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Power-Delay Tradeoff over Wireless Networks
Xi Zhang, Senior Member, IEEE, and Jia Tang

Abstract—When transmitting stochastic traffic flows over wire-
less networks, there exists an inherent tradeoff between average
transmit power and corresponding queuing-delay bound. In this
paper, we investigate such a tradeoff and show how average
power increases as delay-bound requirement for wireless network
traffics becomes stringent. Specifically, we propose the resource
allocation schemes to minimize the power consumption subject
to a delay quality-of-service (QoS) constraint, where the delay
constraint is in terms of queue-length decay rate when an
arrival traffic is transmitted through the wireless networks.
We focus on orthogonal-frequency-division-multiplexing (OFDM)
communications under three different network infrastructures,
namely, point-to-point link, multihop amplify-and-forward (AF)
network, and multiuser cellular network. We derive the optimal
resource allocation policies for each scenario, and compare their
performances with other existing resource-allocation policies.
The obtained simulation and numerical results show that using
our proposed optimal resource-allocation policies, significant
power saving can be achieved. Furthermore, our OFDM-based
communications systems can significantly reduce the power
consumption, especially under stringent delay constraint.

Index Terms—Power control, statistical delay-bounded quality-
of-service (QoS) guarantees, effective capacity, wireless networks,
resource allocation and management, scheduling, OFDM-based
communications systems, convex optimization, information the-
ory.

I. INTRODUCTION

THE EXPLOSIVE demand for wireless services motivates
a rapid evolution of wireless wideband communications

and networks to transmit the various types of real-time
traffics. In order to efficiently support a large number of
distinct wireless applications such as video/audio and inter-
active data transmissions over mobile networks, the diverse
delay-bounded quality-of-service (QoS) guarantees play an
increasingly important role in the next-generation multimedia
wireless networks. This implies that there are more chal-
lenging problems emerging in wireless networks algorithm
designs, resource control, and performance optimizations.

Over the wireless environments, it is well known that power
is one of the most scarce radio resources. Consequently, a
great deal of research has been devoted to designing resource
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allocation policies that can minimize the transmit power.
Power minimization can not only save energy for the mobile
terminals, and thus prolong the network lifetime, but also
introduce less interference to the other users, and hence
increase the entire system capacity. At the same time, however,
to guarantee a certain delay-QoS constraint, sufficient power
needs to be assigned for the transmission in order to satisfy the
QoS required by the traffic flows. Therefore, there exists an
inherent tradeoff between transmit power and delay constraint.
In this paper, we focus on this power-delay tradeoff and study:
(i) the dynamics on how the transmit power increases as the
delay constraint gets more stringent; (ii) how to design the
optimal resource allocation policy that can minimize the power
consumption while still satisfying the required delay QoS.

In order to tackle the above problems, it is necessary to
introduce a tractable delay-QoS performance metric. Thanks
to the dual concepts of effective bandwidth [1] and effective
capacity [2], [3], [4], we obtain a powerful approach to
evaluate statistical QoS performance of the wireless net-
works. Specifically, we design the optimal resource allocation
schemes to minimize the average transmit power subject
to a delay constraint, where the delay QoS is in terms of
queue-length decay rate, which can be jointly determined
by the effective bandwidth of the arrival traffic and the
effective capacity of the wireless channel. In this paper, we
concentrate on the orthogonal-frequency-division-multiplexing
(OFDM)-based communications model, since this is one of
the most promising communication frameworks for future
wireless networks. Moreover, noting that OFDM is a special
case of parallel communications in the frequency domain,
our proposed scheme can be readily extended to other paral-
lel communications models, such as multiple-input multiple-
output (MIMO) system, one of the most popular spatial
domain parallel communication schemes.

Resource allocation for delay QoS guarantees has been
extensively studied in the context of power control, scheduling,
and admission control (see e.g., [3], [5], [6], [7], [8], [9], [4],
[10], [11], and references therein). In [5], [6], the authors apply
information theory to develop power control policies achieving
delay-limited capacity. Compared to ergodic capacity, which
does not impose any delay constraint, delay-limited capacity
focuses on another extreme where the delay QoS is stringent.
Such a pure information theoretic approach may not be fine-
grained enough for the user’s satisfactions, where a wide range
of delay constraints may be requested for different appli-
cations. On the other hand, increasing research efforts have
been paid to the tradeoff between energy/power consumption
and queuing-delay QoS control over wireless channels [12],
[13], [14], [15], [16], [17], [18]. A major category of the
related works [14], [15], [16], [17] attempt to guarantee the
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hard delay-upper-bound in queuing delay for delay-sensitive
services and/or to limit the maximum queue length under the
finite buffer size. In [15], the authors developed a scheme
to minimize the total energy expenditure over a single time-
varying fading channel, while ensuring the guarantees of the
deadline constraint. The problem was formulated by using
a stochastic control process over a continuous-time queuing
system, and the solution was obtained and characterized by a
Lagrangian duality approach.

The authors of [16] tackled the delay bound assurance
problem for a multi-packet scheduling scenario, where mul-
tiple packets with different packet sizes need to be deliv-
ered within their respective delay-bound requirement. Liter-
ature [17] proposed a novel calculus approach for energy
minimization under diverse strict delay/buffer constraints. The
authors of [14] studied distortion minimizing for multimedia
video under given delay bound constraints. These efforts in
fact all characterize the delay QoS requirement for a dynamic
queuing system in a deterministic way, where the delay bound
is targeted to be within certain threshold. These approaches
well qualify the needs of real-time services. However, over
wireless fading channels having essential nature of random-
ness, the deterministic hard delay-bound QoS guarantees are
usually too costly in terms of energy consumptions. This is
because the severe and time-varying deep fading states of
wireless channels will drastically increase energy expenditure
to compensate for the power loss during wireless transmis-
sions.

The second category of research efforts focused more on
guaranteeing the average-delay bound QoS guarantees for
queuing-delay control [12], [13], [17]. The authors of [12]
derived the scaling law trading off the average-delay against
the energy consumptions. They extended the Berry-Gallager
bound from a single user context to a multiuser one. They also
proposed a class of algorithms to achieve the fundamental
tradeoff characterized by the Berry-Gallager bound in the
multiuser scenario. Among others, literature [13] proposed
an on-line implementation for the optimal packet scheduling
algorithm towards energy minimization subject to the average-
delay constraint; authors of [17] considered the problem to
minimize the average delay subject to the power constraint.
The other related research works under the second category
include papers [7], [8], [9], which aim at the average-delay
control with power-delay tradeoff over wireless fading chan-
nels. While average-delay control can alleviate the pressure
on energy consumption as compared to the deterministic
hard delay-bound assurance, the average delay is a marginal
statistics, which may not be sufficient to characterize the
dynamics of delay distribution. In particular, for real-time
multimedia applications, the key QoS requirement is not the
average delay, but the bounded delay. So, the guarantees
of average-delay does not necessarily satisfy the delay QoS
requirements, especially for the bounded delay in real-time
and multimedia services.

In contrast to the above two categories of characterization
of delay QoS requirements, we in this paper concentrate on
statistically guaranteeing the bounded queuing delay through
a different yet more promising approach, often referred as the
statistical QoS guarantees. On the one hand, we do not impose

the hard delay bound QoS requirements for queuing delay
control. On the other hand, we aim at statistically controlling
the queue-length and delay distributions, and correspondingly,
the QoS provisioning is characterized by the queue-length-
/delay-bound violation probabilities, and effective capacity.
The motivation of our work is to confine the delay/queue-
length bound violation probability to a very small value range,
as the wireless channel fading status varies dramatically. In
the meantime, our approach can directly map the actual delay
QoS requirement to certain parameters termed QoS exponent,
which cannot be achieved by the average-delay optimization
control.

In [3], [4], [10], based on effective bandwidth and effec-
tive capacity, the authors investigated resource allocation for
statistical QoS guarantees. However, aforementioned previous
works only focused on the point-to-point based wireless
networks. In this paper, we extend the results to the sce-
narios for multiuser cellular and multihop wireless networks
under OFDM-based communication systems. In [11], [19],
the authors studied scheduling policies for multiuser cellular
networks, but the power allocation is not discussed. Instead,
we consider a joint scheduling, power allocation, and rate
allocation problem in this paper. The major contributions of
this paper are summarized as follows:

1) Framework: Combining information theoretic results
with the statistical QoS theory, we propose a frame-
work to investigate the power-delay tradeoff for wireless
networks. In order to find the optimal tradeoff, we
formulate a power minimization problem in a convex
optimization setting. This framework is generic and
applicable to different wireless network infrastructures.

2) Algorithms: Under our proposed framework, we de-
rive resource allocation algorithms that achieve the
optimal power-delay tradeoff under three different net-
work infrastructures: (i) point-to-point link; (ii) multihop
amplify-and-forward (AF) network; (iii) multiuser cel-
lular network. Considering the implementation issues,
we also derive a low-complexity suboptimal algorithm
for point-to-point link, and an adaptive allocation algo-
rithm for cellular networks, respectively. Moreover, over
the multiuser cellular networks, joint power allocation
and time-slot allocation provides guidelines on how to
design optimal scheduling policies for efficient QoS
guarantees.

3) Performance: We evaluate the performance of the opti-
mal power-delay tradeoff by extensive simulations. For
comparison purposes, we also derive the closed-form
effective capacity expressions for a number of existing
policies, under which the corresponding power-delay
tradeoff can be evaluated numerically. Simulation and
numerical results show that our proposed optimal re-
source allocations can reduce the transmit power signif-
icantly, especially when the delay constraint is stringent.
Furthermore, OFDM-based communications system can
greatly reduce the power consumption under stringent
delay QoS.

The rest of the paper is organized as follows. Sections II for-
mulates the problem and sets up the system model. Section III
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derives the power allocation policy for point-to-point link.
Sections IV and V develop the resource allocation strategies
for multihop AF networks and multiuser cellular networks,
respectively. Section VI conducts simulations and numerical
analyses to evaluate the performance of our proposed schemes.
The paper concludes with Section VII.

Notations. Throughout this paper, we use the following
notations. We use lower-case boldface letters to denote column
vectors. (·)T represents the transpose. [x]+ � max{0, x}. E[·]
stands for the expectation. All logarithm functions are based
on e, unless otherwise stated.

II. PROBLEM FORMULATIONS

A. Statistical QoS Guarantees

Since the early 90’s, statistical QoS guarantees have been
extensively studied in the contexts of effective bandwidth
theory [1], [20]. Basically, the effective bandwidth, denoted
by A(θ), is defined as the minimum constant service rate for
a given arrival process, such that a required QoS constraint θ
can be guaranteed. In the above definition, the QoS constraint
θ characterizes the queue-length decay rate. Specifically, for a
dynamic queueing system with stationary ergodic arrivals and
service processes, under sufficient conditions, the queue length
process Q(t) converges in distribution to a random variable
Q(∞) such that [1]

− lim
x→∞

log (Pr{Q(∞) > x})
x

= θ. (1)

In other words, the probability of the queue-length exceeding
a certain threshold x decays exponentially fast as x increases.
In Eq. (1), the parameter θ (θ > 0), called QoS exponent [2],
[3], determines this decay rate. A smaller θ corresponds to
a slower decay rate, which implies that the system can only
provide a looser QoS guarantee, while a larger θ leads to
a faster decay rate, which means that a more stringent QoS
can be supported. In particular, when θ → 0, the system can
tolerate an arbitrarily long delay; when θ → ∞, the system
cannot tolerate any delay.

Inspired by the effective bandwidth theory, the authors
of [2] proposed a dual concept termed effective capacity. The
effective capacity, denoted by S(θ), is defined as the maximum
constant arrival rate that a given service process can support
in order to guarantee a QoS requirement specified by θ.
Integrating effective bandwidth with effective capacity, we can
analyze the statistical QoS performance of a queuing system
where both arrival and service processes are time-varying. For
this general case, in order to guarantee a QoS constraint θ,
a necessary and sufficient condition is S(θ) ≥ A(θ). The
above decoupling of effective bandwidth and effective capacity
enables us to analyze A(θ) and S(θ) independently, while
achieving the QoS performance of the entire system.

B. Problem Formulation

Our problem is to find the minimum average transmit power
for a certain arrival traffic flow such that a required delay-QoS
constraint can be satisfied. To formulate a tractable problem in
the context of statistical QoS guarantees, first, we interpret the
delay-QoS constraint by a required QoS exponent θ. Second,

for a certain arrival traffic, we assume that the corresponding
effective bandwidth A(θ) of the arrival process is known.
Thus, we can focus on optimizing the service process. Our
problem becomes how to minimize the average transmit power
such that the resulting S(θ) still satisfies S(θ) ≥ A(θ) at
a given θ.1 Mathematically, we need to solve the following
general problem:

min
p∈C

∑
i

E [pi ] (2)

subject to

S(θ) ≥ A(θ) � A (3)

where C denotes a feasible set for the instantaneous transmit
power vector p = (p1, p2, ...pD)T , and the dimension D of
the vector p is determined by the specific problem. As θ
becomes larger and larger, indicating more and more stringent
QoS constraint, the power-delay tradeoff characterizes how the
required average transmit power increases with θ.

In general, the analytical expression of the effective ca-
pacity for an arbitrary stationary ergodic service process is
complicated and difficult to analyze (see e.g., [2, eq. (12)]).
However, when the service process is an independent and
identically distributed (i.i.d.) process, the effective capac-
ity expression can be greatly simplified. Let the sequence
{R[i] ≥ 0, i = 1, 2, ...} denote an i.i.d. service process. Then,
the effective capacity S(θ) of this process is given by [3]:

S(θ) = −1

θ
log
(
E

[
e−θR[i]

])
. (4)

In this paper, we assume that the channel is i.i.d. block-
fading, with one block independent of another block. Thus,
it can significantly simplify the effective capacity derivations.
Moreover, through our study in [3], we observe that there
exists a simple and efficient approach to convert the power
allocation policy obtained in i.i.d. block-fading channels to
that over the correlated block-fading channels, making the
investigation of i.i.d. block-fading channel more applicable.

Since log(·) is a monotonically increasing function, for each
given QoS constraint θ > 0, the constraint given in Eq. (3) is
equivalent to the following expression:

E

[
e−θR[i]

]
≤ e−θA. (5)

In the rest of the paper, we solve different versions of this
modified optimization problem expressed by Eqs. (2) and (5)
for different wireless network infrastructures.

C. System Model

To simplify the presentation, in this section we describe
the system based on a point-to-point model. For multihop
AF networks and multiuser cellular networks, we will further
detail the system descriptions in their respective sections.

We concentrate on a discrete-time OFDM system. The
transmitter and the receiver communicate through N subchan-
nels over a given spectral bandwidth B. A first-in-first-out

1The analytical results derived as the functions of θ in the rest of the paper
still hold true for the heterogeneous multiusers cases where θ differs for
different given users. However, to simplify the presentation, we just consider
the homogeneous users cases in the paper.
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(FIFO) buffer is equipped at transmitter, which buffers the data
frames to be transmitted to the receiver. The frame duration
is denoted by Tf , which is assumed to be less than the fading
coherence time, but sufficiently long so that the information-
theoretic assumption of infinite code-block length is mean-
ingful [5]. The frame is then divided into N substreams,
each transmitted through one of the subchannels. Based on
a given QoS constraint θ requested by the arrival traffic and
channel state information (CSI) fed back from the receiver, the
transmitter needs to find an optimal codeword (implemented
by the adaptive modulation and coding) and a corresponding
resource allocation strategy, which can minimize the average
transmit power subject to the QoS constraint S(θ) ≥ A(θ).

The discrete-time channel process is assumed to be block-
fading. The path gains are constant within a frame’s dura-
tion Tf , but vary independently from one frame to another,
following a certain continuous distribution. Note that our
proposed scheme is independent of channel distributions,
but we will focus on Rayleigh fading throughout the paper
for simplicity. The probability density function (pdf) of the
channel gain γn at the nth subchannels, denoted by pΓn(γ),
can be expressed as pΓn(γ) = 1

γn
e−

γ
γn , where γn denotes

the average channel gain for the nth subchannel with n =
1, 2, ..., N . Let γ[i] � (γ1[i], γ2[i], ..., γN [i])T denote the
instantaneous CSI at the ith time frame. When the receiver
feeds γ[i] back to the transmitter, for a given power allocation
p[i] � (p1[i], p2[i], ..., pN [i])T , the maximum transmission
rate, denoted by R[i], can be expressed as

R[i] =
TfB

N

N∑
n=1

log (1 + γn[i]pn[i]) (6)

which can be achieved by independent complex Gaussian
code-books. We assume that γ[i] can be perfectly estimated
at the receiver and reliably fed back to the transmitter without
delay. Moreover, given a power allocation p[i] and CSI γ[i],
we assume that the adaptive modulation and coding can choose
an ideal channel code for each frame, such that the transmis-
sion rate achieves its maximum R[i] given in Eq. (6). Based on
this assumption, the derived minimum average transmit power
using Eq. (6) serves as a lower-bound for real systems using
practical coding schemes.

In the following discussions, since the block-fading channel
process is i.i.d., its instantaneous marginal statistics is inde-
pendent of the frame index i, and thus we may omit the frame
index i for simplicity, unless otherwise stated.

III. POWER-DELAY TRADEOFF OVER A SINGLE LINK

A. Optimal Resource Allocation

In this section, we investigate the power-delay tradeoff for
a point-to-point OFDM link. In order to derive the optimal
resource allocation policy that minimizes the average transmit
power, we formulate the problem (P1) as follows:

(P1) min
p∈C1

N∑
n=1

E [pn ] (7)

subject to Eq. (5), where R[i] in Eq. (5) is given by Eq. (6),
and

C1 �
{
p|p = (p1, p2, ..., pN)T , pn ≥ 0, ∀n ∈ {1, 2, ..., N}

}
.

(8)
It is easy to verify that both the objective function Eq. (7)

and the constraint Eq. (5) are convex over the convex set C1.
Thus, this problem can be solved by the convex optimization
approach [21]. We derive the optimal resource allocation
policy, which is summarized by the following theorem.

Theorem 1: For each fading state γ = (γ1, γ2, · · · , γN )T ,
let π(·) denote a permutation of γ such that γπ(1) ≥ γπ(2) ≥
· · · ≥ γπ(N). Then, the π(n)-th component of p, denoted by
pπ(n), follows the water-filling formula and is determined by

pπ(n) =
[
ω − γ−1

π(n)

]+
(9)

where

ω = ν
Nβ+1
Mβ+1

M∏
m=1

γ
− β

Mβ+1

π(m) (10)

denotes the time-varying water-level, with ν chosen to meet
the QoS constraint Eq. (5), and β = θTfB/N represents
the normalized QoS exponent, and parameter M denotes the
number of active channels allocated with nonzero power,
which, if exists, is the unique integer in {1, 2, · · · , N} such
that ω > 1/γπ(m) for m ≤ M and ω ≤ 1/γπ(m) for m > M .
Otherwise, if such an M does not exist, we have pn = 0 and
the system is in an outage state.

Proof: The proof is provided in Appendix A.
Theorem 1 tells us that the optimal policy allocates the
transmit power across both frequency and time domains. Over
the frequency domain, the optimal allocation is always water-
filling, regardless of the QoS constraint [see Eq (9)]. On
the other hand, over the time-domain, the optimal allocation
heavily depends on QoS constraint [see time-varying water-
level ω]. In particular, when the QoS constraint is loose
(β → 0), ω converges to a constant. Thus, the temporal power
allocation becomes water-filling as well. On the other hand,
when the QoS constraint is stringent (β → ∞), the temporal
power allocation tries to “invert” the channel, under which the
delay-limited capacity can be achieved [5].

B. Suboptimal Allocation Algorithm

As mentioned above, the optimal frequency domain power
allocation is always water-filling, no matter what the QoS
constraint is. However, it is well known that with much lower
computational complexity, equal power allocation across fre-
quency domain is near optimal, especially at high SNR regime.
This fact motivates us to study low-complexity suboptimal
power allocation algorithm for implementation considerations.
Specifically, instead of water-filling at frequency domain, our
suboptimal algorithm simply applies uniform power distribu-
tion. At the time domain, we derive the optimal temporal
allocation policy in the following.

The temporal power allocation problem (P1′) can be for-
mulated as

(P1′) min
Ptot≥0

E [Ptot ] (11)
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subject to Eq. (5) with R[i] = R, where

R =
TfB

N

N∑
n=1

log

(
1 +

Ptotγn
N

)
(12)

where Ptot =
∑N

n=1 pn = Npn which denotes the total power
allocated to a fading state γ = (γ1, γ2, · · · , γN )T . It can be
verified again that problem (P1′) is a convex optimization
problem. We can readily derive this suboptimal policy by
using the standard Lagrangian technique as described by the
following proposition.

Proposition 1: The optimal temporal power allocation Ptot

is the unique solution of following equation:

ν

N∏
m=1

(
1 +

Ptotγm
N

)−β
{

N∑
n=1

γn

(
1 +

Ptotγn
N

)−1
}

− 1 = 0,

(13)

if ν
∑N

n=1 γn > 1, where ν is chosen to meet the QoS
constraint Eq. (5). Otherwise, if ν

∑N
n=1 γn ≤ 1, then we

have Ptot = 0.
Proof: The proof follows by the standard Lagrangian

approach, which is omitted for lack of space.
There is in general no closed-form solution for Eq. (13).

However, since the left-hand side of Eq. (13) is monotonically
decreasing convex function, numerical techniques such as
bisection search or Newton’s method can be efficiently applied
to find the solution. For instance, using Newton’s method, let
f(Ptot) denote the left-hand side of Eq. (13), we can update
Ptot as follows:

Ptot = Ptot − f(Ptot)

f ′(Ptot)
(14)

where

f ′(Ptot)=− ν

N

{
β

[
N∑

n=1

γn

(
1+

Ptotγn
N

)−1
]2

+

[
N∑

n=1

γ2
n

(
1 +

Ptotγn
N

)−2
]}

×
N∏

m=1

(
1 +

Ptotγm
N

)−β

. (15)

It is also worth noting that when the number of subchannels
N = 1, the suboptimal algorithm that we developed above
reduces to the optimal allocation policy derived in Theorem 1.

C. Performance of Constant-Power Rate-Control Policy

For comparison purpose, we also investigate power-delay
tradeoff performance of constant-power rate-control policy.
Under such a policy, there is no transmit power adaptation
over time and frequency domains, but the transmission rate
is adapted according to the fading states (by using adaptive
modulation and coding). Note that this policy is widely applied
in current wireless communication systems and under active
investigation for future wireless standards.

Following the similar idea to the previous sections, we can
formulate the power-delay tradeoff problem (P1′′) as

(P1′′) min
E[e−θR]≤e−θA

P (16)

where

R =
TfB

N

N∑
n=1

log

(
1 +

Pγn
N

)
. (17)

If we further assume that all the subchannels are i.i.d., then
the QoS constraint can be derived as

G1

(
θ, P

) ≤ e−θA (18)

where

G1

(
θ, P

)
� E

[
e−θR

]
=

[∫ +∞

0

(
1 +

Pγ

N

)−β

pΓn(γ)dγ

]N
(19)

The integral in Eq. (19) can be calculated by using the tech-
niques described in [22]. After some algebraic manipulations,
we derive the closed-form expression for G1

(
θ, P

)
as follows:

G1

(
θ, P

)
=

[(
N

Pγ

)
exp

(
N

Pγ

)
Eβ

(
N

Pγ

)]N
(20)

where Eν(·) denotes the νth order exponential integral func-
tion [22]. Thus, we obtain the minimum average transmit
power P by letting G1

(
θ, P

)
= e−θA.

IV. POWER-DELAY TRADEOFF OVER MULTIHOP AF
(AMPLIFY-AND-FORWARD) RELAY NETWORKS

A. Resource Allocation for Multihop AF Relay Networks

In this section, we turn to studying the power-delay tradeoff
over multihop AF relay OFDM networks. We focus on AF
relay due to its low complexity compared to decode-and-
forward (DF) relay. In AF protocol, the relay nodes simply
amplify and then forward what they receive to the next hop.
Let L denote the number of hops in the relay networks, and
p�,n with � = 1, ..., L and n = 1, ..., N denote the transmit
power assigned to the �th hop at nth subchannel, respectively.
Then, the achievable rate of AF protocol, denoted by RAF ,
can be expressed as [23]

RAF =
TfB

2N

N∑
n=1

log

⎛⎝1+

[
L∏

�=1

(
1 +

1

2p�,nγ�,n

)
− 1

]−1
⎞⎠ .

(21)

Note that in Eq. (21), each node works at half duplex mode,
which implies that they cannot transmit and receive at the same
time, but only for half of the frame duration, which results in
a factor of 2 shown in Eq. (21).

To characterize the power-delay tradeoff, our power mini-
mization problem (P2) for multihop AF networks becomes

(P2) min
p∈C2

L∑
�=1

N∑
n=1

E [p�,n ] (22)

subject to Eq. (5) with R[i] = R, where C2 �
{p : p�,n ≥ 0, for all �, n} and R is given by R = RAF in
Eq. (21).
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Problem (P2) is still not easy to solve since the constraint
is not convex on C2. To simplify the problem, we can make
the following approximation at the high SNR regime:

RAF � R̃AF � TfB

2N

N∑
n=1

log

⎛⎝1 +

[
L∑

�=1

1

2p�,nγ�,n

]−1
⎞⎠ . (23)

The difference between the actual value RAF and its ap-
proximated expression R̃AF becomes negligible as the SNR
increases. The approximation R̃AF in Eq. (23) takes the
advantages of mathematical tractability over RAF in Eq. (21).
Specifically, R̃AF is strictly concave on C2, which makes the
resultant optimization much easier than the original problem
(P2). Furthermore, R̃AF serves as a tight upper-bound for
RAF at the high SNR regime, which results in a lower-
bound for the minimum transmit power. On the other hand,
by applying the obtained policy directly to RAF , we can get
an upper-bound for the minimum transmit power (since it is
achievable). We will see by the numerical examples later that
the upper-bound and lower-bound are close to each other, even
at moderate SNR regime.

Replacing RAF by R̃AF , we derive the optimal resource
allocation policy for multihop AF relay networks in the
following theorem.

Theorem 2: Under optimal power allocation, R̃AF given in
Eq. (23) can be simplified as

R̃AF =
TfB

2N

N∑
n=1

log (1 + 2p̃nγ̃n) (24)

where γ̃n =
(∑L

i=1

∑L
j=1

1√
γi,nγj,n

)−1

and p̃n denotes
the total power allocated to the nth subchannel, i.e., p̃n =∑L

�=1 p�,n. Thus, under optimal power allocation, the multi-
hop AF relay problem is converted to a single hop problem,
where Theorem 1 provides the optimal power allocation
policy. Furthermore, the power allocated to each hop is given
by

p�,n =
1√
γ�,n

(
L∑

i=1

1√
γi,n

)−1

p̃n (25)

Proof: The proof is provided in Appendix B.

B. Performance of Constant-Power Rate-Control Policy

We also study the power-delay tradeoff of constant-power
rate-control policy for multihop AF relay networks. In this
section, we focus on a special case where the number of hops
L = 2. Then, the power-delay tradeoff problem (P2′) can be
formulated as follows:

(P2′) min
E[e−θR]≤e−θA

P (26)

where R = [TfB/(2N)]
∑N

n=1 log (1 + γ̂n) with γ̂n �
[P/(LN)]

(∑L
�=1 γ

−1
�,n

)−1

. We further assume that all the

subchannels are i.i.d., then the pdf of γ̂n, denoted by p
̂Γn

(γ),
can be derived as [24]

p
̂Γn
(γ)=γe

− 4Nγ

Pγ

(
4N

Pγ

)2 [
K0

(
4Nγ

Pγ

)
+K1

(
4Nγ

Pγ

)]
(27)

where Kν(·) denotes the νth order modified Bessel function of
the second kind [22]. Thus, the QoS constraint can be written
as follows:

G2

(
θ, P

)
� E

[
e−θR

]
=

[∫ +∞

0

(1 + γ)
− β

2 p
̂Γn

(γ)dγ

]N
≤ e−θA. (28)

Again, the integral in Eq. (28) can be calculated by using
the techniques described in [22]. After some tedious alge-
braic manipulations, we derive the closed-form expression for
G2

(
θ, P

)
given in Eq. (28) as follows:

G2

(
θ, P

)
=

{
√
π

[
Γ

(
β

2

)]−1
[
G3,1

2,3

(
8N

Pγ

∣∣∣∣−1, 1
2

−1, 1, β
2 −2

)

+ G3,1
2,3

(
8N

Pγ

∣∣∣∣−1, 1
2

0, 0, β
2 −2

)](
4N

Pγ

)2
}N

(29)

where Γ(·) denotes the Gamma function, and Gm,n
p,q (·|·) stands

for the Meijer’s G-function (due to the space limit, the readers
are referred to [22] for the detailed descriptions on the Meijer’s
G-function). Thus, we obtain the minimum average transmit
power P by letting G2

(
θ, P

)
= e−θA.

V. POWER-DELAY TRADEOFF OVER CELLULAR

WIRELESS NETWORKS

A. Optimal Resource Allocation

In this section, we concentrate on the power-delay tradeoff
over multiuser OFDM cellular networks. Without loss of
generality, we focus on downlink transmission, where the
base station transmit data streams to multiple mobile users
in a dynamic time-division multiple access (TDMA) mode.
Let K denote the number of mobile users in the networks,
pk,n with k = 1, ...,K and n = 1, ..., N denote the transmit
power assigned to the kth user at nth subchannel, and αk

with k = 1, ...,K denote the portion of frame assigned to
the kth user, respectively. Then, in order to characterize the
power-delay tradeoff, our power minimization problem (P3)
for multiuser cellular networks becomes

(P3) min
(α,p)∈C3

K∑
k=1

N∑
n=1

E [pk,n] (30)

subject to

E
[
e−θkRk

] ≤ e−θAk , for all k = 1, 2, ...,K (31)

where

Rk =
TfB

N

N∑
n=1

αk log

(
1 +

pk,nγk,n
αk

)
(32)

and C3 �
{
(α,p) : pk,n ≥ 0, 0 ≤ αk ≤ 1,

∑K
k=1 αk ≤ 1

}
.

Problem (P3) states that we need to find an optimal power
and time-slot allocation policy (which can also be considered
as a scheduling policy) to minimize the total average transmit
power, such that each user’s QoS constraint is satisfied. We
can verify, but omit details for lack of space, that the objective
function Eq. (30) and the constraint Eq. (31) are convex over
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the convex set C3. Based on convex optimization, we derive
the optimal power and time-slot allocation policy, which are
detailed in following theorem.

Theorem 3: Let qk,n = pk,n/αk denote the instantaneous
power assigned to the kth user at the nth subchannel. For
the kth user at each fading state, let Nk denote the index set
of subchannels which are allocated with nonzero power, and
Nk denote the cardinality of Nk, respectively. Furthermore,
let πk(·) denote a permutation of subchannel gains in a
descending order such that γk,πk(1) ≥ γk,πk(2) ≥ · · · ≥
γk,πk(Nk) � γmin

k . Then, the optimal power allocation follows
the classic water-filling algorithm and is determined by{

qk,π(n) = qmin
k +

(
1

γmin
k

− 1
γk,π(n)

)
n ≤ Nk

qk,π(n) = 0 n > Nk

(33)

where

qmin
k =

⎡⎣ μ− Σk

NkW
(

Πk(μ−Σk)
eNk

) − 1

γmin
k

⎤⎦+

(34)

where Πk �
(∏Nk

n=1 γk,πk(n)

) 1
Nk , Σk �

∑Nk

n=1 1/γk,πk(n),

and W (·) denotes the Lambert W -function [22]. On the other
hand, the optimal time-slot allocation αk for the kth user is
given by

αk =
1

βkNk

[
log (λkβkΠk)

1 +W
(

Πk(μ−Σk)
eNk

) − 1

]+
(35)

where βk = θkTfB/N . After obtaining qk,n and αk, the
optimal power allocation is determined by pk,n = qk,nαk.
In Eqs. (34) and (35), λk is chosen such that each user’s
QoS constraint is satisfied, and μ is chosen at each fading
state such that

∑K
k=1 αk = 1. If at some fading states,

λkβkΠk < 1 for all k, then
∑K

k=1 αk ≡ 0 (there is no μ

satisfying
∑K

k=1 αk = 1). In this case, we have pk,n = 0 for
all k and n, and the system is in an outage state.

Proof: The proof is provided in Appendix C.
Similar to the previous sections, we also derive the power-

delay tradeoff for the constant-power rate-control policy,
where each user is assigned resources as pk,n = (P/N)/K
and αk = 1/K . The performance of this scheme can be
evaluated by the approach similar to that we described in Sec-
tion III. Another alternative policy is optimal power allocation
only with fixed time-slot allocation (i.e., αk = 1/K). We will
compare these policies to the optimal one in the next section.

B. Adaptive Resource Allocation Algorithm

The optimal resource allocation policy derived above de-
pends on fading statistics through the Lagrangian multipliers
{λk}Kk=1. When the channel fading statistics are known,
multipliers {λk}Kk=1 can be numerically obtained in advance
by extensive searching procedure, which is in general compu-
tational complex. Furthermore, in practice, the fading statistics
may not be known a priori, which makes the problem of
finding {λk}Kk=1 even more complicated. Therefore, it is
practically important to estimate {λk}Kk=1 from the samples

of the channel fading process. In this section, we propose an
adaptive algorithm to estimate {λk}Kk=1.

Definition 1: A supgradient of a function f(·) at a point x
is any vector ξ such that

f(x̃) ≤ f(x) + (x̃− x)T ξ (36)

for all x̃.
Our fundamental approach for deriving the proposed adap-

tive algorithm is summarized by the following theorem.
Theorem 4: For a given set of multipliers λ, let p∗(λ),

α∗(λ), and μ∗(λ) denote the optimal resource allocation
obtained from Theorem 3. Also define the following dual
function:

J3(λ) � L3(α
∗(λ),p∗(λ), μ∗(λ),λ) (37)

where L3(α,p, μ,λ) is Lagrangian function given by Eq. (52)
in Appendix C. Then, a supgradient of J3(λ) at λ is given
by ξ � (ξ1, ξ2, ..., ξK)T , where

ξk = E

[
N∏

n=1

(
1 +

p∗k,n(λ)γk,n
α∗
k(λ)

)−α∗
k(λ)βk

]
− e−θAk (38)

In addition, J3(λ) is a concave function of λ.
Proof: The proof is provided in Appendix D.

Theorem 4 suggests the following update for λ by a
supgradient method [21]:

λ[i+ 1] = λ[i] + ε[i]ξ[i] (39)

where ε[i] denotes the step size at time i. Under the sufficient
condition on step size selection, the supgradient method is
guaranteed to geometrically converge to the optimal λ∗ for
concave J3(λ). It is also worth noting that at the points where
J3(λ) is differentiable, the supgradient reduces to gradient.

In practice, since the expectation in Eq. (38) is hard to
obtain in advance, we may replace it by time-average due to
the ergodicity as follows:

ξk[i] ≈ 1

i

i∑
j=1

[
N∏

n=1

(
1 +

p∗k,n(λ[j])γk,n[j]
α∗
k(λ[j])

)−α∗
k(λ[j])βk

]
−e−θAk . (40)

In summary, for each λ[i], we obtain resource allocation
(α[i],p[i]) by Theorem 3. Then, the adaptive algorithm up-
dates λ[i] by Eq. (39), where the supgradient is replaced by its
time-averaged version Eq. (40). Under the sufficient condition
on step size selection, the adaptive algorithm geometrically
converges to the neighborhood of the optimal λ.

VI. NUMERICAL AND SIMULATION EVALUATIONS

We evaluate the power-delay tradeoff based on our proposed
resource allocation by simulations and numerical methods. As
a simple example of OFDM-based communications systems,
we simulate a multicarrier system with N i.i.d. subchannels.
Also, we set the product TfB = 1 such that β = θ/N
for convenience. The other system parameters are detailed,
respectively, in each of the figures.

Figure 1 plots the optimal power-delay tradeoff over point-
to-point OFDM link with different number N of subchan-
nels. We can observe from Fig. 1 that for a single channel
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Fig. 1. The optimal power-delay tradeoff over point-to-point OFDM link,
where N subchannels are modeled as i.i.d. Rayleigh fading with γ = 0 dB.
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Fig. 2. The power-delay tradeoff comparisons between different policies
over point-to-point OFDM link, where N = 8 subchannels are modeled as
i.i.d. Rayleigh fading with γ = 0 dB.

system, the average power cannot be upper-bounded as the
QoS exponent increases, which is consistent with information
theoretic result that over the Rayleigh fading channel, channel
inversion scheme (i.e., the optimal policy as θ → ∞) requires
infinite power. On the other hand, as the number N of
subchannels increases, the average transmit power converges
to a finite value. The larger the number N given, the lower the
transmit power required. When N = 16, the average transmit
power virtually invariant as θ increases, which implies the
system can provide stringent QoS with almost the same power
consumption as that with loose QoS. Thus, the power-control
is virtually independent of delay-QoS constraint.

Figure 2 shows power-delay tradeoff comparisons between
different policies over point-to-point OFDM link, where the
number of subchannels N = 8. From Fig. 2 we can see
that our optimal policy significantly outperforms the constant-
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Fig. 3. The upper-bound and lower-bound for the power-delay tradeoff
over multihop AF networks, where N = 8 subchannels are modeled as i.i.d.
Rayleigh fading with γ = 0 dB.

power rate-control policy, especially when the delay constraint
is stringent. On the other hand, our suboptimal policy performs
similar to constant-power policy for small θ, but similar to
optimal policy for large θ. The performance loss compared to
optimal policy comes from uniform power allocation across
subchannels, which however gains the benefit of the low
computational complexity.

Figure 3 illustrates the upper- and lower-bounds for the
optimal power-delay tradeoff over multihop AF networks. In
the simulations, we assume that all the nodes are placed
on a straight line with equal distance. The distance between
each adjacent nodes are normalized to a unit such that the
average channel gain γ = 0 dB. Thus, over an L-hop network,
the distance between original sender and final receiver is
L. From Fig. 3 we can observe that the upper-bounds and
corresponding lower-bounds are close to each other, where the
differences are all within 1 dB for different values of θ. Also,
with N = 8 subchannels, the total average transmit power
only increases slightly as θ increases, which demonstrates the
advantages of using multichannels for relay networks.

Figure 4 compares the power-delay tradeoff using opti-
mal policy with other resource allocation policies, includ-
ing constant-power rate-control AF protocol, optimal direct
transmission, and constant-power direct transmission. In the
simulations, we assume that the path loss exponent is 3
for direct transmission. Fig. 4 shows that the optimal AF
relay significantly outperforms the direct transmission. The
advantage is about 5 dB compared with the optimal direct
transmission. On the other hand, the constant-power policies
cannot support stringent delay applications. The gap between
the optimal AF and constant-power policies cannot be upper-
bounded as θ increases.

Figure 5 shows power consumption for the multiuser net-
works with different number of users and different QoS
constraints. We assume that the users are homogeneous, i.e.,
all users have the same QoS constraint and the same channel
statistics. Furthermore, for a fair comparison, we assume that
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Fig. 4. The power-delay tradeoff comparisons between point-to-point link
and multihop AF relay, when using different policies. The number N = 8 of
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Fig. 5. The total average power consumption as the number K of users
increases. The number of subchannels N = 2. The QoS constraint of
the effective bandwidth is same for each user and is set to be A(θ) =
1/K nats/sec/Hz.

each user requests an effective bandwidth of A(θ) = 1/K ,
thus the sum effective bandwidth constraint

∑K
k=1 A(θ) = 1

is the same regardless of the number of users. From Fig. 5
we observe that when the QoS constraint is loose, there exists
a significant multiuser diversity gain [25] as the number K
of mobile users increases. For example, when θ = 10−2, the
power consumption with K = 10 users is 4 dB less than that
with K = 1 user. The reason is that the system can always
schedule the user with best channel conditions. However, when
the QoS is stringent, the multiuser diversity gain diminishes.
When θ = 101, the gain is only less than 1.5 dB for K = 10
compared to the case with K = 1. The reason is that with
stringent delay constraint, we need to schedule all the users
at each frame, no matter what the channel conditions are.

To better understand how delay constraint affects scheduling
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Fig. 6. The average number of scheduled users per frame under different
resource allocation policies. The number of subchannels N = 2 and the
number of users K = 5. The QoS constraint of the effective bandwidth is
same for each user and is set to be A(θ) = 1/K nats/sec/Hz.

10
−2

10
−1

10
0

10
1

10
2

−2

0

2

4

6

8

10

QoS Exponent (θ)

T
ot

al
A

ve
ra

ge
T
ra

ns
m

it
P
ow

er
(d

B
)

 

 
Const. power and fixed time-slot allocation
Opt. power and fixed time-slot allocation
Multiuser diversity scheduling
Joint opt. power and time-slot allocation

Fig. 7. The power-delay tradeoff comparisons between different resource
allocation policies for multiuser cellular networks. The number of subchannels
N = 2 and the number of users K = 5. The QoS constraint of the effective
bandwidth is same for each user and is set to be A(θ) = 1/K nats/sec/Hz.

policy performance and selections, Fig. 6 shows the average
number of scheduled users per frame. We can see that when
the delay constraint is loose, the average number of active
users converges to 1, thus multiuser diversity scheduling policy
applies. On the other hand, when the delay constraint is
stringent, the optimal policy always schedules all the users at
each frame, thus TDMA policy is near optimal. As the delay
constraint varies from loose to stringent, the optimal policy
changes from multiuser diversity scheduling to TDMA.

Finally, Fig. 7 compares the power-delay tradeoff of mul-
tiuser networks under different resource allocation policies.
The multiuser diversity scheduling selects the best user at each
frame and performs the water-filling power allocation. The
fixed time-slot allocation assigns each user with αk = 1/K
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of the time-slot. From Fig. 7, we can observe that our proposed
joint optimal power and time-slot allocation scheme outper-
forms all the other resource allocation policies. Fig. 7 also
shows that when the delay constraint is stringent, the policy
of optimal power allocation with fixed time-slot allocation is
close to the joint optimal power and time-slot allocation, which
again shows that TDMA scheduling is near optimal for large
θ. In this case, power allocation has more significant impact
on the power-delay tradeoff performance than scheduling.

VII. CONCLUSIONS

We proposed and analyzed the resource allocation to
achieve the optimal power-delay tradeoff over various wireless
networks. As the QoS exponent θ increases from zero to
infinity, the optimal power-delay tradeoff curve characterizes
how much power is necessary to guarantee a given QoS re-
quirement. For each network scenario, we derived the optimal
resource allocation policies. Our results indicate that over
an OFDM communication system, it is possible to achieve
stringent QoS guarantee with little power increase compared to
that with loose delay constraint. Compared to existing resource
allocation policies, which are widely employed in current
communications systems, our proposed resource allocation
policies significantly reduce the average transmit power under
the stringent delay constraints.

APPENDIX A
PROOF OF THEOREM 1

Proof: We construct the Lagrangian function as follows:

L1(p, λ) =

N∑
n=1

E[pn] + λ

(
E

[
N∏

n=1

(1 + pnγn)
−β

]
− e−θA

)
(41)

where β = θTfB/N and λ denotes the Lagrangian multi-
plier corresponding to the QoS constraint. Taking the partial
derivative of L1(p, λ) with respect to (w.r.t.) pn, we have

∂L1(p, λ)

∂pn
= 1− λβγn(1 + pnγn)

−1
N∏

m=1

(1 + pmγm)−β

= 1− λβγn(1 + pnγn)
−1Φ(p), (42)

where

Φ(p) �
N∏

m=1

(1 + pmγm)−β , (43)

which is a scalar function of the vector p. Then, by the Karush-
Kuhn-Tucker (KKT) condition [21], we have⎧⎪⎪⎨⎪⎪⎩

∂L1(p, λ)

∂pn
= 1− λβγnΦ(p)

(1 + pnγn)
= 0, if pn > 0;

∂L1(p, λ)

∂pn

∣∣∣∣
pn=0

=1− λβγnΦ(p)≥0, if pn = 0;
(44)

Assume that there are M (≤ N) channels satisfying pn > 0.
Next, by contradiction we will show the claim that the SNRs
of these M channels are γπ(1), γπ(2), . . . , γπ(M), respectively,
which are the M largest SNRs. If this claim does not hold,
there must exist a certain m ∈ {1, 2, . . . , N} and a certain

j ∈ {1, 2, . . . , N}, where m 
= j, such that pm > 0 and
pj = 0, but

γm < γj . (45)

However, based on Eq. (44), we can derive⎧⎪⎪⎨⎪⎪⎩
γm =

1 + pmγm
λβΦ(p)

>
1

λβΦ(p)
, for pm > 0;

γj ≤ 1

λβΦ(p)
, for pj = 0,

(46)

where Φ(p) is defined in Eq. (43). Equation (46) suggests that

γm > γj , (47)

contradicting the assumption given in Eq. (45). Therefore, by
contradiction we can see that all the M channels with non-
zero powers have the SNRs equal to γπ(1), γπ(2), . . . , γπ(M),
respectively.

Then, solving the M equations based on Eq. (44), and
considering the boundary condition pm ≥ 0, we can obtain
Eq. (9), where ν = (λβ)

1
Nβ+1 .

APPENDIX B
PROOF OF THEOREM 2

Proof: Construct the Lagrangian function as follows:

L2(p, λ) = λE

⎡⎢⎣ N∏
n=1

⎛⎝1 +

[
L∑

�=1

1

2p�,nγ�,n

]−1
⎞⎠−

β
2

⎤⎥⎦
−λe−θA +

L∑
�=1

N∑
n=1

E [p�,n] (48)

where λ denotes the Lagrangian multiplier corresponding to
the QoS constraint. For all p�,n > 0, we have

∂L2(p, λ)

∂p�,n
= 1−λβγ�,n

N∏
m=1

⎛⎝1+

[
L∑

�=1

1

2p�,mγ�,m

]−1
⎞⎠−

β
2

×
⎛⎝1+

[
L∑

�=1

1

2p�,nγ�,n

]−1
⎞⎠−1

×
⎛⎝1+p�,nγ�,n

L∑
i=1,i
=�

1

pi,nγi,n

⎞⎠−2

= 0. (49)

Letting Δn =
∑L

�=1 (p�,nγ�,n)
−1, we have

λβ

γ�,n(p�,nΔn)2

N∏
m=1

(
1 + 2Δ−1

m

)− β
2
(
1 + 2Δ−1

n

)−1
= 1 (50)

for all � = 1, 2, ..., L. Solving these L equations, we obtain

pi,n =

√
γj,n
γi,n

pj,n. (51)

Substituting Eq. (51) into Eq. (23) with some algebraic ma-
nipulations, we can obtain Eq. (24). The proof follows.
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APPENDIX C
PROOF OF THEOREM 3

Proof: Construct the Lagrangian function as follows:

L3(α,p, μ,λ) =

K∑
k=1

N∑
n=1

E [pk,n] + μ

(
K∑

k=1

αk − 1

)

+

K∑
k=1

λk

(
E

[
N∏

n=1

(
1 +

pk,nγk,n
αk

)−αkβk
]
− e−θAk

)
(52)

where μ denotes the Lagrangian multiplier corresponding to
time-slot constraint, and λk denotes the Lagrangian multipliers
corresponding to the kth user’s QoS constraint. For all αk > 0,
we have

∂L3(α,p, μ,λ)

∂αk
= μ− λkβk

N∏
m=1

(
1 +

pk,mγk,m
αk

)−αkβk

×
{

N∑
n=1

[
log

(
1 +

pk,nγk,n
αk

)
− pk,nγk,n

αk + pk,nγk,n

]}
= 0. (53)

Otherwise, if αk = 0, then pk,n = 0 for all n. Similarly, for
all pk,n > 0, we have

∂L3(α,p, μ,λ)

∂pk,n
= 1− λkβkγk,n

N∏
m=1

(
1 +

pk,mγk,m
αk

)−αkβk

×
(
1 +

pk,nγk,n
αk

)−1

= 0 (54)

In general, solving αk and pk,n from Eqs. (53) and (54) gives
us the optimal allocation policy. However, it is difficult to
directly solve Eqs. (53) and (54). Thus, we need to find an
alternative way to solve this problem.

Let us define qk,n = pk,n/αk as the instantaneous power
assigned to the kth user at the nth subchannel. Then, substi-
tuting qk,n into Eqs. (53) and (54), we obtain

N∏
m=1

(1 + qk,mγk,m)
αkβk =

λkβk

μ

×
{

N∑
n=1

[
log(1 + qk,nγk,n)− qk,nγk,n

1 + qk,nγk,n

]}
(55)

and

(1 + qk,nγk,n)
N∏

m=1

(1 + qk,mγk,m)αkβk = λkβkγk,n, (56)

respectively. Dividing Eq. (56) by Eq. (55), we obtain

1 + qk,nγk,n = μγk,n

×
{

N∑
m=1

[
log(1 + qk,mγk,m)− qk,mγk,m

1 + qk,mγk,m

]}−1

(57)

for all n = 1, 2, ..., N . Solving these N equations as described
by Eq. (57), we obtain the following expression:

qk,n = qk,m +

(
1

γk,m
− 1

γk,n

)
, ∀m,n ∈ Nk (58)

where Nk denotes the index set of subchannels for the kth
user which is allocated with nonzero power. It is clear from
Eq. (58) that the power allocation follows frequency-domain

water-filling formula. Expressing all qk,n in terms of qmin
k , we

can then obtain Eq. (33). Substituting Eq. (33) into Eq. (57),
we can derive

Nk

(
1 + qmin

k γmin
k

){
log

(
1 + qmin

k γmin
k

)
+

[
log

(
Πk

γmin
k

)
− 1

]}
= γmin

k (μ− Σk). (59)

Solving Eq. (59), we get the optimal power allocation for qmin
k

as expressed in Eq. (34). On the other hand, solving Eq. (55),
we get solution of αk as follows:

αk =

[(
βk

N∑
n=1

log(1 + qk,nγk,n)

)−1{
log

(
λkβk

μ

)

+ log

(
N∑

n=1

[
log(1+qk,nγk,n)− qk,nγk,n

1+qk,nγk,n

])}]+
. (60)

Plugging Eq. (34) into Eq. (60) with some tedious manipula-
tions, we obtain Eq. (35). This completes the proof.

APPENDIX D
PROOF OF THEOREM 4

Proof: To simplify the presentation, let us re-write the
original minimization problem (P3) in a compact form as
follows:

min
x

f(x) (61)

s.t. g(x) ≤ 0 (62)

h(x) ≤ 0 (63)

where x � (αT ,pT )T , the objective f(x) corresponds
to power minimization Eq. (30), the first constraint g(x)
corresponds to the QoS constraints in Eq. (31), and the
second constraint h(x) corresponds to time-slot constraint∑K

k=1 αk − 1 ≤ 0. The Lagrangian function given in Eq. (52)
can be rewritten as

L3(x, μ,λ) = f(x) + μh(x) + λTg(x). (64)

Let x∗(λ) and μ∗(λ) denote the optimal values of x and μ
for a given λ, which can be readily obtained by Theorem 3.
Then, the Lagrangian dual problem can be expressed as

J3(λ) = inf
x

L3(x, μ
∗(λ),λ) = L3(x

∗(λ), μ∗(λ),λ) (65)

Then, for all λ̃, we have

J3(λ̃) = inf
x

L3(x, μ
∗(λ̃), λ̃)

≤ L3(x
∗(λ), μ∗(λ̃), λ̃)

= f(x∗(λ)) + μ∗(λ̃)h(x∗(λ)) + λ̃
T
g(x∗(λ))

≤ f(x∗(λ)) + λ̃
T
g(x∗(λ)) (66)

= f(x∗(λ)) + λTg(x∗(λ)) + (λ̃− λ)Tg(x∗(λ))

= J3(λ) + (λ̃− λ)Tg(x∗(λ)) (67)

where Eq. (66) is due to the constraint h(x∗(λ)) ≤ 0 and
Eq. (67) is due to the Complementary Slackness condition:

μ∗(λ)h(x∗(λ)) ≡ 0. (68)

Thus, from Definition 1, g(x∗(λ)) = ξ is a supgradient of
J3(λ) at λ. Furthermore, since J3(λ) has supgradient at every
point λ, J3(λ) is a concave function. The proof follows.
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