the SCA for solving the optimization sub-
problems given by Eqs. (33) and (41) are Ic and Id, re-
spectively. Since the computational complexities of the op-
timization sub-problems given by Eqs. (27) and (33) are
proportional to the number of variables, their computational
complexities are O(2K) and O(IcMK), respectively [39].
The SDP problem given by Eq. (41) can be solved with a
worst-case computational complexity of O(Id(N +1)4.5) [20].
Since the number of BS’s antennas is not less than 2, i.e,
M ≥ 2, the total computational complexity of IRS-DT/EH
is O

(
Ib
((
Ia log2

(
µmax−µmin

ϵ

)
K
)
+2K+IcMK+Id(N+1)4.5

))
.

IV. DELAY MINIMIZATION SCHEME FOR MUS UNDER THZ
COMMUNICATION

Because of the large bandwidth, Terahertz (THz) communi-
cation can be used to support ultra-high data transmission [40].
However, due to the features of Ultra High Frequency (UHF),
THz waves experience severe signal attenuations in territorial
communications and will lose a lot of energy when meeting
obstructions, which makes it challenging to efficiently use THz
communication. Fortunately, the above issue can be solved by
using IRSs, which can significantly enhance the strength of
THz signals by improving wireless propagation environments
and changing THz signals’ transmission direction to bypass
obstacles [41]–[42].

Consequently, we extend our work to IRS-aided MEC over
THz wideband mobile networks with non-linear EH, and study
the MUs’ delay minimization problem. Since THz communi-
cation operates over broadband channels, unlike the problem
given by Eq. (14), we divide system channel into K orthogo-
nal channels to combat the frequency-selective fading similar
to [43]. Each of the K channels can only be utilized by one of
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the K MUs, and then there is no interference among all the K
MUs. Hence, unlike in the problem specified by Eq. (14), the BS
need not employ the MUD technique to reduce the interference
among MUs. Thus, the signal received at the BS from MU k
is given by:

yk,b = (Gb,iΦ2hi,k + hb,k)
√

P t
ksk + nb. (42)

Then, the received SINR at the BS is

γk =
P t
k |(Gb,iΦ2hi,k + hb,k)|2

σ2
b

. (43)

The bandwidth of the system is B. We denote the ratio
of channel bandwidth allocated to MU k as εk, and define
ε , {εk, εk ∈ [0, 1], ∀k ∈ K}, where

∑
k∈K εk = 1. Then, the

channel bandwidth of MU k is εkB. Therefore, the achievable
information rate from MU k to the BS is

Rk = εkB log2 (1 + γk) . (44)

In this section, we consider MUs’ delay minimization for
IRS-aided MEC over THz wideband mobile networks with non-
linear EH model, where an IRS is used to improve both the EH
efficiency and data transmission rates between multiple MUs
and a multi-antenna BS equipped with an MEC server. Like
the optimization problem given by Eq. (14), we can formulate
the optimization problem for THz communication as follows:

min
Φ1,Φ2,t1,T ,F,C,ε

{∑
k∈K

τkDk

}
(45)

s.t. C1− C4,

C16 :
∑
k∈K

εk = 1, ∀k ∈ K,

C17 : Pmin
k |(Gb,iΦ2hi,k + hb,k)|2 ≥ X1, ∀k ∈ K.

As mentioned above, unlike the optimization problem given
by Eq. (14) in Section III, we apply the FDMA technique to
divide the considered THz channel into K orthogonal channels,
so that we do not have to consider the interference among MUs.
Therefore, unlike the problem specified by Eq. (14), we need
not consider C6 in the problem specified by Eq. (45). Also, we
need not consider the optimization of the MUD coefficients
at the BS, and instead we optimize the channel allocation
coefficient εk, ∀k ∈ K, for each MU. Since the variables are
coupled together, similar to the problem given by Eq. (14),
we still use the BCD method to solve the problem given by
Eq. (45) by dividing all variables into the two sets {F , C} and
{Φ1,Φ2, T , ε} and optimizing them iteratively. Because C16
related to εk is linear and there is no interference among MUs,
the algorithm complexity does not increase.

We summarize the algorithm for solving the optimization
problem given by Eq. (45) in IRS-DT/EH-THz, where the IRS
is utilized to help both data transmission and energy harvesting
for THz communication. Moreover, we use ρ̂ to denote the
iteration index of IRS-DT/EH-THz.

V. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of our proposed
IRS-DT/EH and IRS-DT/EH-THz. As for the transmission

IRS-DT/EH-THz: Joint Optimization of Φ1, Φ2, F , ε,
C, and T for given t1 = t1

1 Input: The EH time t1 = t1, the weight value τk, the
channel coefficients Gb,i, hi,k, and hb,k.

2 Output: The solution {Φ1,Φ2,F , T , ε, C} to the
problem given by Eq. (45) for given t1 = t1;

3 Initialization
4 Initialize: ρ̂← 0,Φ

(0)
1 ,Φ

(0)
2 , ε

(0)
k , t

(0)
2,k, and (f e

k)
(0);

5 Repeat
6 Calculate c

(ρ̂+1)
k and (f e

k)
(ρ̂+1);

7 Calculate t
(ρ̂+1)
2,k for given ε

(ρ̂)
k , Φ(ρ̂)

1 , and Φ
(ρ̂)
2 ;

8 Calculate q
(ρ̂)
k for given ε

(ρ̂)
k ,Φ

(ρ̂)
1 , and Φ

(ρ̂)
2 ;

9 Calculate ε
(ρ̂+1)
k for given Φ

(ρ̂)
1 ,Φ

(ρ̂)
2 , and t

(ρ̂+1)
2,k ;

10 Calculate q
(ρ̂+1)
k for given Φ

(ρ̂)
1 ,Φ

(ρ̂)
2 , ε(ρ̂+1)

k , and
t
(ρ̂+1)
2,k ;

11 Calculate V (ρ̂+1)
1 and V (ρ̂+1)

2 by solving SDP for
given ε

(ρ̂+1)
k and t

(ρ̂+1)
2,k ;

12 Calculate Φ
(ρ̂+1)
1 and Φ

(ρ̂+1)
2 using V (ρ̂+1)

1 and
V

(ρ̂+1)
2 ;

13 ρ̂ = ρ̂+ 1;
14 Until The optimal objective value of the optimization

problem given by Eq. (45) converges;
15 Return The obtained solution {Φ1,Φ2,F , T , ε, C} to

the problem given by Eq. (45) for given t1 = t1.

channel, we consider both the small scale fading and the large
scale path loss. Specifically, like [17], the small scale fading is
i.i.d. and follows the complex Gaussian distribution with zero
mean and unit variance, and the path loss in dB is given by:

PL = PL0 − 10α log10

(
d

d0

)
where PL0 is the path loss at the reference distance d0,
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Fig. 2. Performance of our proposed schemes with non-linear EH model.
(a) Convergence performance of our proposed IRS-DT/EH; (b) The total
minimized delay versus the EH time of IRS-DT/EH.

and d and α represent the length of the communication link
and the path loss exponent, respectively. We set PL0 = 30
dB, d0 = 1 m, and use αb,k = 3.5, αb,i = 2.2, and αi,k = 2.2
to denote the path loss exponents of the link between the BS
and MU k, the link between the BS and the IRS, and the
link between the IRS and MU k, respectively. Besides, we
use db,k, db,i, and di,k to denote the average distances from
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Fig. 3. The total minimized delay versus the average distance between the BS and MUs, the number of MUs, and the local computing capability of each MU.
(a) The total minimized delay versus the average distance between the BS and MUs; (b) The total minimized delay versus the number of MUs; (c) The total
minimized delay versus the local computing capability of each MU.

the BS to MUs, from the BS to the IRS, and from the IRS
to MUs, respectively. Without loss of generality, we assume
d = db,k = db,i = di,k = 10 m. Moreover, we take the
frequency of the local computing fk = 5×108 Hz, the variance
of noise σ2

b = 3.98× 10−14, the total computing capability of
the MEC server f e

total = 5 × 109 cycle/s, the QoS thresholds
X1 = 1 and X2 = 4, and the number of reflecting elements
N = 100.

Furthermore, for performance comparisons, we also consider
the following 10 baseline schemes (the scheme names in the
bold-face fonts are referring to our developed schemes):

• IRS-TDMA: Similar to [30], all MUs transmit information
based on time division multiple access (TDMA), and the
IRS is employed to help both EH and data transmission
of MUs.

• IRS-FDMA: This scheme is similar to IRS-TDMA except
that all MUs transmit data based on FDMA as in [2].

• IRS-DT: All MUs transmit data to the BS simultaneously,
while the IRS is only used to help data transmission of
MUs as in [24].

• IRS-EH: This scheme is similar to IRS-DT except that the
IRS is only used to help EH of MUs as in [18].

• No IRS: This scheme is also similar to IRS-DT, while no
IRS is used to help EH and data transmission of MUs.

• IRS-DT-THz: All MUs communicate with the BS over THz
channel based on FDMA similar to our proposed IRS-
DT/EH-THz, while the IRS is only used to help data
transmission of MUs similar to [42].

• IRS-EH-THz: This scheme is similar to IRS-DT-THz ex-
cept that the IRS is only used to help EH of MUs as
in [18].

• No IRS-THz: This scheme is also similar to IRS-DT-THz,
while no IRS is utilized to help EH and data transmission
of MUs.

• IRS-NOMA: This scheme is similar to our proposed IRS-
DT/EH, except that all MUs transmit data to the BS based
on non-orthogonal multiple access (NOMA).

• IRS-RP: This scheme is also similar to our proposed IRS-
DT/EH, except that we use the relaxation and projection
(RP) method [44] to optimize the IRS’s phase shifts.

Fig. 2(a) shows the convergence performance of our proposed
IRS-DT/EH, where we set the number of IRS’s reflecting
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Fig. 4. The total minimized delay versus the number of the IRS’s reflecting
elements, i.e., N . (a) The total minimized delay caused by IRS-DT/EH and
baseline schemes versus N ; (b) The total minimized delay caused by IRS-
DT/EH-THz and baseline schemes versus N for THz communication.

elements as N = 100. It can be observed that our proposed
IRS-DT/EH has a good convergence performance, which can
converge within about 14 iterations. Moreover, Fig. 2(b) shows
the total minimized delay of all MUs versus the EH time t1
for our proposed IRS-DT/EH. Analyzing Fig. 2(b), we can
observe that the total delay caused by IRS-DT/EH decreases
when the EH time increases from t1 = 0.2 s to t1 = 0.6 s,
and then increases when t1 > 0.6 s. This is because when the
EH time t1 becomes too large, for MUs, the amount of energy
harvested is larger than the amount of energy consumed, which
shows that it is necessary to optimize t1 so as to minimize the
total delay of MUs.

Figs. 3(a)-3(c) show the total minimized delay of all MUs
versus the average distance, i.e., db,k, between MUs and the BS,
the number of MUs, i.e., K, and the local computing capability
of each MU, i.e., fL

k , respectively. First, it can be seen that the
total delay posed by our proposed IRS-DT/EH is much smaller
than that caused by IRS-TDMA and IRS-FDMA, which are
similar to our IRS-DT/EH while MUs transmit information
to the BS based on TDMA and FDMA, respectively. The
reason for this is that for our IRS-DT/EH, the interference
among MUs can be efficiently reduced by optimizing the MUD
coefficients even all MUs transmit information simultaneously
over the same channel. Then, system spectrum efficiency can
be significantly improved as compared with IRS-TDMA and
IRS-FDMA especially when K takes a large value. Moreover,
we can observe that the total delay posed by our IRS-DT/EH
is also smaller or significantly smaller than that caused by
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Fig. 5. The total minimized delay versus the path loss exponent αi,k . (a)
The total minimized delay posed by IRS-DT/EH and baseline schemes versus
αi,k; (b) The total minimized delay posed by IRS-DT/EH-THz and baseline
schemes versus αi,k for THz communication.

the schemes IRS-DT, IRS-EH, and No IRS, where the IRS
is only used to help data/energy transmission or no IRS is
utilized. This indicates that IRS can efficiently improve both
data transmission and EH efficiencies, by enhancing wireless
propagation environments. In addition, analyzing Fig 3(c), we
can observe that the minimized delay by each scheme decreases
with the increase of fL

k , since more and more data can be
computed locally at MUs instead of being transmitted to the
MEC server with a long period of transmission time.

Figs. 4(a)-4(b) show the minimized delay versus the number
of the IRS’s reflecting elements, i.e., N . Analyzing Fig. 4(a),
we can see that the minimized delay caused by each scheme
decreases with the increase of N , and the performance gains
of our proposed IRS-DT/EH over the other schemes increase
as N increases. This suggests that the sophisticated design of
the IRS’s phase shifts can achieve a higher reflection-based
beamforming gain, and then significantly improve both data and
energy transmission efficiencies to reduce MUs’ total delay es-
pecially when N takes a large value. Similarly, Fig. 4(b) shows
that compared with the scheme No IRS-THz, the total delay of
MUs posed by our IRS-DT/EH-THz can be greatly reduced
by employing the IRS to help data and energy transmission for
THz communications. Moreover, analyzing Fig. 4(b), we can
observe that compared with the delay shown in Fig. 4(a), the
delay obtained for THz communication is much smaller. This
is because the bandwidth of THz communication is very large,
and then much more data can be transmitted to the MEC server
simultaneously. In addition, from Fig. 4(b), we can also see that
the minimized delay by each scheme in Fig. 4(b) has only a
little change with the increase of N . The reason for this is that
due to the large bandwidth of THz band, a limited number of
passive reflecting elements can only achieve limited reflection-
based beamforming gains for THz communication.

Fig. 5(a) shows the total minimized delay caused by IRS-
DT/EH versus the path loss exponent, i.e., αi,k, of the link
between the IRS and each MU k. First, it can be seen that
the total resulting delay by each scheme decreases with the
increase of αi,k. The reason for this is that the channel gain
between the IRS and MU k decreases as αi,k increases. Thus,
the signal transmission time, i.e., t2,k, and then the total delay
of MUs increases as αi,k increases. Moreover, we can observe
that our proposed IRS-DT/EH always outperforms the baseline
schemes in Fig. 5(a) no matter what values αi,k takes, and
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Fig. 6. The total minimized delay versus the bounded channel error Γk .
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the performance gains over these baseline schemes decrease
as αi,k increases. These are also because the IRS can improve
the efficiencies of data transmission and EH by reconfiguring
wireless transmission environments. However, when the chan-
nel is in deep fading, deploying one IRS may not be able
to significantly improve channel quality just as in the case
when αi,k takes a large value, e.g., αi,k = 3.2. Furthermore,
Fig. 5(b) also shows the minimized delay versus αi,k, for THz
communication. Due to the same reasons as above, we can
observe that our proposed IRS-DT/EH-THz outperforms the
baseline schemes in Fig. 5(b) regardless of whatever values αi,k
takes and the performance gains decrease as αi,k increases.

In practice, it is difficult to perfectly estimate the CSI of
the cascaded link between the BS and MU k via the IRS,
due to channel estimation errors, the limited signal processing
capabilities of the passive IRS, etc. Therefore, similar to [45]-
[46], we model the channel of cascaded link of MU k, i.e.,
Hk , Gb,idiag

(
hH

i,k

)
∈ CM×N , ∀k ∈ K, as Hk = Ĥk +△Hk,

where Ĥk is the estimation of Hk and △Hk denotes the
corresponding channel error vector. We assume that ∆Hk

satisfies the constraint ||△Hk|| ≤ Γk, where Γk is the radius
of the uncertainty region known by the BS. In Fig. 6, we
show the minimized delay versus the bounded CSI error Γk.
Analyzing Fig. 6, we can observe that the delay posed by all
schemes (except the scheme No IRS) increases with the increase
of Γk. The reason for this is that a large Γk generally increases
the channel fading of the cascaded links, which then reduces
the gains of the IRS for energy acquisition and information
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Fig. 8. Performance comparison between IRS-DT/EH and IRS-RP. (a) The
total minimized delay; (b) Program execution time.

transmission. Moreover, we can see that no matter what Γk is,
our proposed IRS-DT/EH still outperforms the other schemes
and the performance gains decrease as Γk increases.

In Fig. 7, we also show the total resulting delay under our
proposed IRS-DT/EH and a new scheme, i.e., IRS-NOMA,
which is similar to IRS-DT/EH except that all MUs transmit
data to the BS based on NOMA. Analyzing Fig. 7, we can
see that the minimized delay caused by IRS-DT/EH is slightly
larger than that caused by IRS-NOMA, and the difference
becomes smaller and smaller as the number of MUs, i.e., K,
increases. This is because when all MUs use NOMA to access
the network, a part of interference can be eliminated for each
MU by using the successive interference cancellation (SIC)
technique. Therefore, the data-transmission rate of each MU
caused by IRS-NOMA can be increased so that the data-
transmission time can be decreased. However, as K increas-
es, the data-transmission rate of each MU caused by IRS-
NOMA becomes more and more close to that posed by IRS-
DT/EH, and then the performance gains of IRS-NOMA over
IRS-DT/EH decrease as K increases. Since it is difficult to
determine the optimal decoding order for MUs at the BS and the
decoding complexity is very high when employing NOMA [47],
we still assume that all MUs transmit data simultaneously over
the same spectrum and the BS uses the MUD technique to
reduce interference among MUs in this paper.

In Fig. 8, we also show the performance comparison between
our proposed IRS-DT/EH and another scheme, i.e, IRS-RP.
IRS-RP is similar to IRS-DT/EH except that the RP method,
which is very suitable to address optimization problems with
complex constraints, e.g., QoS constraints, is utilized to opti-
mize the IRS’s phase shifts. Analyzing Fig. 8(a), we can observe
that the minimized delay caused by IRS-DT/EH is larger than
that caused by IRS-RP, when the number of reflecting elements,
i.e., N , takes a relatively small value. As N increases, the
total minimized delay posed by IRS-DT/EH becomes more
and more close to that posed by IRS-RP. However, analyzing
Fig. 8(b), we can observe that the execution time of IRS-
DT/EH is about 60 s, while the execution time of IRS-RP is
more than 800 s. Hence, the computation complexity of our
proposed IRS-DT/EH is significantly lower than that of IRS-
RP. Therefore, we choose to optimize the IRS’s phase shifts
based on SDP.

Fig. 9 shows the minimized delay caused by our proposed
IRS-DT/EH under the non-linear and linear EH models,
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Fig. 9. The total minimized delay caused by IRS-DT/EH under the non-linear
and linear EH models.
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where Λk characterizes the maximum harvested power of MU k
when its nonlinear EH circuit saturates and ηk is the fixed
energy conversion efficiency of MU k under the linear EH
model. From Fig. 9, we can see that the minimized delay
obtained under the non-linear EH model increases with the
decrease of Λk, since MU k cannot harvest enough power
when Λk takes a small value. Moreover, we can observe that
the minimized delay obtained under the non-linear model is
always lower than that obtained under the linear model when
Λk = 0.024. However, when Λk takes a relatively small value,
e.g., Λk = 0.012, the minimized delay obtained under the linear
EH model may be lower than that obtained under the non-linear
EH model. This is also because MU k cannot harvest enough
power when Λk = 0.012. Therefore, the parameters Λk and ηk
of EH circuits can significantly affect system performance.
Consequently, it is very necessary to reasonably model the
energy harvesting of RF-based MUs and select suitable circuit
parameters.

Fig. 10 shows the minimized delay versus the number of
BS’s antennas, i.e., M , posed by our proposed IRS-DT/EH and
the baseline IRS-DT, which can yield lower delay than other
baseline schemes as shown in Figs. 4(a)-4(b). From Fig. 10, we
can observe that the minimized delay of MUs decreases as M
increases, and the minimized delay posed by our proposed IRS-
DT/EH can be significantly reduced by using a multi-antenna
BS. Besides, the minimized delay posed by our proposed IRS-
DT/EH is always lower than that caused by IRS-DT whatever
values M takes.
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VI. CONCLUSIONS

We proposed delay minimization schemes for IRS-aided
MEC over RF-powered 6G mobile networks with non-linear
EH model, where using an IRS, multiple MUs first harvest
energy from a multi-antenna BS and then transmit data to the
BS for data-processing. We first formulated a delay minimiza-
tion problem for MUs under their QoS requirements, by jointly
optimizing the IRS’s phase-shift matrices, the MEC server’s
computation resource allocation, the BS’s MUD coefficients,
and the energy/data transmission time and task allocation co-
efficient of each MU. Since our formulated joint-optimization
problem is non-convex with multiple coupled variables, we
applied the BCD method to decompose it into several subprob-
lems which then can be iteratively solved with low complexity.
Furthermore, we also extended our work to IRS-aided MEC
over THz wideband mobile networks. Finally, we validated and
evaluated the proposed delay minimization schemes through
numerical analyses, which show that the total delay of the
RF-powered MUs can be significantly reduced by using our
proposed schemes.

APPENDIX A
THE PROOF OF PROPOSITION 1

Proof: For given ck ∈ [0, 1], ∀k ∈ K, if 0 ≤ ck ≤
(akf

e
kRk) /

(
akRk(f

e
k + fL

k ) + fL
k f

e
k

)
, we can re-write the de-

lay Dk defined in Eq. (13) as follows:

Dk(ck) = t1 +
(1− ck)Lkak

fL
k

, (46)

otherwise if (akf e
kRk) /

(
akRk(f

e
k + fL

k ) + fL
k f

e
k

)
< ck ≤ 1,

Dk(ck) = t1 +
ckLk

Rk
+

ckLkak
f e
k

. (47)

Using Eqs. (46)-(47), we can obtain that Dk decreases

with the increase of ck when ck ∈
[
0,

akf
e
kRk

akRk(f e
k+fL

k)+fL
kf

e
k

]
,

while Dk increases with the increase of ck when ck ∈[
akf

e
kRk

akRk(f
e
k+fL

k)+fL
kf

e
k

, 1
]
. Therefore, Dk achieves its minimum

value, when DL
k = De

k. Using DL
k = De

k, we can obtain the

optimal c∗k =
akf

e
kRk

akRk(f
e
k+fL

k)+fL
kf

e
k

, i.e., c∗k = argmin
ck
{Dk(ck)}.

This completes the proof.

APPENDIX B
THE PROOF OF PROPOSITION 2

Proof: We denote the second derivative of the objective
function of the optimization problem given by Eq. (18) w.r.t.
f e
k by Q, which is expressed as:

Q =
2τkLka

3
kR

2
k(f

L
k + akRk)

[akRk(f
e
k + fL

k ) + fL
k f

e
k]

3
. (48)

Since the values of Rk and fL
k are positive, and Lk, f

e
k ≥ 0, Q

must be non-negative. Hence the objective function is a convex
function w.r.t. f e

k. In addition, since C1 and C2 are linear, the
optimization problem given by Eq. (18) is a convex optimization
problem.
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