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Abstract—We propose the adaptive control and reconfiguration
schemes for mobile wireless sensor networks (MWSN) to achieve
timely and accurate mobile multi-target tracking (MMTT) with
cost-effective energy consumption. In particular, our proposed
schemes can detect the mobile multi-targets’ random appearance
and disappearance in the clutter environments with high accuracy
and low energy cost. We develop the optimal mutual-information
based techniques to adaptively control the reconfiguration of
the proposed MWSN by designing the Distributed/Decentralized
Probability Hypothesis Density (DPHD) filtering algorithms. By
dynamically adjusting the sensors’ states, including their posi-
tions and activations, our schemes can efficiently improve the
observabilities of the tracked multi-targets. We further analyze
the asymptotic performance of our proposed schemes by deriving
the upper-bounds of the detection-error probabilities. Also pre-
sented are the performance analyses which validate and evaluate
our proposed adaptive control and reconfiguration schemes for
MWSN in terms of the multi-target states estimation accuracy,
the energy-consumption efficiency, and the robustness to the
interference/noise.

Index Terms—Distributed/Decentralized Probability Hypothesis
Density (DPHD) Filter, dynamic mobile multi-target tracking, mo-
bile wireless sensor networks (MWSN), mutual information-theory
based control.

I. INTRODUCTION

I N the clutter environments, Mobile Multiple Targets
Tracking (MMTT) is a promising technique to accurately

estimate the number of mobile targets, which is typically
time-varying, and their dynamic activities [1], [2]. Conse-
quently, MMTT has received more and more research attention.
Recently, Wireless Sensor Networks (WSN) have proven to be
the effective approach in solving the MMTT problem [3], [4].
On the one hand, abundant information can be conveniently
obtained through a large number of sensor nodes supporting
wireless transmissions. On the other hand, the independent
locations of distributed sensor nodes significantly enlarge the
coverage areas for MMTT. However, how to efficiently use
WSN to implement MMTT still faces many challenges. First,
achieving accurate estimation for MMTT in WSN usually
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requires highly-effective collaboration among sensor nodes.
Second, since the sensors use battery power supplies, the collab-
oration and transmission schemes of the WSN for MMTT need
to be energy efficient. Third, for the WSN with mobile sensor
nodes, the sensor-node reconfiguration needs to be dynamically
performed through the distributed control algorithms, such that
MMTT can adapt to the diverse activities of the mobile targets.

There have been various schemes proposed for MMTT in
WSN. Finite set statistics (FISST) introduced in [5] provides an
efficient framework for MMTT by using the Random Finite Set
(RFS) theory. Based on FISST, Probability Hypothesis Density
(PHD) filter recursively updates the first-order moment (also
called the intensity function) associated with the multi-target
posterior at each time step [6]. For tracking the time-varying
number of targets, the PHD filter’s computational complexity is
much less than the conventional joint probabilistic data associa-
tion filter. The Gaussian-mix PHD filter and particle PHD filter
are the two main types of PHD filters [7], [8]. The particle PHD
filter uses the highly nonlinear measurement models and thus is
more efficient in solving the MMTT problem as compared with
the Gaussian-mix PHD filter. To enhance the efficiency of the
particle PHD filter, several variants of the particle PHD filter
have been developed, such as the auxiliary particle PHD filter
and Rao-blackwellised particle PHD filter [9], [10]. However,
the above works mainly focus on improving the multi-target
state estimation accuracy obtained by the individual sensors.
However, and they did not consider the collaboration strategy
among the sensors.

To track the multiple targets with high accuracy, the control
system needs to have the abilities of determining the sensor
nodes’ activations and collaborations. Various sensor-collabo-
ration controlling schemes for the target-tracking problem have
been developed in [11]–[14]. In [11], the authors derived an en-
tropy-based information utility function for the sensor activation
problem, and also proposed an efficient numerical solution for
the centralized data fusion. The research in [12] develops an in-
formation-driven controlling scheme for the parallel-structured
WSN by using the particle filtering algorithm. However, these
works concentrate only on the single target tracking problem,
which cannot be directly applied to the MMTT problem.

The authors in [13] developed a dynamic sensor self-organi-
zation scheme for the MMTT problem. This sensor-controlling
scheme groups the sensor nodes into non-overlapping clusters
which track the targets independently. This scheme is effec-
tive when the mobile targets are far from each other. But, it
cannot effectively distinguish the individual targets when they
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are close to each other. Our previous work in [14] developed
a hierarchical wireless sensor network and the corresponding
sensor-collaboration schemes, which can obtain the high multi-
target states estimation accuracy in both of the above two cases.
While the above schemes can achieve effective control and ac-
curate estimation for the MMTT problem, they do not take the
energy-consumption issue into account. As a consequence, the
lifetime of WSN may be severely shortened, significantly de-
grading the performances of MMTT.

To overcome the aforementioned problems, we develop
the efficient distributed Mobile Wireless Sensor Networks
(MWSN)-based control system using our proposed Distributed/
Decentralized Probability Hypothesis Density (DPHD) fil-
tering algorithm, which detect the random appearance and
disappearance of the mobile multi-targets with high estimation
accuracy and low energy consumption. In particular, we focus
on a two-tier hierarchical MWSN consisting of the mobile
sensor nodes acting as the Cluster Heads (CH) and the static
sensor nodes acting as the cluster members. In our proposed
sensor-control system, we develop the optimal mutual informa-
tion utility based techniques to adaptively control the locations
of the CHs, the activations of the CHs and the cluster members,
and their collaboration schemes. At each time step, all the avail-
able CHs locally determine their candidate locations by jointly
minimizing the side-effect impacts of the movements and
maximizing the predicted information gain on the multi-target
states. After moving to the new location, each CH activates
the static sensor nodes located within its communication range
by minimizing the predicted energy consumption for future
target-tracking while ensuring the predicted multi-target states
estimation accuracy is above some pre-defined threshold. The
active sensor nodes act as the new cluster members, which
detect the tracked targets and send their local measurements to
their CHs. The CHs quantize and encode the raw data locally by
using the Huffman tree [16], filter the information considered
as the false alarms, and send the remains to the global Fusion
Center (FC), which reconstructs the detection information and
makes a final estimation of the multi-target states.

The rest of this paper is organized as follows. Section II
describes our MWSN-based control system models. Section III
proposes the Distributed/Decentralized Probability Hypothesis
Density (DPHD) filtering algorithm. Section IV derives the
optimal Cluster Head (CH)-movement controlling scheme.
Section V develops our cluster-member activation scheme.
Section VI analyzes the asymptotic performance of our pro-
posed MWSN-based control system. Section VII validates and
evaluates our proposed MWSN-based control system and our
proposed DPHD filtering algorithm in terms of the multi-target
states estimation accuracy and the total energy consumption
through extensive simulations. The paper concludes with
Section VIII.

II. SYSTEM MODELS

To track the multiple mobile targets accurately with low en-
ergy consumption and communication load, we consider a two-
tier hierarchical MWSN, which consists of mobile sensor
nodes acting as the Cluster Heads (CHs) and static sensor

Fig. 1. Architecture of our proposed adaptive control and reconfiguration
scheme for MWSN.

nodes acting as the cluster members under a mobile Cluster
Head (CH). The MWSN is responsible for tracking the number
and the trajectories of the multiple mobile targets. In particular,
the cluster members measure the states of the mobile targets,
and forward the obtained information to their CHs. The CHs
fuse and quantize the collected information from the cluster
members, which will then be transmitted to the global fusion
center for the final estimation of the mobile targets’ states. As
shown in Fig. 1, our proposed MWSN-based MMTT control-
system architecture is composed of the following three main
parts: 1) the sensors’ dynamics, 2) the DPHD filter, and 3) the
MWSN-based controller. We denote the states of all sensors, the
states of all mobile targets, and the measurements of all sensors
by the Random Finite Sets (RFS) , and , respectively,
(RFS and these variables will be elaborated on later), where

is the time step index. Moreover, in Fig. 1 is the control
vector generated by the MWSN-based controller. Based on their
states , the active sensor nodes detect the multi-target states

and obtain the sensing measurements . To estimate the
mobile multi-target states by using the sensing measurements,
we develop the DPHD filter to obtain the first-order moment
of the multi-target states, called the posterior intensity ,
and propagate to the next time step. The sensors’ current
states and the posterior intensity of the multi-target states are the
inputs of our proposed MWSN-based controller which controls
the movement and the activation of the available mobile sensor
nodes and the memberships of the static sensor nodes.

The objective of our control system is to minimize the dis-
tance between the exact posterior density of the mobile multi-
target states and the estimated posterior density of the mobile
multi-target states. This can be achieved through maximizing
the likelihood of tracking the mobile multi-target states, which
in the meantime minimizes the expected number of future ob-
servations required to track the mobile multi-target states. Fur-
thermore, the above optimization equivalently minimizes the
expected log-likelihood of the posterior density with each set
of the mobile multi-target states estimations. Thus, extending
the mutual information based techniques for the single-target
tracking [12] and applying the notion of the posterior intensity
obtained by our DPHD filtering algorithms [14], we can formu-
late our optimization problem for mobile multi-target tracking
as follows:

(1)
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where

and is the output vector of the MWSN-based controller as
depicted in Fig. 1. We can further simplify the optimization
problem specified in (1) as follows:

(2)

Equation (2) implies that to optimally control and recon-
figure the MWSN, we need to compute the output vector of
MWSN-based controller to maximize the mutual informa-
tion . Based on the general optimization problem
formulation for mobile multi-target tracking given in (1), we
can define the Mutual Information Utility Function for the th
mobile sensor in the following.

Definition 1: We define the Mutual Information Utility Func-
tion for the th mobile sensor node in the mobile multi-target
tracking model give in (1), denoted by ,
as follows:

(3)

The mutual information between the random variables
and can be used to evaluate the expected reduction of
uncertainty. However, the computational complexity of using a
Random Finite Set (RFS) representation to evaluate this quan-
tity increases exponentially with the cardinalities of mobile
multi-target states and measurements of all sensors . To
decrease the computational complexity, we mainly focus on
the interactions between the neighboring sensors (pairwise-co-
operation) and approximate the mutual information utility
function defined in (3) by its (pairwise-node) approximation
expression [12]

(4)

where ; otherwise, we will use (3). To show
how is close to its exact value of

, the following (5) and (6) can be shown
to be valid to calculate the difference, denoted by , between
the exact mutual-information value evaluated at the th active
mobile sensor node by using (3) and the approximation value
obtained by using (4):

(5)

(6)

where (5) and (6) can be proved as follows. Without loss of gen-
erality, we approximate the mutual information by using the first

(i.e., ) mobile sensor node’s current detection result. Then,
applying mutual information chain rule [16], we can expand the
mutual information into the following expressions:

(7)

Using the notion of conditional mutual information and its
commutative properties [16] for any three random variables ,

, and , we can get the following commutative identities:

(8)

Applying the identities given by (8), we can rewrite (7) as
follows:

(9)

Given the current mobile multi-target states, the obtained mo-
bile multi-target states detection results are independent. Then,
repeatedly using the commutative identities given in (8) again
and canceling the terms summing to zero, we can further sim-
plify (9) as follows:

(10)

Because we consider the MMTT problem in the homogeneous
MWSN, we can use the similar approach to obtain

(11)

where

(12)

which completes the proof for (5) and (6).
Therefore, when the active sensor nodes’ detection results are

not highly correlated, we only need to consider the interactions
between the neighboring sensors. Also note that in realistic sys-
tems, the detection results of the active sensor nodes typically
have low correlations due to the highly spacial-varying wireless
fading channels.

In our MWSN-based control system, we define the multi-
target states’ dynamics model , the sensors’ dynamics model
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, and the sensors’ measurements model , respectively, as
follows:

(13)

where with denoting

the th target’s position at the time step and being
its velocities at time step ,
denotes the states of all mobile targets, is the number of
the mobile targets, is the sampling period, is the factor
used to control the intensity of the target-state evolution noise,

represents the vector of the active sensors’ states, de-
notes the vector of the control inputs at the preceding time step,

is the dynamic function of the sensors’ states, is the
vector of multi-target states measurements, is the measure-
ment noise vector, denotes the measurement function,
and

(14)

To reconfigure the optimal hierarchical Mobile Wireless
Sensor Networks (MWSN), we define the control input

as a vector with the compo-

nent including the location and the activation status of the
th sensor nodes at time step , where denotes the

total number of the available sensor nodes.

III. DISTRIBUTED PARTICLE HYPOTHESIS

DENSITY FILTERING ALGORITHM

A. Random Finite Set Model for Multi-Target Tracking

The MMTT problem can be modeled by (Random Finite Set)
RFS framework. Letting be the state space of the single target
and be the number of targets at time step , we can repre-
sent the multi-target states at time step as , where

denotes the collection of all the finite subsets of . For
a multi-target states at time step , each compo-
nent either continues to exist at time step with the prob-
ability equal to , or dies with the probability equal
to . Therefore, given a state at time step

, we can model its behavior at next time step using the

RFS , which is equal to when the target
survives, and becomes the empty set when the target dies. A
new target at time step can appear either by the spontaneous
births which can be modeled by , or by spawning from
which can be modeled by . Given a multi-target

state at time step , we derive the multi-target states
at time step as follows:

(15)
Similarly, we denote the measurement-set collected by the th
sensor at time step as . A given target state

is either detected with the probability of
or missed with the probability of . Correspond-
ingly, we can model the measurement from the target state
at the th sensor using the RFS , which can take on
either when the target is detected, or the empty set
otherwise. The th sensor node can also receive a set of clutter

. Thus, given a multi-target states at time step , the mea-
surement-set collected by the th sensor is determined by

(16)

Letting be the number of the static sensors, we can model
the RFS of measurements at time step as follows:

(17)

B. Probability Hypothesis Density (PHD) Filter

The PHD filter is developed to propagate the posterior inten-
sity, denoted by , a first-order statistical moment of the
posterior multi-target states, which can be propagated in time
via the PHD recursion as follows:

1). The predicting step:

(18)

2). The updating step:

(19)

where is the sensor-measurement space, denotes
the single target transition PDF, is the intensity of the
spontaneous birth RFS, represents the intensity of
the spawning birth RFS, denotes the probability that a
target continues to exist given that its previous state is ,
is the PHD update operator to generate , is the
single target measurement likelihood, denotes the de-
tection probability given a state , and is the intensity
of the clutter RFS. Note that , where is
the average number of clutter points per scan and is the
probability distribution function of each clutter point. The local
maxima of the intensity are points in with the highest
local concentration of expected number of elements, and hence
can be used to generate estimates for the elements of . Thus,
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TABLE I
PARTICLE PHD FILTERING ALGORITHM

we can estimate the states of targets by investigating the maxima
of PHD.

C. Particle PHD Filtering Algorithm

The basic idea of the Particle PHD filter is the propagation
of a particle approximation to the posterior intensity function
through the PHD recursion specified by (18), (19). The pseudo-
code of our proposed Particle PHD filtering algorithm is de-
scribed in Table I. For simplicity, we assume that the intensity
of the spontaneous birth RFS can be modeled as a Gaussian
mixture of the form:

(20)

where , , , , , are given
model parameters that determine the shape of the intensity and

denotes Gaussian distribution.

D. Distributed Probability Hypothesis Density Filter

Each active sensor node maintains an identical copy of the
PHD filter. Initially, they achieve this by initializing all the fil-
ters using the same random seed. To encode the multi-target
states measurements at time step , the samples obtained at time

, where denotes the length of the time interval, are
propagated using multi-target states dynamic model. Assuming
that is the last time step when the local multi-target
states measurements are transmitted over the MWSN, each ac-

TABLE II
DPHD FILTERING ALGORITHM

tive sensor node constructs a histogram of the expected local
multi-target states measurements, quantizes the values of the
measurements, and encodes them using the Huffman encoding
algorithm. The active sensor nodes then transmit the encoded
multi-target states measurements to all the other active sensor
nodes, which decode the data to obtain the quantized multi-
target states measurements, and apply the PHD filter to get the
multi-target states estimation. The pseudo-code of our proposed
Distributed Probability Hypothesis Density (DPHD) filtering al-
gorithm is provided in Table II.

1) Proposed Quantization Scheme: To decrease the commu-
nication overhead in the MMTT problem, we employ a nonuni-
form quantization scheme on the local multi-target state mea-
surements. In our proposed quantization scheme, the construc-
tion of PMF begins by propagating the densities of the particles
from time step to , taking the predicted-measurement
error covariance matrix into account. We divide the range of the
expected measurements into multiple intervals, called bins, de-
pending on the required accuracy level, and intergrade the con-
tribution of each propagated particle distribution over the bins
to form the PMF. Letting the PMF for the appearance of the th
predicted particle in the measurement space as follows:

(21)
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where denotes the predicted-measurement error covari-
ance matrix. We define the conditional PMF for the predicted
measurement given the bin vector as

(22)

where and are the quantizer decision boundaries of the
bin vector . To ensure that the target-generated measurements
have smaller quantization error vector than the other measure-
ments, we derive a nonuniform quantizer based on the PMF of
the predicted multi-target states measurement, which uses the
Gaussian compander given by

(23)

where denotes the mean value of the th cluster, rep-

resents the standard deviation of the th cluster, and
is the Gaussian error function.

2) The Proposed Encoding And Decoding Scheme: After
transforming the original PMF for the appearances of the pre-
dicted particles to the companded measurement space, we create
the global Huffman dictionary to encode the companded local
multi-target states measurements by implementing the particle
PHD filtering algorithm at each active sensor node. At each time
step, we update the current particles using the quantized mea-
surements while taking into account the additional quantization
error, which has a uniform distribution with the standard devia-
tion , where is determined by

(24)

where denotes the standard deviation of the measurement
noise and is the bin size.

In our proposed measurement encoding scheme, we also
apply the local Huffman dictionary to reduce the number of
false alarms which consume many communication resources.
since the local particle PHD filters have the most updated
information including the new births of the tracked targets,
the target-generated measurements are most likely to have
fewer number of bits than the false alarms when encoded with
the local Huffman dictionary. Thus, we set an appropriate
pre-defined threshold for the number of bits to efficiently
remove the false alarms from the set of multi-target states
measurements. Then, we encode the remaining measurements
using the global Huffman dictionary. To indicate whether the
local multi-target states estimations will be transmitted over the
MWSN, we define an indicator function as follows:

if ;

otherwise.
(25)

In (25), is a function that generates the global Huffman
codes for the local multi-target states measurements.

E. Posterior Cramer-Rao Lower Bound for the Quantized
Measurements

To evaluate our proposed DPHD filtering algorithm in the
MMTT problem, we derive the Posterior Cramer-Rao Lower
Bound (PCRLB) for the multi-target states estimation obtained
through the quantized measurements.

1) Posterior Cramer-Rao Lower Bound (PCRLB): The esti-
mation error covariance matrix for the unbiased estimator
has a lower bound, called PCRLB, which is given by

(26)

where denotes a function of taking expectation and is the
Fisher information matrix [15]. The matrix can be com-
puted by the Riccai-like recursion as follows:

(27)

where

(28)

2) PCRLB for the Quantized Measurements: The quantized
multi-target-state measurements defined in (22) satisfies

, using (25), where means that
the matrix is elementwise less than the matrix and
means that is elementwise not bigger than . Then, using
(22) we derive the conditional PMF of the quantized measure-
ments as follows:

(29)

(30)

where is the th sensor’s state and denotes the local
multi-target states measurement noise at the time step .

Assuming that follows the Gaussian distribution given by
, we rewrite (30) as follows:

(31)

(32)

(33)
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where

(34)

where

Letting and be the Fisher information
matrix for the local multi-target states measurement with and
without uncertainty, respectively, we have the following result:

(35)

where is a specified system parameter, which typically de-
pends on the probability, denoted by , of detection, the
clutter intensity , the standard deviation of the quantized mea-
surement error , and the volume of the observation region .

By using (33) and (34), we obtain the value of as
follows:

(36)

(37)

(38)

where

...
. . .

... (39)

Using the particle PHD filtering algorithm, we can recursively
derive the estimation of as follows:

(40)

where denotes the number of the iterations implemented in the
particle PHD filtering algorithm, is the multi-target states
estimation obtained in the th iteration. Using (35) and (40), we
have the following results:

(41)

(42)

Fig. 2. Candidate locations for the �th CH at time step �� � ��.

IV. OPTIMAL CLUSTER HEAD (CH)-MOVEMENT

CONTROL SCHEME

In our proposed mobility control system, we determine where
each active CH moves based on whether the new location will
increase the information gain on the multi-target states. We first
predict all the possible multi-target measurements obtained
from all the possible candidate locations that the CH can move
to. We then treat these predicted measurements as the exact
measurements, as if they were from the CHs currently located
at these candidate locations. Thus, we consider the control
of the CHs’ movements as the problem of selecting one of
the predicted measurements that are expected to obtain the
maximum information gain on the multi-target states.

Considering the th CH located at the position at
time step , we assume that there are only a limited number
of candidate locations that the th CH can move to from the
current position. As shown in Fig. 2, for a given grid point in the
surveillance area, the set of candidate locations for the th CH
at time step , , only includes the locations that are
one step away from the current location , corresponding
to east, north-east, north, north-west, west, south-west, south,
south-east, and the current location, respectively. We use

to denote the vector containing all the predicted
multi-target states measurements made from the one-hop
neighborhood of the th CH which currently locates at .
Letting be the index-set of the one-hop neighbors of the
th CH, we simplify our problem by assuming that the th

CH uses the current multi-target states measurements from its
current neighbors in .

A. Probabilities of Attaining the Candidate Locations

The active CH selects the best candidate location
by evaluating the estimated improvement in

the multi-target states estimation at time step , which is
calculated as follows:
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where denotes the multi-target states estimates obtained by
the th CH at the time step , and is the multi-target states
estimates obtained by using the predicted measurements
at time step . We define a utility function, denoted by

, as follows:

(43)

where is the estimation error covariance matrix for

the th CH and is the -th element of the

matrix . Note that is the Mean Squared-
Error (MSE) of the multi-target position estimates if choosing
the candidate location . Then, we select the optimal can-
didate location by solving the following optimization problem:

(44)

Using (43), we also derive the PMF for the candidate location
at time step as follows:

(45)

B. Side-Effect Impacts of CH-Movement

In our proposed CH-movement control scheme, we also con-
sider the negative consequences due to the CHs’ movements, in-
cluding the additional energy consumptions, the CHs’ connec-
tivity loss, and the sensing-coverage loss. We derive the impact-
weights corresponding to these negative consequences when a
CH chooses to move to a candidate location.

1) Additional Energy Consumptions: Since the CHs spend
the additional energy for the movements, it is important to en-
sure that the available energy is properly used to best serve the
purpose of MMTT. To simplify our problem, we assume that
all the active CHs move at the same constant speed. We also
assume that the CH always moves along a straight line, which
means that the distance that a CH moves during the interval be-
tween every two consecutive time steps is the distance between
its old location and its new location. Letting be
the th CH’s energy consumption on moving to the new location

, we define as a function of the distance
the th CH moves, which is shown as follows:

(46)

where is a constant, and denotes the -norm. To char-
acterize the side-effect of the CHs’ mobility in terms of the ad-
ditional energy consumption, we define the weight
corresponding to each candidate location as follows:

(47)
where is a constant representing the maximum amountof
energy that the CH can afford for making the one-step move-
ment.

2) Potential Loss of the CHs’ Connections: For the side-ef-
fect impact of the CHs’ mobility, we also consider the risk that
the CHs become disconnected due to their movements. To sim-
plify our problem, we only consider the case that the CH is dis-
connected with all the other CHs at the next time step ,
which means the case that is the empty set . Letting

denote the distance between the CHs and at time step
, and be the communication range for the CH, we obtain

the weight corresponding to each candidate loca-
tion indicating the probability that the CH is discon-
nected with all the other CHs due to moving to the new location

as follows:

where denotes the probability that the th CH is
disconnected at time step from its neighbor , given that
the CH moves to the candidate location and the CH

moves to the candidate location at time step ,
and

(48)

To make the decision on the candidate location, the CH is
informed by the possibility of being disconnected in advance.
Thus, we define as follows:

if ;

otherwise

(49)

where is a constant denoting the fraction of .
3) The Potential Loss of the Sensing Coverage: Another po-

tential risk arising from node movement is the potential loss of
sensing coverage in certain regions of the sensing field. We rep-
resent the field of the MWSN as a 2-D grid. We denote as a
grid point with index , as the index-set of senor nodes that
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can detect the grid point at time step , as the
probability that the CH covers the grid point after moving to
the candidate location at time step , as the
probability that the grid node is covered by at least one CH
from the set , as the sensing deployment control param-
eter representing the required sensing coverage threshold, and

as the set of grid points which can be sensed by the
CH locating at the location .

To ensure that there is no hole in the sensing area originally
covered by the senor node at time step , we derive the con-
straint on as follows:

(50)

where denotes the set of grid points that will not
be covered by the CH after the CH moves to the new location

, and

(51)

Since calculating the expected coverage requires the

knowledge of the set , which is not available to the CH

at time step , we restrict the calculation of only on the

CHs in the set , and define as follows:

(52)

By assuming that the CHs decide their candidate location inde-
pendently, we define the probability of the appearance of a hole
in as .
To describe the potential loss of the sensing coverage due to
the CHs’ mobility, we introduce the weight corre-
sponding to each candidate location at time step , which
represents the probability of the potential sensing-coverage loss
for the CH after moving to the new location . We de-
fine as follows:

(53)

where denotes the absolute value, and .

C. CH-Movement Decision

Letting the normalized nonnegative constants , , and
, respectively, denote the costs due to the additional energy-

consumption, the loss of the connectivity, and the loss of the

sensing-coverage, we define the total cost for
the CH moving to the new location as follows:

(54)

where , , and denote the normalized weighting factors
for those three side-effect impacts. By using (43) and (54), we
formulate the optimization problem for our proposed CH-mo-
bility control model as follows:

(55)

where is the pre-defined threshold to control the size of the
candidate-location set.

V. OUR CLUSTER-MEMBER ACTIVATION SCHEME

At each time step, using our proposed optimal cluster-
member activation scheme, each CH activates some of the
static sensor nodes locating within its communication range as
its cluster members.

A. The Energy Consumption Cost Model

The communication energy consumed by the th sensor node
at the time step mainly consists of the transmitting en-
ergy , the receiving energy , the sensing energy

, and the processing energy . Letting be the
number of bits required to encode the local multi-target states
measurements, denote the number of bits used by the Fu-
sion Center (FC) to activate a sensor node for the measurement,
and represent the number of bits used by the sensor node to
transmit its local measurement to the FC, we obtain the values
of , , and , respectively, as follows:

(56)

where denotes the distance between the th sensor node
and the FC at time step , and
are positive constant parameters, which represent the electronic
energy consumed in transmitting one bit of data, the electronics
energy related to the radio energy of the available sensor node,
the electronics energy consumed in receiving one bit of data,
the electronics energy consumed in sensing and encoding one
bit of data, and the energy consumed in processing one bit of
data, respectively.

Therefore, using (56), we obtain the energy cost for activating
the th available sensor node at the time step as follows:
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(57)

B. The Cluster-Member Activation Model

To reduce the total energy consumption, we only activate
parts of the available sensor nodes at each time step while en-
suring the final predicted multi-target states estimation error
is below an acceptable pre-defined threshold . In addition,

letting be the cluster-member acti-

vation vector, where indicates the th sensor node is

activated at time step , and indicates that the
th sensor node is not activated at time step ,

be the estimation error covariance matrix at time step by
using the cluster-member activation vector , we can derive
the final predicted multi-target states estimation error as a
function of as follows:

(58)

where denotes the th component of the
matrix .

Since the estimation error covariance matrix is not
available to the FC at time step , we approximate the ma-
trix using the Fisher information matrix and the predicted
error covariance matrix as follows:

(59)

where

(60)

Therefore, letting , we for-
mulate the cluster-member activation problem as a binary non-
linear programming problem as follows:

(61)

(62)

C. Our Binary Mixed Integer Programming (MIP)-Based
Cluster-Member Activation Scheme

Since is a convex function of

and is the relaxation

of , where , we solve the binary
nonlinear programming problem which is NP-hard by using
the binary MIP technique. We represent the matrix ,

, and in partitioning formats as follows:

(63)

where , , and are 2 2 matrix, ,
, , and , , , , , and are all

positive-definite matrices.
Since the active sensor nodes only transmit the information

on the multi-target positions, the local Fisher information matrix
has the form as the following:

(64)

where is a 2 2 symmetric matrix and denotes a 2 2
zero matrix. Using (64) and (60), we represent the matrix
by

(65)

Using (59) and (65), we have the results as follows:

(66)

where .
Letting and denote the th component of the ma-

trices and , respectively, we obtain the result of the final pre-
dicted multi-target states estimation error as follows:

(67)

where denotes the function calculating the matrix trace.

Let ,

, ,

,
, and

.
Then, using (67), we represent the condition defined in (61)
and (62) as follows:

(68)
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Furthermore, by introducing the new mixed variable ,
we convert the condition defined in (68) as follows:

where and are the sum of the negative and posi-

tive components of the th row of the matrix , respectively.

D. Dynamic Value of the Predicted Tracking Error Threshold

To avoid checking whether the pre-defined threshold is
appropriate at each time step, we derive a function to determine
the value of dynamically, which is shown as follows:

(69)

where denotes a factor to control the desired accu-
racy of the multi-target states estimation, is the lower bound
of the , which is obtained when all the sensor nodes are active
at the time step , and represents the upper bound of
the , which is obtained when there is no new detection infor-
mation provided at time step . Equation (69) ensures that
the value of the desired threshold can be always met. Since

is realized when each element of the cluster-member activa-
tion vector is 1 and is realized when each element of the
cluster-member activation vector is 1, we derive the lower
bound and the upper bound , respectively, as follows:

(70)

VI. ASYMPTOTIC PERFORMANCE ANALYSIS

By assuming that there are at most tracked targets at
each time step, we model our MMTT problem as an -ary
hypotheses problem using local detection results, where
denotes the number of available sensor nodes and
represent the hypotheses. We assume that each sensor node

makes a binary decision when its detection result is
which is defined as follows:

(71)

where and . To characterize

the local decision function , we let be the probability
that the th sensor node makes the local decision 1 when the
hypothesis is present. Thus, we express as follows:

(72)

We characterize the data fusion scheme at the Global Fusion
Center (GFC) by using , where is the probability of
the final-detection error when is present and . Thus, we
can derive as follows:

(73)

where denotes the global detection decision. Using (73), we
obtain the probability ofthe final-detection error as follows:

(74)

To minimize the probability of the final-detection error ,
we derive the global detection decision as follows:

(75)

where

(76)

where by assuming that the local multi-target state detection re-
sults are conditionally independent given the present hypothesis

, we can obtain:

(77)

Using (77), we can rewrite specified by (76) as follows:

(78)

where , , and

(79)

Plugging (75)–(78) into (73), we can derive as follows:
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(80)

where is the indicator function which is defined as
follows:

if ;
otherwise.

(81)

To simplify our local multi-target states decision scheme, we
assume that, given that one hypothesis is present, all the
available sensor nodes have the identical local decision function

. Thus, for an arbitrary sensor node’s index , we have the
following result:

(82)

Using (82), we simplify (79) as follows:

(83)

Therefore, we simplify given in (80) as follows:

(84)

where is the binomial coefficient, and

(85)

We further define:

(86)

Lemma 1: Assuming that all the available sensor nodes em-
ploy the identical local decision schemes, the probability of the
final-detection error converges to zero at least as fast as ex-
ponentially as .

Proof: Using (84), we obtain the detection probability
of the hypothesis as follows:

(87)

Using the DeMoivre-Laplace Theorem [18], we obtain the
asymptotic value of the detection probability as follows:

(88)

where denotes the cumulative distribution function of the
Gaussian random variable . When the number of available
sensor nodes is sufficiently large, using (85) and (86), we
get the following results:

(89)

Therefore, we obtain the following inequalities:

(90)

where

(91)

By assuming , we can get the following:

(92)

Since and are both lower-bounded, using
(90)–(92), we can get the following results:

(93)
Using (93), we obtain the asymptotic performance of the detec-
tion probability as follows:

(94)

From (88), we have the following results:

(95)
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(96)

(97)

where

(98)

Since cumulative distribution function has the following
property:

(99)

we express defined in (98) as follows:

(100)

When the number, denoted by , of available mobile sensor
nodes is large enough such that

(101)

we obtain the following results:

if ;

otherwise.

Since monotonically decreases for , we obtain
the followings:

if ;

otherwise.

(102)
Therefore, we obtain the upper-bounds for and ,
respectively, as follows:

and

Therefore, for any tracked target’s index , we have the fol-
lowing results:

(103)

(104)

Using (74) and (104), we can obtain the asymptotic value for
the probability of the final-detection error as follows:

(105)

Since for any tracked target’s index , converges to zero at
least as fast as exponentially as , and is a linear
combination of , it also converges to zero with the rate
equal to or even faster than exponential as . Thus, we
complete the proof.

VII. PERFORMANCE EVALUATIONS

In the followings, we present the simulation results of our
proposed adaptive control system for the MMTT problem in our
two-tier hierarchical MWSN which consists of 10 static sensors
per surveillance region and 5 mobile sensors totally. In
our MMTT problem, each target moves according to the linear
Gaussian dynamics in (13), and the initial target states are set
to be and .
The existing targets survive with the probability equal to

, and the new targets appear according to a Poisson point
process with the intensity function

, where ,
, and .

To track multiple targets in a 2-D surveillance region, the
sensing measurements with 2-degree freedom is necessary and
sufficient. According to the above requirement, we employ a
2-D sensing model consisting of: 1) the sensor’s orientation
angle and 2) signal strength during the transmission from the
targets to sensors. For simplicity, we assume that all sensors are
homogenous and have the same Field Of View (FOV) region,
and the model for the measurement, denoted by a vector vari-
able , of the th sensor at time is described as follows:

if

otherwise
(106)

where denotes the sensing region of the sensor, is the
measurement noise, the first component of the sensing model
denotes the horizontal shifts of the tracked targets, de-
notes the location of one tracked target, denotes
the location of the th sensor, denotes the distance between
the th sensor and the tracked target, denotes the sensing
range of each sensor, denotes the orientation angle of the th
sensor, and denotes the initial value of the signal strength gen-
erated by the target. Here we assign the values of the parameters
as follows: , , the measurement



2442 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 10, OCTOBER 2011

Fig. 3. Estimated number of the tracked targets versus the time steps in dif-
ferent cases.

Fig. 4. The exact trajectories and the estimated trajectories of the tracked
targets.

Fig. 5. The x-coordinates of the exact and the estimated positions of the tracked
targets.

noise with the mean vector , covariance ma-
trix , , ,
and .

In our simulations, the maximum of the detection probability
is 0.95 and the clutter intensity . Fig. 3

plots the exact number of the targets in the first 40 time steps,
and its estimations in the three different cases: 1) without using
our encoding scheme, 2) without using our optimal CH-move-
ment control scheme, and 3) using our complete MWSN-based
control system. As shown in Fig. 3, without using our encoding
scheme, the estimated number of the targets is more than the
exact number at some time steps. This is caused by treating
the false alarms as the measurements generated by the tracked

Fig. 6. The y-coordinates of the exact and the estimated positions of the tracked
targets.

Fig. 7. Miss-distance of the multi-target states estimation versus time steps in
different cases.

Fig. 8. Miss-distance of the multi-target states estimation versus time steps
when using different types of quantizers.

targets by mistake. We can also observe that without our op-
timal CH-movement control scheme, our tracking scheme fails
to detect some of the targets at some time steps. This happens
when some of the targets travel out of the coverage of the wire-
less sensor network. Thus, our encoding scheme efficiently de-
creases the interferences of the false alarms to the final multi-
target states estimations, and our proposed optimal CH-move-
ment control system helps to ensure all the tracked targets locate
within the coverage of our MWSN. Fig. 4 plots the exact and the
estimated trajectories during the first 40 time steps. We observe
from Fig. 4 that even when some of the targets travel across
each other, our proposed tracking scheme can still distinguish
and detect them with high detection accuracy. The individual

- and -coordinates of the true tracks and the estimated posi-
tions in this case are shown in Figs. 5 and 6, respectively, which
show the high multi-target estimation accuracy obtained by our
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Fig. 9. Miss-distance of the multi-target states estimation versus the number of
the available mobile sensor nodes.

Fig. 10. Total energy consumption for the MMTT problem versus the number
of the available mobile sensor nodes.

proposed control system. To evaluate the efficiency of the pro-
posed architecture, the measurement of average performance is
required. Thus, we apply the Wasserstein distance [17] as the
criterion to measure the multi-target miss-distance. The Wasser-
stein distance between any two non-empty subsets and is
defined as follows:

(107)

where the minimum is taken over the set of all transportation
matrices (a transportation matrix is one whose entries

satisfy , , ).
We use the Wasserstein miss-distance to validate and compare
the average estimation performances of our proposed MWSN-
based control scheme. Fig. 7 plots the miss-distances between
the estimated multi-target states and the exact ones in the three
different cases considered in Fig. 3. Fig. 7 shows that our pro-
posed encoding scheme and the optimal CH-movement scheme
efficiently get rid of the peaks of the miss-distance plots by
decreasing the estimation errors in the number of the tracked
targets. Fig. 8 plots the miss-distances between the estimated
multi-target states and the exact ones by using our 64-bit nonuni-
form quantizer and the 128-bit uniform quantizer. From Fig. 8,

Fig. 11. Miss-distance of the multi-target states estimation versus the static-
sensor density and the detection probability.

we can observe that our nonuniform quantizer outperforms the
uniform one in terms of the lower number of bits and the high
estimation accuracy. Figs. 9 and 10 plot the miss-distance of
the measurement and the total energy consumptions versus the
number of the mobile sensors acting as the CHs in our MWSN,
respectively. These two figures show that as the number of the
CHs increase, the miss-distance decreases exponentially while
the total energy consumption increases drastically. To trade-off
the high multi-target states estimation accuracy and the low en-
ergy consumption, we use 5 mobile sensors acting as the CHs in
our MWSN for the MMTT problem. Fig. 11 plots the miss-dis-
tance of the multi-target states estimation versus the number
of the static sensors, which act as the cluster members in our
MWSN, per 1 surveillance region and the detection proba-
bilities. As shown in Fig. 11, when the detection probability is
low, we can still ensure the high multi-target state estimation ac-
curacy by increasing the static-sensor density. In particular, for
the cases with the number of static sensors larger than 20, even
if the detection probability decreases to 0.5, the miss distance
of our proposed scheme is still very small.

VIII. CONCLUSION

We proposed the MWSN-based control system to achieve
timely and accurate mobile multi-target tracking (MMTT)
with the efficient energy consumption. In particular, our pro-
posed schemes can detect the mobile multi-targets’ random
appearance and disappearance in the clutter environments.
We developed the optimal mutual information utility based
techniques to adaptively control the locations and activations of
CHs, and activations of cluster members using our Distributed
Probability Hypothesis Density (DPHD) filtering algorithms.
Dynamically adjusting mobile sensors’ states, our schemes can
efficiently improve the observabilities of the mobile targets
being tracked. This is achieved by characterizing the proba-
bility-distributions distances between the multi-target states and
their measurements detected/estimated/observed by sensors.
We also analyzed the asymptotic performance of our proposed
schemes by deriving the upper-bounds of detection-error
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probabilities using DPHD algorithm. Also presented are the
performance analyses, validating and evaluating our proposed
adaptive control and reconfiguration schemes for MWSN in
terms of multi-target states detection/estimation accuracy,
energy-consumption efficiency, scalability to MWSN’s size,
and the robustness to the interference/noise.
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