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AbstrAct
With the rapid deployments of the fifth genera-

tion (5G) mobile wireless networks, the shift from 
the 5G to the sixth generation (6G) mobile wire-
less networks has attracted tremendous research 
attention around the world. Featuring with the 
explosively increasing multimedia-traffics with 
very diverse services requirements, the 6G mobile 
wireless networks need to provide the customized 
services with heterogeneous types of quality of 
service (QoS) guarantees. However, how to effi-
ciently support these customized services with 
heterogeneous QoS provisioning for 6G wireless 
networks has imposed many new challenges not 
encountered before. To conquer these difficulties, 
in this article we propose the artificial intelligence 
(AI)-enabled integration of massive multiple-in-
put-multiple-output (massive-MIMO) techniques 
with network functions virtualization (NFV) and 
software-defined network (SDN) architectures 
to support the customized services over the 6G 
mobile wireless networks. Specifically, we devel-
op the AI-enabled network architectural schemes 
which efficiently integrate three 6G-candidate 
techniques — massive-MIMO, NFV, and SDN — to 
significantly improve key performances of hetero-
geneous statistical QoS provisioning in terms of 
effective capacity. We apply the massive MIMO 
transmission to substantially improve the chan-
nel throughput. Our NFV-based schemes abstract 
and slice the physical infrastructure and wireless 
resources in network data plane into several vir-
tualized networks and obtain the optimal service 
delivery path with the maximum effective capac-
ity among virtualized networks. Also, we develop 
a set of AI-enabled techniques including multi-
agent AI-plane architectures, edge-AI frameworks, 
and federated learning mechanisms for efficient-
ly implementing our developed massive-MIMO-
NFV-SDN integrated schemes. Collaborating 
with our developed platform and techniques, our 
multi-agent AI-plane based SDN controller coor-
dinates the network nodes and resources alloca-
tions for each virtualized network. Our conducted 
extensive simulations validate and evaluate our 
developed massive-MIMO-NFV-SDN integrated 
architectures using AI-techniques, showing that 
they can efficiently support the customized sta-
tistical delay-bounded QoS provisioning over 6G 
mobile wireless networks.

IntroductIon
Although the fifth generation (5G) mobile com-
munication networks have been implemented 
around the world, there are a number of emerg-
ing applications that cannot be adequately served 
by 5G wireless networks as the new applica-
tions’ needs continue to evolve. Therefore, the 
wireless network researches have been moved 
forward to the sixth generation (6G) mobile wire-
less communication networks. To satisfy clients’ 
disparate applications and requirements, the 6G 
wireless networks are expected to provide the 
multipurpose platforms and accommodate diverse 
customized services including: massive ultra-re-
liable low-latency communications (mURLLC), 
enhanced mobile broadband (eMBB), massive 
machine-type communications (mMTC), uplink 
centric broadband communication (UCBC), real-
time broadband communication (RTBC), and har-
monized communication and sensing (HCS), and 
so on, which require different latencies, data rates, 
error rates, device densities, and so on [1–4]. 
The mURLLC demands the stringent guarantees 
on transmission delay and error rate for mission 
critical wireless communications under mobile 
users’ massive access, such as motion control and 
e-health. The services of eMBB require high data 
rates across a wide coverage area, such as inter-
active virtual reality and augmented reality. The 
services of mMTC provide the massive access for 
a large number of devices in a small area, such as 
smart traffic and environmental monitoring. The 
techniques of UCBC accelerate the mobile user’s 
uploading speed. The communications of RTBC 
deliver a large bandwidth with a given latency 
and a certain level of reliability, such as video 
streaming. HCS services support high-accuracy 
localization and high-resolution sensing, enabling 
the navigation and monitoring for autonomous 
vehicles.

In contrast to 5G wireless networks that can 
only guarantee the average performance of 
nearby mobile users (MUs), the 6G wireless net-
works aim at supporting customized statistical 
QoS, which guarantee each MU’s diverse and 
time-varying quality-of-service (QoS) [4]. One of 
the major challenges for 6G wireless networks is 
how to simultaneously support the heterogeneous 
QoS [5, 6] for multi-types of traffics imposed by 
these customized services and applications with 
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different requirements under the constrained 
network resources and dynamic network condi-
tions. Toward the above end, the statistical QoS 
provisioning theory has been applied for feasibly 
guaranteeing the given stochastic-bound of QoS 
requirements with the controlled violation proba-
bilities over the time-varying wireless fading chan-
nels, and thus, has been recognized as a powerful 
tool to support the customized applications over 
the 6G wireless networks. Moreover, the follow-
ing three advanced wireless-network techniques 
and architectures have been proposed to efficient-
ly support the heterogeneous statistical QoS pro-
visioning over the imminent 6G mobile wireless 
networks, which include:
• Massive multiple-input-multiple-output 

(MIMO) techniques [7–9], including mul-
tiple-input-single-output (MISO), MIMO, 
massive MIMO, and cell-free massive MIMO 
(CF-M-MIMO), to point the main beam of 
signal waves toward the targeted MUs, serv-
ing more users through spatial multiplexing, 
and mitigating the mutlipath effect via differ-
ent antenna’s spatial diversity.

• Network-functions virtualization (NFV) 
architectures [10], where the PHY-layer net-
work elements and wireless power/spectrum 
resources are split and deployed as reusable 
software instances modules, enabling the 
coexistence of multiple and dynamically-/
adaptively-reconfigurable virtual-networks 
slices.

• Software defined networking (SDN) archi-
tectures [11, 12], where the network con-
troller is logically decoupled from the 
underlaying PHY-layer to adaptively dictate 
PHY-layer infrastructures’ allocations for flex-
ible implementations of diverse networks 
architectures and functions, through pro-
gramming-interfaces between the control 
plane and data plane.
 However, how to efficiently integrate the 

massive MIMO techniques and NFV and SDN 
network architectures to sufficiently satisfy hetero-
geneous statistical QoS requirements of MUs over 
6G wireless networks remains a challenging open 
problem. To overcome the above challenges, we 
propose to develop AI-enabled network-functions 
virtualization and software-defined architectures 
for customized statistical QoS over 6G massive 
MIMO mobile wireless networks. First, to leverage 
the beamforming gain and spatial multiplexing, 
we propose to deploy multiple antennas on WiFi 
access points (AP) and massive MIMO antennas 
on base stations (BSs) to cooperatively serve mul-
tiple MUs in the same time-frequency resource 
through space-division duplex operation. Second, 
to deliver the requested services to MUs with dis-
tinct QoS requirements, we use NFV techniques 
to abstract and slice the wireless network physical 
infrastructure and resources of the network data 
plane into several virtualized networks. Each vir-
tual network, consisting of the optimal network 
components, yields the optimal data delivery 
path to independently support the data content 
transmissions for each type of service. We char-
acterize the performance of data transmissions 
by the effective capacity, and conduct the case 
study in searching for the optimal data delivery 
path, which is either a direct transmission or going 

through relay nodes to maximize the effective 
capacity among all virtualized networks. Third, we 
employ the SDN architecture to dictate the net-
work slicing and to allocate the physical wireless 
resources for each virtualized network. This soft-
ware-defined control architecture aims at optimiz-
ing the overall performances for the 6G wireless 
networks.

On the other hand, since MUs for 6G wire-
less networks have the distinct requirements for 
their customized services demands, SDN mech-
anisms need to support the comprehensive wire-
less resource schedulings. These wireless resource 
schedulings and service predictions require the 
efficient and powerful QoS-supporting systems. In 
addition, due to 6G MUs’ heterogeneity in service 
types, mobility in trajectories, and stringency in 
QoS requirements, the SDN’s dynamically pro-
gramming control and real-time decision makings 
all significantly increase wireless-resources costs 
and implementing complexities. To remedy these 
difficulties and offload the computational burdens 
of SDN control plane, we propose to develop 
artificial intelligence (AI)-enabled mechanisms and 
techniques including multi-agent AI-plane architec-
tures, edge-AI frameworks, and federated learn-
ings, which can efficiently implement the dynamic 
programming and real-time decision-making in 
our developed massive-MIMO-NFV-SDN integrat-
ed network architectures. Specifically, in our pro-
posed SDN architecture we develop and embed 
a multi-agent AI-plane between data-plane and 
control-plane. The AI-plane receives, analyzes, 
and processes 6G traffics’ diverse statistical QoS 
requests from the multiple-agents, including MUs, 
BSs, and APs agents, by making the best use of 
the pre-trained models, and then forwards its 
calculated/derived results (including the optimal 
hardware and software allocations strategies/deci-
sions) to SDN’s control plane, which then pro-
ceeds with these pre-calculated/-trained results to 
dictate and monitor the allocations for PHY-lay-
er-infrastructures and wireless resources in SDN’s 
data plane.

the system models
Figure 1 shows the system models of our pro-
posed AI-based network-functions virtualization 
and software-defined architectures for the cus-
tomized statistical QoS provisioning over 6G 
massive MIMO mobile wireless networks, which 
consist of the following three core AI-enabled 
promising 6G-candidate architectural techniques 
as elaborated on, respectively, as follows. 

AI-enAbled mAssIve-mImo technIques over  
6G mobIle WIreless netWorks

Figure 1 shows our massive-MIMO based 6G 
wireless networks architecture, which merges 
MISO, MIMO, massive MIMO, and CF-M-MIMO 
communications techniques. To serve massive 
MUs in a small area to support mMTC, massive 
MIMO has been recognized as the enabling tech-

We propose to develop AI-enabled network-functions virtualization and software-defined architectures 
for customized statistical QoS over 6G massive MIMO mobile wireless networks.
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nique thanks to its advantages in the beamform-
ing gain and spatial multiplexing, and so on. As 
one of the key promising candidate techniques 
for 6G wireless networks, CF-M-MIMO compris-
es massive distributed APs to jointly and simul-
taneously serve a group of MUs using the same 
time-frequency resources over a wide area, which 
is a typical communication enabler for eMBB. The 

unmanned aerial vehicle (UAV) swarm is applied 
in mURLLC services because of its mobility, which 
enables a flexible network architecture at the air 
interface and converts the non-line-of-sight sce-
nario into line-of-sight scenario. The signal’s multi-
ple input from the UAV swarm and single output 
to the MU equipped with a single antenna form 
the MISO communications. The data exchanging 

FIGURE 1. The system models of our proposed AI-based network-functions virtualization and software-defined architectures for the cus-
tomized statistical QoS provisioning over 6G massive MIMO mobile wireless networks.
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between a multiple antennas sender and multiple 
antennas receiver constitutes the MIMO commu-
nications.

AI-drIven nFv ArchItectures over  
6G mobIle WIreless netWorks

NFV architectures split the physical network 
infrastructures and wireless resources into sev-
eral virtual slices, enabling the sharing of all 
wireless network functionalities among multiple 
service providers and supporting different appli-
cations under diverse requirements and logical 
architectures through the same infrastructure 
[13]. Deploying the AI-driven data plane mech-
anism in NFV, this network-functions virtualiza-
tion operation breaks down the heterogeneous 
QoS provisioning problem of the entire network 
into a number of homogeneous QoS provisioning 
problems, each of which takes the responsibili-
ty of one type of data content transmission on 
one virtual network while statistically satisfying its 
QoS requirements. Using NFV techniques, each 
statistical QoS provisioning service can be eas-
ily embedded in the physical networks without 
considering the complicated interfaces and char-
acteristics of the physical infrastructures. Virtual 
networks cooperate with each other to efficiently 
share these resources for the better service per-
formances, which thus significantly improves the 
entire network efficiency and utilization. Since 
the 6G wireless networks need to accommodate 
customized services, we propose to develop the 
flexible AI-driven data plane over the NFV archi-
tecture to satisfy the heterogenous statistical QoS 
requirements for different types of MUs and their 
applications. In Fig. 1, we use the typical 6G ser-
vices such as HCS, eMBB, mMTC, and mURLLC 
as examples to represent different MUs’ statistical 
QoS service requirements. The NFV-based archi-
tecture dynamically allocates the edge resources 
(i.e., bandwidth, transmit power, etc.) to different 
network slices to achieve the overall networks 
performance metrics maximization.

AI-PlAne bAsed sdn ArchItectures over  
6G mobIle WIreless netWorks

SDN is a paradigm where a central software pro-
gram, called control plane, dictates the overall 
dynamics behavior of the physical substrate wire-
less network, called data plane, which consists 
of all physical infrastructures, devices, and nodes 
(such as MUs, BSs, routers, gateways, etc.) consti-
tuting data-packet forwarding devices. To offload 
and reduce the SDN control-plane’s computation-
al complexities and work loads and make it timely 
respond to MU’s service requests, we develop 
and deploy a multi-agent AI-plane between data 
plane and control plane, see Fig. 1, for optimiz-
ing the network nodes mapping and wireless 
resource allocations scheduling. Our developed 
multi-agent AI-plane mainly consists of two types 
of agents: 
• The MU agent is responsible for collecting 

MUs’ historical behaviors, current service 
requests, and moving directions and speeds, 
and so on, for predicting their future behav-
iors.

• The AP/BS agent is used to integrate traffic 

requests with service type request for allocat-
ing the optimal wireless resources. 
Instead of directly sending data requests to the 

SDN control plane, MUs send these requests with 
QoS requirements to the MU agent in AI-plane, 
who will then contact the AP/BS agents to derive 
the optimal wireless resources allocations. Under 
the assistance of AP/BS agents, SDN control 
plane selects the optimal massive-MIMO tech-
niques form MISO, MIMO, massive-MIMO, and 
CF-M-MIMO, and then, maps the corresponding 
AP/BS, MU, and necessary network components 
to virtual network slices with an optimal service 
delivery path. The SDN control plane makes these 
mapping decisions based on the information 
about the network traffic condition and the pre-
dictions for MUs’ behaviors provided by AP/BS/
MU agents.

AI-enAbled mAssIve-mImo communIcAtIons 
technIques For 6G mobIle WIreless netWorks

AchIevAble codInG rAtes For mus
Assume that each MU can be equipped with a 
single antenna or multiple antennas. Denoted by 
x(t) the total number of MU at time t in a service 
coverage area. The effect of small-scale fading 
between the AP/BS and the ith MU is given by hi, 
where i is the index of MU and i  {1, 2, …, x(t)}. 
Let Pi be the transmit power allocation of the ith 
MU, and let di be the ith MU’s geographic posi-
tion vector in the wireless network. Denote by Ri 
the achievable coding rate for the ith MU, and 
denote by Bi the bandwidth allocation for the ith 
MU. The Ri can be written as: 

Ri = Bi Ehi[log2(1 + gi (hi, Pi, di))]  (1)

where Ehi[·] is taking the expectation operation 
with respect to hi, g i (hi, Pi, di) is the signal to 
interference and noise ratio (SINR) of the ith MU, 
which is a function of hi, Pi, and di. When the ith 
MU is served through MISO, MIMO, massive-MI-
MO, and CF-M-MIMO communications, respec-
tively, the SINR gi (hi, Pi, di) needs to be derived 
correspondingly.

According to Eq. 1, we observe that Ri is an 
increasing function of SINR, and thus, to improve 
the channel throughput, we need to significant-
ly increase the value of SINR, which can be 
achieved by applying massive-MIMO techniques. 
The communications process through massive-MI-
MO can be summarized in the following three 
phases:
• Uplink training to estimate the channel gain 

information
• Linear precoding for beamforming
• Downlink payload data transmission to 

transmit the service data.
Uplink Training: Each antenna of the MU 

sends the uplink pilot signal, which is an orthog-

To offload and reduce the SDN control-plane’s computational complexities and work loads and make it 
timely respond to MU’s service requests, we develop and deploy a multi-agent AI-plane between data 
plane and control plane for optimizing the network nodes mapping and wireless resource allocations 

scheduling.
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onal training sequence known by both MUs and 
AP/BS, to the AP/BS. After receiving the pilot sig-
nal, AP/BS applies signal processing schemes to 
the received pilot signal by correlating its received 
pilot signal with its known pilot signal. Then, by 
using the channel estimation schemes, for exam-
ple, minimum mean-square error (MMSE) estima-
tion, AP/BS is able to estimate the channel gain.

Linear Precoding: Before the AP/BS sends 
the data to MUs, it generates a precoder matrix, 
which controls the transmitted signal’s power 
and direction. Multiplying the precoder by the 
transmitted signal, AP/BS can achieve spatial 
multiplexing by focusing the transmit power into 
specific directions (i.e., beamforming), so that it 
serves multiple MUs simultaneously while mitigat-
ing the interference. 

Downlink Payload Data Transmission: The 
AP/BS sends the service data to MUs through the 
downlink channel, by treating the channel gain 
estimation as the true channel. Moreover, each 
antenna of the AP/BS individually sends the same 
signal to MUs, weakening the multipath effect 
and reducing the outage probability of the wire-
less channel. 

heteroGeneous stAtIstIcAl qos ProvIsIonInG theory And the 
eFFectIve cAPAcIty

We apply the effective capacity [5, 6, 14] in statis-
tical QoS theory to characterize the performance 
of data transmission under a given statistical 
delay-bounded QoS requirement. The effective 
capacity is defined as the maximum constant arriv-
al rate that a wireless channel can support while 
guaranteeing the QoS requirement, for each 
data-content streaming transmission. The effective 
capacity, denoted by EC(qi), is given by [14, Eq. 3]

𝐸𝐸𝐸𝐸(θ𝑖𝑖) =– 1
θ𝑖𝑖

log(𝔼𝔼[𝑒𝑒–θ𝑖𝑖𝑅𝑅𝑖𝑖 ]), θ𝑖𝑖 > 0
 (2)

where E[·] is the expectation operation, Ri is given 
by Eq. 1, and q i is the QoS exponent for the ith 

MU’s services that measures the stringency of the 
statistical delay-bounded QoS requirement for 
its service. Note that the QoS exponent varies 
for not only different types of services, but also 
different data-content demands within the same 
type of service. Then, we also define the aggre-
gate effective capacity as the sum of all MUs con-
necting to the same AP/BS, which can be written 
by SiEC(qi).

nFv-bAsed oPtImAl servIce delIvery PAth For 
AI-enAbled heteroGeneous stAtIstIcAl qos 

ProvIsIonInG
The 6G wireless network architectures select the 
corresponding optimal paths to deliver services 
to the targeted MUs, which have different statis-
tical delay-bounded QoS requirements. Applying 
NFV architectures, we virtualize physical substrate 
network infrastructures and resources into several 
optimal virtual networks corresponding to differ-
ent MUs’ diverse statistical QoS requirements, 
and the SDN architectures dictate these virtual-
izations.

In Fig. 2, we conduct a case study of NFV 
model where MUs with diverse statistical QoS 
requirements demand the same data content. 
The AP/BS can transmit a requested data to the 
MU over a direct wireless link (i.e., direct trans-
mission method), or employing one neighbor 
node as a relay to set up a single-relay transmis-
sion (i.e., relay transmission method). The AP/BS, 
denoted by C, sends a data content requested by 
both MU a and MU b. The required QoS expo-
nents of MUs a and b are denoted by qa and qb, 
respectively, constituting a heterogeneous QoS 
provisioning network [12]. The AI-enabled con-
trol plane obtains the information that this data is 
located at AP/BS C, and then, maps the optimal 
delivery path (direct transmission path or relay 
transmission path with an optimal relay) for MUs 

FIGURE 2. A case study architecture of wireless network functions virtualization (NFV) using virtual network slicing and wireless resourc-
es allocation control architectures via the AI-enabled SDN control plane, where i  {1, 2, …, x(t)} is the index of MUs.
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a and b to the corresponding virtual networks, 
respectively. Since the wireless fading conditions 
are different, we establish distinct virtual slices for 
different fadings. For example, if the relay trans-
mission through the relay node B can achieve the 
maximum effective capacity, we configure virtual 
network slice ε to be the optimal network slice. 
When the relay transmission through node A 
can achieve the maximum effective capacity, we 
establish the network slice d by using the node 
A to forward the data to the MU b. Alternatively, 
if the direct transmission from node C to MU a 
can realize the maximum effective capacity, we 
employ the network slice n as the optimal virtual 
network slice.

To select the optimal data-delivery-path for 
each MU, we derive the effective capacity of 
direct transmission, denoted by ECd(qi), and the 
effective capacity of relay transmission, denoted 
by ECr(qi), with employing the relay node r, where 
r  {A, B}, i  {a, b}, respectively. We formu-
late the Lagrange functions, denoted by J1 and J2, 
for direct and relay transmissions, respectively, as 
follows: 

{ 𝐽𝐽1 = 𝔼𝔼{𝐸𝐸𝐶𝐶𝑑𝑑(θ𝑖𝑖)}– 𝜉𝜉1𝔼𝔼{𝑃𝑃𝑖𝑖 − �̅�𝑃},        
𝐽𝐽2 = 𝔼𝔼{𝐸𝐸𝐶𝐶𝑟𝑟(θ𝑖𝑖)}– 𝜉𝜉2𝔼𝔼{𝑃𝑃𝑐𝑐 + 𝑃𝑃𝑟𝑟 − �̅�𝑃},   (3)

r  {A, B}, i  {a, b}, where x1 and x2 are 
the Lagrange multipliers, Pc and Pr are transmit 
power allocations for node C and relay node r 
for relay transmission, respectively, such that  
Pc + Pr = Pi, and —P is the total transmit power 
consuming constraint. Solving Eq. 3, we obtain 
optimal powers: Pi, Pc, and Pr and also obtain the 
effective capacities for direct transmission and 
relay transmission, respectively. After obtaining 
ECd(q i), ECA(q i), and ECB(q i), we select the path 
that achieves the maximum effective capacity as 
the optimal data delivery path.

the AI-PlAne And FederAted leArnInG bAsed 
sdn control ArchItectures

We develop the mapping algorithm in the SDN 
control-plane to assign the optimal AP or BS into 
a virtual network slice and allocate the optimal 
MUs according to their requested service types, 
locations, moving trajectories, and so on, to each 
network slice. Then, we propose a federated 
learning based mechanism in SDN AI-plane to 
assist the control-plane for decision making about 
the MUs’ wireless resources allocations.

oPtImAl vIrtuAl netWork slIcInG And mus AllocAtIon 
schemes mAnAGed by sdn control PlAne

We partition the SDN data plane into multiple 
virtual network slices according to different ser-
vice types. Each virtual network slice dedicatedly 
provides one type of service and there also exist 
multiple slices to provide different statistical QoS 
requirements for each type of service. Therefore, 
we are able to develop the SDN architecture 
based network management algorithm, which can 
be summarized by Algorithm 1. In Algorithm 1, 
the maximization of aggregate effective capacity 
in a network slice can be achieved by the calcula-
tion of SDN AI-plane for offloading the computa-
tional burden in SDN control-plane. 

Figure 2 shows a case study of the virtual net-

work slicing and data delivery path selections 
schemes via the AI-enabled SDN control plane 
architecture, which is assisted by the federated 
edge learning in the SDN AI-plane. The control 
plane receives the virtual network updated status 
from the application programming interface (API). 
After getting the coordination decisions from the 
AI-plane, the resources allocation model in con-
trol plane converts these decisions to AP/BS and 
relay nodes allocations, as well as transmit power 
and spectrum bandwidth allocations, respec-
tively. Finally, the data-plane applies the control 
information through the control information API, 
finalizing the virtual network slicing and wireless 
resources allocation controls. 

the Actor-crItIc AlGorIthm bAsed multI-AGent 
FederAted edGe leArnInG mechAnIsm For 

 ImPlementInG AI-PlAne In sdn
We apply the edge learning mechanism in the 
SDN AI-plane to assist the maximization of aggre-
gate effective capacity in Algorithm 1. We devel-
op a federated edge learning model to achieve 
this goal through integrating the traditional feder-
ated learning with edge computings at each AP/
BS agent, which consists of four major steps as 
shown in the following algorithm.

Step 1: Local Training: Each agent k trains a 
local model to minimize a local loss function Fk. 
The local models focus on solving Eq. 3. During 
this local training, each agent k obtains the weight 
of its local model wk and the gradient of the local 
loss function Fk.

Step 2: Global Aggregation: Each agent k 
uploads its obtained weight wk and gradient Fk 
to a central server. The central server aggregates 
weights and gradients from all agents, and derives 
the average weight —w and average gradient —F.

Step 3: Model Updating: The global model 
uses the average weight —w and average gradient 
—F to update parameters for the global model to 
improve the accuracy of the global model. The 
updated global model with these updated param-
eters are then sent back to all agents for updating 
their local models.

Step 4: Control and Feedback: Each agent 
periodically communicates with the global model 
to upload and update the parameters of its local 
model. The global model sends the control and 
feedback information, for example, new learning 
rate schedules and regularization parameters, to 
all agents, so that each agent is able to improve 

ALGORITHM 1. SDN architecture for optimal virtual network slicing and data deliv-
ery path selection.

1: Input: AP/BS set and MU set; each MU’s service type, QoS exponent qi, position di, moving direction, and speed. 
2: for Each MU that requests services from the 6G wireless networks do
3:  Assign the MU to the virtual network slices group corresponding to its service type.
4:  for Each AP/BS in this virtual network slices group do
5:   Determine the channel condition hi for this MU, according to its position di, moving direction, and speed. 
6:   Using the qi for the MU and by solving Eq. 3, obtain the optimal data delivery path (relay or direct transmission), which  
   maximizes its effective capacity, between the MU and this AP/BS.
7:  end for 
8:  Select the optimal AP/BS which provides the maximum effective capacity for this MU. 
9:   Assign the selected AP/BS and the MU into a network slice in this virtual network slices group. 
10: end for
11: Output: Optimal edge network slicing and optimal data delivery path selection.
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its local model and obtain the latest hardware and 
wireless resources allocation schemes.

We then show the detailed local training 
model in the above Step 1 through actor-critic 

algorithm [15], which integrates the actor-only 
method with critic-only method of machine learn-
ing. We use the learning procedure for the opti-
mal solution of Eq. 3 as an example to show the 
actor-critic algorithm. In actor-critic algorithm, the 
actor decides which action optimizes the objec-
tive function given by Eq. 3 according to the cur-
rent state. The critic evaluates this action through 
a value function, and then, informs the actor how 
good the action is and how to improve the action.

Each AP/BS agent k uses the Markov decision 
process (MDP) to solve Eq. 3, and each AP/BS 
shares the same index with its agent since we 
assume that each AP/BS is equipped with its own 
agent. We define the finite state space, denoted 
by X, to characterize the MDP’s states describing 
the total numbers of MUs in a service coverage 
area at time t. We have x(t)  X due to the defi-
nitions above. Define a(t) = [a1(t), a2(t), …, ax(t)(t)] 
 A, where A is the action set of this MDP for all 
MUs, and ai(t) with i  {1,2, …, x(t)} denotes the 
transmit power allocations Pi or (Pc, Pr) and band-
width allocation Bi for the ith MU at time t. If Pi = 
Pc = Pr = 0, or Bi = 0, the ith MU will not be served 
by the kth AP/BS. We also denote the actor 
parameter by t over the parameter space T, and 
denote the critic parameter by q. We then define 
the policy pk of the AP/BS agent k as a mapping 
pk: X  T  A that assigns each state-parameter 
pair (x(t), t)  X  T to the transmit power and 
bandwidth allocation schemes a(t)  A. Define 
the reward rt of the actor-critic algorithm at time 
t as the gain of the aggregate effective capacity 
SiEC(qi), where EC(qi) is calculated by solving Eq. 
3. We also define the value of the current policy 
under the critic parameter fq as fq (x(t), a(t)). This 
actor-critic algorithm is summarized in Algorithm 
2, where h represents the importance of future 
rewards, and ft and fq measure how quickly the 
local model learns for the actor and the critic, 
respectively. 

PerFormAnce evAluAtIons
Figure 3 evaluates our proposed direct and relay 
transmission schemes under the Nakagami-m fad-
ing channel model where m is the fading param-
eter. We set average SNR as 5dB. We observe 
from Fig. 3 that effective capacity is an increas-
ing function of the parameter m. A larger m rep-
resents the milder fading, and thus provides a 
larger effective capacity given the same qi. Figure 
3 also shows that the effective capacity mono-
tonically decreases as q i increases. From Fig. 3, 
we discover that for loose delay-bounded QoS 
requirements (small q i’s), the relay transmission 
outperforms the direct transmission, suggesting 
us to choose the relay transmission as the optimal 
delivery path. For stringent delay-bounded QoS 
requirements (large qi’s), the direct transmission 
outperforms the relay transmission, thus suggest-
ing us to choose the direct transmission as the 
optimal delivery path.

Figure 4 plots the cumulative distribution func-
tion (CDF) of per-user effective capacity for MISO 
and MIMO channels with the different numbers 
of BS antennas L = 80 and L = 50, respectively. 
Figure 4 shows that the effective capacity perfor-
mance increases as the number of BS antennas 
increases, and in general MIMO-based scheme 
outperforms (MIMO’s plots are at right side of 

ALGORITHM 2. Training algorithm of “Actor-Critic Based Federated Edge Learning” 
for optimal relays and wireless resources allocations.

1: Initialize: Actor parameter t, critic parameter q, x(0), learning rates ft and fq . 
2: for time slot t in 1, 2, … do
3:  Each AP/BS agent k selects an action a(t) from action space A according to policy pk ( x ( t ), t). 
4:  Use the current state to obtain reward rt = Si EC (qi) by solving Eq. 3. 
5:  Obtain the next state x( t + 1) and the next action a(t + 1). 
6:  Update the policy parameter t  t + ftQq ( x ( t ), a( t ) ) tlogpk ( x ( t ), t) 
7:  Compute the correction for action values  = rt + hQq ( x ( t + 1), a (t + 1) ) – Q q ( x ( t ), a ( t ) ). 
8:  Use  to update the parameter of value function q  q + fq q Qq ( x ( t ), a( t ) ).
9: end for 
10: Output: optimal transmit power and bandwidth allocations and optimal service delivery path for each MU.

FIGURE 3. Optimal effective capacity for direct transmission ECd(qi) and relay 
transmission ECr(qi) versus QoS exponent qi under different values of the 
Nakagami-m fading parameter m.
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MISO’s plots) the MISO-based scheme regard-
less of the number of BS antennas L used. We 
can also observe from Fig. 4 that when effective 
capacity is small (i.e., effective capacity is less than 
5 bits/sec), the channel performance of L = 50 is 
better than L = 80. This is because the large num-
ber of antennas in BS results in more interference 
to mobile users when the number of mobile users 
is large.

conclusIons
Applying the AI-enabled techniques, we devel-
oped the massive-MIMO-NFV-SDN integrated 
architectures to provide heterogeneous statistical 
QoS provisioning for customized services over 
6G mobile wireless networks. The massive-MIMO 
techniques are implemented through deploying 
massive MIMO antennas on APs, BSs, and MUs 
to increase the channel quality. We applied the 
NFV techniques to construct the optimal data 
delivery paths for different requirements of ser-
vices, respectively. Collaborating with our devel-
oped AI-enabled architectures and AI-plane, the 
SDN control plane intelligently coordinates the 
network nodes and resources allocations for each 
virtual network slice. We conducted extensive 
simulations and numerical analyses to verify and 
evaluate our developed massive-MIMO-NFV-
SDN integrated architectures using AI-techniques, 
showing that they can support the AI-enabled sta-
tistical delay-bounded QoS provisioning over 6G 
mobile wireless networks.
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