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Abstract— The statistical delay-bounded quality-of-service
(QoS) theory has been developed to efficiently support multime-
dia transmissions over 5G wireless networks. On the other hand,
unlike in Shannon’s information-theoretic formalism requiring
infinite blocklength, finite blocklength coding (FBC) has recently
emerged for error control in the non-asymptotic regime, guar-
anteeing stringent statistical QoS requirements in terms of both
latency and reliability for ultra-reliable low-latency communica-
tions (URLLC) in 5G services. Moreover, integrated with FBC,
millimeter wave (mmWave) massive multi-input multi-output
(m-MIMO) schemes have been designed to significantly improve
the performance in guaranteeing delay/error-rate bounded QoS.
However, due to the complexity of modeling and solving the
optimization problems over mmWave m-MIMO fading channels
in the non-asymptotic error-control regime, it is challenging
to derive an optimal resource allocation policy for maximizing
the �-effective capacity to guarantee statistical delay/error-rate
bounded QoS. To overcome the above problems, in this paper we
propose heterogeneous statistical-QoS driven resource allocation
policies for mmWave m-MIMO based 5G wireless networks
in both asymptotic and non-asymptotic regimes. In particular,
we develop an mmWave m-MIMO based 5G wireless networks
model to optimize the effective capacity for our proposed
schemes. Our simulations show that our proposed schemes
outperform the existing schemes in guaranteeing heterogeneous
statistical delay/error-rate bounded QoS.

Index Terms— Heterogeneous QoS, mmWave m-MIMO, 5G,
FBC, �-effective capacity, D2D, non-asymptotic regime.

I. INTRODUCTION

DELAY-BOUNDED quality-of-service (QoS) guarantees
have played a critically important role for supporting

the explosive growth in wireless multimedia services over

Manuscript received March 15, 2019; revised August 10, 2019; accepted
August 20, 2019. Date of publication October 23, 2019; date of current version
November 27, 2019. This work of X. Zhang and J. Wang was supported in
part by the U.S. National Science Foundation under Grant ECCS-1408601 and
Grant CNS-1205726, and in part by the U.S. Air Force under Grant FA9453-
15-C-0423. The work of H. V. Poor was supported in part by the U.S. National
Science Foundation under Grant CCF-0939370 and Grant CCF-1513915.
(Corresponding author: Xi Zhang.)

X. Zhang and J. Wang are with the Networking and Information Systems
Laboratory, Department of Electrical and Computer Engineering, Texas A&M
University, College Station, TX 77843 USA (e-mail: xizhang@ece.tamu.edu;
wang12078@tamu.edu).

H. V. Poor is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA (e-mail: poor@princeton.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2947941

5G mobile wireless networks. One of the key design issues for
multimedia wireless services is how to efficiently guarantee
time-sensitive multimedia data transmissions within specified
delay bounds. Due to the highly-varying nature of wireless
channels, deterministic delay-bounded QoS requirements are
usually hard to guarantee. As a result, statistical delay-bounded
QoS guarantees [1], [2], in terms of effective capacity and
queue-length-bound/delay-bound violation probabilities,
have been proposed and proved to be a powerful way of
characterizing delay-bounded QoS requirements over wireless
fading channels. Since the time sensitivities of various types
of wireless services vary from 1 ms to a few seconds across
different wireless links, delay-bounded QoS guarantees for
diverse types of services over 5G mobile wireless networks
demand new heterogeneous statistical delay-bounded QoS
provisioning architectures [3], [4], schemes, algorithms, and
5G candidate frameworks, which can be implemented by
integrating several 5G candidate techniques. Various advanced
5G promising techniques, such as millimeter wave (mmWave)
and massive multiple-input multiple-output (m-MIMO),
have been designed to play a critically important role in
5G mobile wireless networks. Accordingly, heterogeneous
statistical delay-bounded QoS provisioning over mmWave
m-MIMO-based 5G mobile wireless networks still remains
as a challenging and open problem due to the complexity of
the system design.

Towards this end, there has been a considerable amount
of research investigating the integration of various advanced
techniques over 5G mobile wireless networks. The authors
in [5] have introduced an m-MIMO system with a large
number of antennas as an emerging technology that can deliver
all the attractive benefits compared with the traditional MIMO
system, but at a much larger scale. Such an m-MIMO system
can substantially reduce the impacts of noise, fast fading,
and interference, and also provide increased system capacity.
An m-MIMO full-duplex (FD) relay architecture is considered
and a closed-form expression for the achievable rate is derived
in [6]. Approximations to achievable rates with several linear
precoders and detectors over m-MIMO based wireless fading
channels have been developed in [7]. The authors of [8] have
investigated a low-complexity hybrid block diagonalization
scheme to derive the channel capacity for downlink multiuser
MIMO schemes.
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In addition, researchers have investigated the integration
of mmWave techniques with m-MIMO systems [9] due to
its potential to improve the spectral efficiency (SE) while
mitigating the self-interference introduced by m-MIMO sys-
tems. How to characterize and implement hybrid beamforming
models over multi-path wireless fading channels is one of
the major design issues for mmWave m-MIMO systems.
Accordingly, the authors of [10] investigate how beamforming
and precoding are different in mmWave MIMO systems from
their lower-frequency counterparts, due to different hardware
constraints and channel characteristics. The authors of [11]
have proposed a new approach to channel estimation based on
training sequences for mmWave m-MIMO systems. However,
high implementation costs and energy consumption due to
hardware constraints in mmWave m-MIMO systems make it
difficult to apply conventional low-complexity MIMO precod-
ing and beamforming techniques. As a result, researchers have
been studying multi-user mmWave m-MIMO systems, where
the digital precoding layer of hybrid precoding yields more
freedom in designing the precoders, which can be exploited
to reduce the interference among mobile users.

The authors of [13] have shown that, in order to guarantee
the constraints of reliable data transmission for some applica-
tions, the codeword blocklength is required to be short (on the
order of 100 channel symbols). Accordingly, since Shannon’s
capacity is based on infinite blocklength and perfect reliabil-
ity [12], [14], it is not appropriate to characterize the maximum
achievable data transmission rate under both constraints of
transmission latency and finite data-packet length.

To tackle challenges introduced by finite-length data trans-
missions, researchers in [15] have proposed methods to char-
acterize the maximum achievable coding rate using finite
blocklength coding (FBC) over additive white Gaussian
noise (AWGN) channels. Further, the authors of [16] have
investigated a framework for cross-layer optimization to sup-
port ultra-reliable and low latency communications (URLLC)
in radio access networks. The authors in [17] have analyzed the
throughput of cognitive radio systems in the non-asymptotic
regime under buffer constraints. Approximations of data trans-
mission rates given the error probability and channel capacity
in the non-asymptotic regime have been developed in [18].
The authors of [19] have provided new compact integral
expressions and associated simple asymptotic approximations
for converse and achievability bounds in the non-asymptotic
regime. However, due to the design complexity in formulating
and solving optimization for mmWave m-MIMO systems
with FBC, there are still many new challenges for the statistical
QoS theory in the non-asymptotic regime in this setting.

To effectively overcome the aforementioned problems,
in this paper we propose heterogeneous statistical QoS
driven resource allocation schemes by optimizing multiuser
mmWave m-MIMO based 5G mobile wireless networks in
both the asymptotic and non-asymptotic regimes. In particular,
we develop mmWave m-MIMO based 5G mobile networking
system architectures and then establish the corresponding
mmWave m-MIMO based 5G mobile wireless networking
system models. Further, we propose and analyze a hybrid
block diagonalization model over the m-MIMO scheme

with imperfect knowledge of the channel state information
(CSI). Given the heterogeneous statistical delay-bounded
QoS constraints, we design a cross-layer optimization model
by developing optimal resource-allocation policies over
relay-D2D links for our proposed mmWave m-MIMO scheme
in the asymptotic regime. In addition, we also formulate and
solve the ε-effective capacity maximization problem in the
non-asymptotic regime. Also conducted is a set of simulations
to validate and evaluate our proposed schemes and show
that our proposed schemes outperform the other existing
schemes to efficiently implement heterogeneous statistical
delay-bounded QoS provisioning over multiuser mmWave
m-MIMO based 5G mobile wireless networks.

The rest of this paper is organized as follows. Section II
builds the system models for our proposed mmWave m-MIMO
based 5G mobile wireless networks. Section III characterizes
and analyzes the cross-layer design for maximizing effective
capacity over relay-D2D link under heterogeneous statistical
delay-bounded QoS constraints in the asymptotic regime.
Section IV formulates and solves the ε-effective capacity max-
imization problem in the non-asymptotic regime. Section V
evaluates the system performance and shows that our proposed
resource allocation policies outperform the other existing
schemes in terms of the effective capacity under heteroge-
neous statistical delay-bounded QoS constraints. The paper
concludes with Section VI.

II. THE NETWORKING ARCHITECTURES AND SYSTEM

MODELS FOR OUR PROPOSED MMWAVE

M-MIMO BASED 5G MOBILE WIRELESS

NETWORKS WITH FBC

Fig. 1 depicts the system architecture model for our pro-
posed mmWave m-MIMO based 5G mobile wireless networks
with a large number of antennas equipped at the BS in the
non-asymptotic regime, where there are K = {1, 2, . . . ,K}
randomly distributed mobile devices simultaneously served by
one mmWave m-MIMO base station (BS) in each wireless
cell. We assume that both the mmWave m-MIMO BS and
mobile users are equipped with large antenna arrays. Assume
each mobile user has NR receiving antennas and LR radio
frequency (RF) chains, while the mmWave m-MIMO BS
consists of NT transmit antennas and LT RF chains. For our
proposed mmWave m-MIMO scheme in Fig. 1, the mmWave
m-MIMO BS applies a low-complex hybrid analog and digital
beamforming structure, where the input Ns multimedia data
streams first pass through the low-dimensional digital base-
band precoder, denoted by FB, which essentially plays the role
of power allocation. Then, after the digital precoder, the signals
are transmitted through LT RF chains. The transmitter at
the BS processes the signals through phase shifters (PSs)
for analog precoding, where the analog precoding matrix
is denoted by FR. After the analog precoding, each mul-
timedia data stream is finally transmitted by a sub-antenna
array associated with the corresponding RF chain. Due to
the power and hardware constraints for large scale MIMO
system, the number of RF chains is much smaller than the
number of transmit antennas at the mmWave m-MIMO BS to
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Fig. 1. The system architecture model for our proposed mmWave m-MIMO (m-MIMO) based 5G mobile wireless networks with large antenna arrays in
the non-asymptotic regime.

guarantee the effectiveness of the wireless communications,
i.e., KNs ≤ LT ≤ NT and Ns ≤ LR ≤ NR [10]. Note that the
multimedia data streams are transmitted using FBC, i.e., each
data stream is encoded into a codeword with finite length n
considering the non-asymptotic regime. The detailed analysis
of FBC is in Section IV.

In order to implement the functions of our pro-
posed mmWave m-MIMO based 5G mobile wireless net-
works, we also develop the networking task control,
communication-mode selections, and resource allocation pro-
tocols which consist of the following items.

1) Handoff: Since the handoff mechanisms have a signifi-
cant impact on QoS provisioning as well as the system
capacity, continuous and smooth handoffs are necessary
to achieve seamless data transmissions.

2) Cloud computing via mmWave m-MIMO: Inspired by
the idea of cloud computing, cloud-RAN (C-RAN)
transfers, many high-complexity computations are
transferred and executed in the cloud through backhaul
links.

3) D2D offloading via mmWave m-MIMO: To reduce
congestion and support statistical delay-bounded QoS
requirements, we apply D2D offloading technique at
the edge devices, which reduces the backhaul burden
by rerouting cellular traffics from a remote server via
cellular mmWave m-MIMO BSs.

4) WiFi offloading via mmWave M-MIMO (based wireless
backhaul): Similar to D2D offloading, WiFi offloading
strategies can be applied at the edge of the mobile
wireless networks to improve the system capacity for

mobile devices over the resource-starving 5G mobile
wireless networks.

5) Distributed caching via mmWave m-MIMO: To solve
the network congestion problem while guaranteeing
QoS constraints, researchers have developed distributed
caching schemes where each mobile user is equipped
with a data storage which caches popular multimedia
files from the remote backhaul networks and directly
provides the neighboring mobile users with immediately
accessible multimedia contents bypassing the mmWave
m-MIMO BSs.

A. The mmWave M-MIMO Channel Model With Perfect CSI

We can derive the channel’s impulse response matrix,
denoted by Hk, over the mmWave m-MIMO based wireless
fading channels from the BS to user k as in the following
equation [20]:

Hk =

√
NTNR

Qρ

Q∑
q=1

α
(q)
k a

(
φ

(q)
k

)(
b
(
ψ

(q)
k

))†

=

√
NTNR

Qρ
Akdiag (α) (Bk)

† (1)

where (·)† is the Hermitian transpose of a matrix; NT and
NR denote the numbers of transmit antennas at the BS and
receive antennas at mobile users, respectively; ρ is the average
path loss; Q represents the number of channel paths; α(q)

k

is the complex gain of the qth path; φ(q)
k and ψ

(q)
k are the

azimuth angles of departure or arrival (AoD/AoA) which are

Authorized licensed use limited to: Texas A M University. Downloaded on January 17,2022 at 18:31:08 UTC from IEEE Xplore.  Restrictions apply. 



2730 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 12, DECEMBER 2019

uniformly distributed between [0, 2π] [21], respectively; and

a
(
φ

(q)
k

)
∈ CNR×1 and b

(
ψ

(q)
k

)
∈ CNT×1 represent the

antenna array’s response vectors for the transmitter and the
receiver, respectively, which are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(
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k
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λ
, . . . , e
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= 1√

NR

×
[
1, ej2πd sin

�
ψ

(q)
k

�
λ
, . . . , e

j2π(NT−1)d sin
�
ψ

(q)
k

�
λ
]T
(2)

where j =
√−1, (·)T represents the transpose of a matrix,

λ represents the wavelength of transmit signal, d is the distance
between the antenna array elements, and the matrices α, Ak,
and Bk in Eq. (1) are defined by the following equations [22]:⎧⎪⎪⎨⎪⎪⎩

α =
√

NTNR
ρ [α1, α2, . . . , αQ]T ;

Ak = [b (φ1) , b (φ2) , . . . , b (φQ)] ;
Bk = [b (ψ1) , b (ψ2) , . . . , b (ψQ)] .

(3)

As a result, the total channel’s impulse response, denoted by
H, for all K mobile users can be expressed as follows:

H =
[
(H1)

T
, (H2)

T
, . . . , (HK)T

]T
. (4)

Consider a user-centric D2D offloading policy [23] to
control the D2D communications: two D2D users can com-
municate with each other only if their distance is smaller than
the collaboration distance threshold dth. We assume that all K
mobile users can choose between two modes: cellular mode
and D2D mode. We introduce and define the binary D2D mode
selection indicator variable, denoted by bk, for user k subject
to the following constraints:{

bk = 1, if user k chooses D2D offloading;
bk = 0, otherwise.

(5)

The edge mobile user can be considered as a relay node
for nearby D2D users. Correspondingly, the received signals,
denoted by yr,k ∈ CNR×1 and yd,k ∈ CNR×1, at relay node k
and the corresponding D2D receiver node can be derived as
in the following equation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yr,k=
√Pr,kHr,kFr,ksr,k+

K∑
j �=k

(1−bj)
√Pr,jHr,kFr,jsr,j

+nr,k;

yd,k=
√Pd,kHd,ksd,k+

K∑
j �=k

bj
√Pd,jHd,jsd,j+nd,k,

(6)

where bj is the binary D2D mode selection indicator variable
for user j given by Eq. (5); Pr,k and Pr,j represent the
transmit powers from the mmWave m-MIMO BS to edge user
k and edge user j, respectively; Pd,k and Pd,j represent the
transmit powers from relay node k to the corresponding D2D
receiver and from relay node j to the corresponding D2D
receiver, respectively; Hr,k, Hd,k, and Hd,j denote the chan-
nel’s impulse response matrices for the kth relay link, kth D2D

link, and jth D2D link, respectively; nr,k ∼ N (0, σ2) and
nd,k ∼ N (0, σ2) denote the AWGN vectors for the kth relay
link and kth D2D link, respectively; sr,k and sr,j represent
the vectors of the transmit signals sent from the mmWave
m-MIMO BS to user to user k and user j, respectively;
sd,k is the transmit signal vector from relay node k to the
corresponding D2D receiver; and Fr,k and Fr,j are the hybrid
precoder matrices at the mmWave m-MIMO BS for user k and
user j, respectively. We define the hybrid Fr,k = FR

r,kF
B
r,k at

the mmWave m-MIMO BS for user k, where FR
r,k ∈ CNT×LT

is the analog RF precoder and FB
r,k ∈ C

LT×Ns is the digital
baseband precoder. Then, for all K mobile users, we define
Fr = [Fr,1,Fr,2, . . . ,Fr,K ], FR

r =
[
FR

r,1,F
R
r,2, . . . ,F

R
r,K

]
, and

FB
r =

[
FB

r,1,F
B
r,2, . . . ,F

B
r,K

]
. In addition, note that the transmit

signal vector need to satisfy E

[
sr,k (sr,k)

†] = 1
KNs

. Define

the transmit signal vector from the mmWave m-MIMO BS to
all K users as sr = [sr,1, sr,2, . . . , sr,K ]T . Then, we analyze
the processed received signal, denoted by zr,k, after analog
combining at user k can be derived as follows:

zr,k = (Wr,k)
†
yr,k

=
√Pr,k (Wr,k)

†Hr,kFr,ksr,k+(Wr,k)
†Hr,k

K∑
j �=k

(1−bj)

×√Pr,jFr,jsr,j+(Wr,k)
†
nr,k (7)

where Wr,k represents the analog RF combiner at the receiver
of edge user k for extracting the transmitted data from
the received signal. Note that all elements of matrix Wr,k

should satisfy the magnitude constraint such that
∥∥∥W (i,j)

r,k

∥∥∥ =

1/
√
NR, where

∥∥∥W (i,j)
r,k

∥∥∥ represents the magnitude of the

(i, j)th element of matrix Wr,k. Accordingly, we can define
an equivalent baseband channel’s impulse response matrix,
denoted by H̃r,k, for edge user k as in the following equation:

H̃r,k = (Wr,k)
† Hr,kFR

r,k. (8)

Accordingly, we can derive the total multiuser baseband
equivalent channel’s impulse response matrix, denoted by H̃r,
as follows:

H̃r =
[
H̃r,1 H̃r,2, . . . , H̃r,K

]T
=

⎡⎢⎢⎢⎣
(Wr,1)

† 0 · · · 0
0 (Wr,2)

† · · · 0
...

...
. . .

...
0 0 · · · (Wr,K)†

⎤⎥⎥⎥⎦HrFR
r . (9)

As a result, the processed received signal can be rewritten as
in the following equation:

zr,k =
√Pr,kH̃r,kFB

r,ksr,k + H̃r,k

K∑
j �=k

(1− bj)
√Pr,jFB

r,jsr,j

+ (Wr,k)
†
nr,k. (10)

We can then determine the signal-to-noise radio (SNR),
denoted by γr,k, from the mmWave m-MIMO BS to edge
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user k as follows:

γr,k =

Pr,k

KNs

∥∥∥H̃r,kFB
r,k

∥∥∥2

F
K∑
j �=k

(1−bj) Pr,j

KNs

∥∥∥H̃r,kFB
r,j

∥∥∥2

F
+ σ2

∥∥∥(Wr,k)
†
∥∥∥2

F

(11)

where ‖M‖2F is the Frobenius norm of matrix M which is
defined as

√
Tr (M†M) where Tr(·) denotes the trace of a

matrix.

B. The mmWave M-MIMO Channel Model With Imperfect CSI

In practical scenarios, it is not realistic to assume the
perfect CSI at the mmWave m-MIMO BSs. Accordingly, with
the imperfect CSI, we can derive the minimum mean-square
error (MMSE) channel estimation for the baseband equivalent
channel’s impulse response matrix H̃r, denoted by Ĥ r, as
in the following equation:

Ĥ r = H̃r − �̂r (12)

where �̂r represents the estimation error matrix for chan-
nel’s impulse response matrix H̃r. We define Ĥ r �[
Ĥ r,1, . . . , Ĥ r,K

]
and �̂r � [�̂r,1, . . . , �̂r,K ]. Correspondingly,

we can rewrite the processed received signal with imperfect
CSI as follows:

ẑr,k =
√Pr,kĤr,kFB

r,ksr,k +
√Pr,k�̂r,kFB

r,ksr,k +
K∑
j �=k

(1− bj)

×√Pr,jĤr,kFB
r,jsr,j +

K∑
j �=k

(1 − bj)
√Pr,j �̂r,kFB

r,jsr,j

+ (Wr,k)
†
nr,k (13)

where Ĥr,k denotes the estimation of baseband equivalent
channel’s impulse response matrix H̃r,k.

C. The Hybrid Block Diagonalization Based mmWave
M-MIMO System Model

Traditionally, linear processing techniques, such as
zero-forcing (ZF) processing technique, have been proven
to be able to maximize the achievable data transmission
rate or channel capacity for the multiuser MIMO systems.
However, due to the significant feedback overhead and high
cost of the large number of RF chains/antennas required
by ZF precoding, the generalized ZF technique cannot be
practically implemented for our proposed mmWave m-MIMO
schemes. By reducing the number of RF chains (LT � NT)
at both the mmWave m-MIMO BS and the mobile users,
a low-complexity processing scheme can be performed at the
baseband.

Accordingly, in this section, instead of finding the global
optimal value for the joint optimization on the RF and
baseband precoders and combiners, researchers have pro-
posed the hybrid processing structure [21] with separated
RF and baseband processing designs. The newly developed
hybrid processing structure can avoid vast amounts of iterative
procedures introduced by the traditional multiuser m-MIMO
system. Correspondingly, we investigate and compare two

different cases with and without the implementation of hybrid
processing structure as follows.

Case 1: (Single-Path Wireless Channel) For the mmWave
m-MIMO scheme over the single-path wireless fading channel,
i.e., Q = 1, we assume that each mobile user only schedules
one data stream through one RF chain, i.e., Ns = LR = 1,
although the mmWave m-MIMO BS is equipped with LT =
K RF chains. The path gain of channel’s impulse response
Hr,k and the azimuth angles of AoD and AoA are repre-
sented as αr,k, φr,k, and ψr,k, respectively, for simplicity in
the single-path wireless channel case. As a result, we can
rewrite the single-path channel’s impulse response between the
mmWave m-MIMO BS and edge user k as in the following
equation:

Hr,k =
√
NTNRαr,ka (φr,k) (b (ψr,k))

†
. (14)

Since we assume that there is only one path over the wireless
fading channel, the optimal combining and RF precoding
vectors can be directly set as Wopt

r,k = a (φr,k) and FR,opt
r,k =

b (ψr,k), respectively. Correspondingly, the precoding vector
at the mmWave m-MIMO BS for all K mobile users is given
as FR

r = [b (ψr,1) , b (ψr,2) , . . . , b (ψr,K)]. With the imperfect
knowledge of CSI, the equivalent baseband channel’s impulse
response for edge user k can be rewritten as follows:

Ĥr,k =
√
NTNRαr,k. (15)

Consequently, the baseband equivalent channel’s impulse
response for all K mobile users can be expressed as in the
following equation:

Ĥr =
√
NTNR

⎡⎢⎢⎢⎣
αr,1 0 · · · 0
0 αr,2 · · · 0
...

...
. . .

...
0 0 · · · αr,K

⎤⎥⎥⎥⎦ . (16)

In addition, the rows of the estimation error �̂r are mutually
independent and distributed as CN (0,Dr−D̂r), where where
D̂r is a diagonal matrices whose kth diagonal element can be
expressed as

(λr,k)
2 � ωPr,k (αr,k)

2

ωPr,kαr,k + 1
(17)

where αr,k denotes the path gain of the mmWave m-MIMO
wireless channels, specified by Eq. (16), ω represents the
length of the pilot sequences, and Pr,k is the transmit power
from the mmWave m-MIMO BS to edge user k. Furthermore,
as for the digital baseband precoder FB

r at the mmWave
m-MIMO BS, the ZF digital precoder can be applied as
follows:

FB
r =

(
Ĥr

)† (
Ĥr

(
Ĥr

)†)−1

. (18)

By applying the baseband precoder at the mmWave m-MIMO
BS, we assume that the multiuser interference can be
perfectly cancelled with very large arrays, that is, Hr,k

Fr,j = 0 for i �= k. Accordingly, we can derive the data
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transmission rate, denoted by Rsgl
r,k, over the kth relay link as

follows:

Rsgl
r,k = TfB log2

(
det

(
INs + Γsgl

r,k

))
(19)

where det(·) denotes the determinant of a matrix, INs is the
Ns × Ns identity matrix, Tf represents the frame duration,
and

Γsgl
r,k �

Pr,k

KNs

(
Ĥr,k

)†
Ĥr,k

K∑
j=1

(1−bj)Pr,j

KNs

(
FB

r,j

)†(�̂r,k)
†
�̂r,kFB

r,j+σ2Wr,k(Wr,k)
†
.

(20)

Assume that the path gains to be invariant within a frame
duration, but vary independently from one frame to another.
Intuitively, we have (a (φr,k))

† a (φr,k) = 1. Since �̂r,k and
the precoding matrix FB

r,j are uncorrelated, we can obtain the
following equation:

E

[
Pr,j

(
FB

r,j

)†
(�̂r,k)

†
�̂r,kFB

r,j

]
=

(
αr,k − λ2

r,k

)Pr,k. (21)

Correspondingly, the data transmission rate over the kth
relay link for single-path wireless channels can be written as
follows:

Rsgl
r,k = TfB log2

(
det

(
INs + Γ̃

sgl
r,k

))
(22)

where

Γ̃
sgl

r,k �
Pr,k

(
Ĥr,k

)†
Ĥr,k

K∑
j=1

(1 − bj)
(
αr,k − λ2

r,k

)
Pr,k +KNsσ2

. (23)

Similarly, we can derive the data transmission rate, denoted
by Rsgl

d,k, over the kth D2D link as follows:

Rsgl
d,k = TfB log2 (1 + γd,k)

= TfB log2

⎛⎜⎜⎜⎝det

⎛⎜⎜⎜⎝INs +
Pd,k

KNs
(Hd,k)

† Hd,k

N∑
j=1

bjPd,j

KNs
(Hd,j)

† Hd,j+σ2

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

(24)

where γd,k denotes the SNR between the relay node k and the
corresponding D2D receiver.

Case 2: (Multi-Path Wireless Channel) Over the multi-path
wireless fading channels, the hybrid block diagonalization
scheme [8] need to be considered for the low-complexity
multiuser mmWave m-MIMO system. In order to calculate
the RF combining vector Wr,k at each edge user k, we need
to proceed with the following steps. First, we can define the
effective channel’s impulse response matrix, denoted by Hr,k,
excluding edge user k as shown in the following equation:

Hr,k�
[(

Ĥr,1

)T
, . . . , ĤT

r,k−1, Ĥ
T
r,k+1, . . . ,

(
Ĥr,K

)T ]T
(25)

where Ĥr,k is the estimation of the baseband equivalent
channel’s impulse response matrix at edge user k. Second,

the singular-value decomposition (SVD) of the matrix Hr,k is
defined as follows:

Hr,k � Ur,kΣr,k
(
Vr,k

)†
= Ur,kΣr,k

[
V

((K−1)LR)

r,k V
(LR)

r,k

]†
(26)

where the columns of Ur,k are the left singular vectors of
matrix Hr,k, Σr,k denotes the diagonal matrix containing the
singular values of matrix Hr,k, the rows of (Vr,k)† are the

right singular vectors for matrix Hr,k, V
((K−1)LR)

r,k represents
the first (K − 1)LR right singular vectors of matrix Hr,k, and

V
(LR)

r,k is the rest LR right singular vectors extracted from Vr,k

that are the orthogonal bases of the null space for matrix
Hr,k, i.e., Ĥr,jV

(LR)

r,k = 0. Third, we can derive the block
diagonalization for the baseband equivalent channel matrix
Ĥr,k, denoted by ĤB

r , for removing the inter-user interference
as in the following equation [8]:

ĤB
r =

⎡⎢⎢⎢⎢⎢⎣
Ĥr,1V

(LR)

r,1 0 · · · 0

0 Ĥr,2V
(LR)

r,2 · · · 0
...

...
. . .

...

0 0 · · · Ĥr,KV
(LR)

r,K

⎤⎥⎥⎥⎥⎥⎦. (27)

We have ĤB
r =

[
ĤB

r,1, . . . , Ĥ
B
r,K

]
. Similar to Case 1 in

Section III-C, the rows of the estimation error �̂r for chan-
nel ĤB

r are also mutually independent and distributed as

CN (0,DB
r − D̂

B
r ), where D̂

B
r is a diagonal matrices whose

kth diagonal element is represented by λB
r,k. Accordingly,

the overall baseband precoder at the mmWave m-MIMO BS
can be expressed as follows [8]:

FB
r =

[
V

(LR)

r,1 V(Ns)
r,1 , . . . ,V

(LR)

r,K V(Ns)
r,K

]
(28)

where V(Ns)
r,k consists of the first Ns columns of matrix Vr,k,

which can be derived by the right singular vector of the SVD
for matrix ĤB

r,k as in the following equation:

ĤB
r,k = Ur,kΣr,k (Vr,k)

† (29)

where the columns of Ur,k are the left singular vector of matrix
ĤB

r,k, Σr,k denotes the diagonal matrix containing the singular

values of matrix ĤB
r,k, and the rows of (Vr,k)† represent

the right singular vectors of matrix ĤB
r,k. Finally, we can

derive the RF combiner at user k as Wr,k = U(Ns)
r,k , where

U(Ns)
r,k denotes the first Ns columns of matrix Ur,k. Define

the ith diagonal element of matrix Σr,k as μ(i)
r,k. Similar to the

derivation of Eqs. (21) and (22) in Case 1 in Section III-C,
we can derive the downlink data transmission rate, denoted by
Rmlt

r,k , for the multi-path case with imperfect CSI as follows:

Rmlt
r,k = TfB log2

(
det

(
INs + Γmlt

r,k

))
(30)

where

Γmlt
r,k � Pr,k (Σr,k)

† Σr,k

K∑
j=1

(1− bj)
(
αr,k −

(
λB

r,k

)2
)
Pr,k +KNsσ2

. (31)
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III. CROSS-LAYER OPTIMIZATION SCHEMES FOR

HETEROGENEOUS STATISTICAL DELAY-BOUNDED QOS
PROVISIONING THROUGH EFFECTIVE CAPACITY IN

THE ASYMPTOTIC REGIME

In this section, we develop the framework for cross-layer
optimization schemes and derive optimal QoS driven resource
allocation policies to maximize the effective capacity for our
proposed mmWave m-MIMO scheme subject to heterogeneous
statistical delay-bound QoS constraints in the asymptotic
regime.

A. The Effective Capacity Theory

Based on large deviation principle (LDP), under sufficient
conditions, the queue length process Q̃k(t) converges in dis-
tribution to a random variable Q̃k(∞) such that

− lim�Qth,k→∞

log
(

Pr
{
Q̃k(∞) > Q̃th,k

})
Q̃th,k

= θk. (32)

Eq. (32) states that the probability of the queue length exceed-
ing a certain threshold Q̃th,k decays exponentially fast as the
threshold Q̃th,k increases. The parameter θk is called QoS
exponent for user k and plays a critically important role
for statistical delay-bounded QoS guarantees. The larger θk
corresponds to the more stringent QoS requirement, while the
smaller θk leads to the looser delay constraint, which implies
the system can only provide a looser QoS guarantee. For a
certain θk > 0, Q̃th,k denotes the queue-length bound. The
effective capacity [24] is defined as the maximum constant
arrival rate that a given service process can support in order to
guarantee a QoS requirement specified by θk. Given a service
process Rk(t) (t = 1, 2, . . . ), the effective capacity of the
service process for user k, denoted by EC(θk), where θk > 0,
is defined as follows [24]:

EC(θk)=− 1
θk

log
(

E

[
e−θkRk(t)

])
=− 1

θk
log

(
E

[
e−θkRk(1)

])
(33)

where E(·) is the expectation operation.
Furthermore, we apply the resource allocation policy,

denoted by νk � νk(θk, γk), for user k which is a function
of not only the SNR γk, but also the QoS exponent θk [25].
Applying the resource allocation policy, the instantaneous
transmit power for user k becomes Pk(νk) = νkPk. We first
assume that the channel is block fading. In addition, we further
assume that all users are heterogeneous, that is, they have
different resource allocation policies and also subject to the
different unit mean power constraint. We define Pk as the
mean transmit power constraint for user k. Accordingly, the
power-control law need to satisfy the mean power constraint
as in the following equation:∫ ∞

0

Pk(νk)pαk
(αk)dαk ≤ Pk (34)

where pαk
(αk) denotes the pdf of channel path gain over

mmWave m-MIMO wireless fading channels.

B. Learning Based D2D Matching Algorithm Under Hetero-
geneous Statistical Delay-Bounded QoS Constraints

Consider the diverse delay-bounded QoS provisioning for
different links at the same time, which represents the new het-
erogeneous statistical delay-bounded QoS provisioning frame-
work and imposes many new challenges. The maximization
problem P1 under heterogeneous statistical delay-bounded
QoS requirements to maximize the effective capacity, denoted
by ECmax(θr,k, θd,k), over the kth relay-D2D link can be
formulated as in the following equation:

P1 : ECmax(θr,k, θd,k) = arg max
{Pr,k,Pd,k}

{
− 1
θι,k

× log

{
Eγ

[
e−θι,kTfBmin{log2(1+γr,k),log2(1+γd,k)}

]}}
(35)

s.t. C1 : Pr,k,Pd,k > 0 ∀k;
C2 : E [Pr,k + Pd,k] ≤ Pk;
C3 : bk ∈ {0, 1}. (36)

where γr,k and γr,k denote the SNR for the kth relay link
and D2D link, respectively; θι,k = {θr,k, θd,k} (ι = {r, d})
is the QoS exponent for the kth relay link and D2D link,
respectively, with ι = r if Rr,k < Rd,k and ι = d if Rr,k >
Rd,k; and Pk represents the average transmit power constraint
for the relay-D2D link. The above optimization problem P1

is a mixed-integer optimization problem.
Due to the statistic nature of mobile users’ mobility

and channel state information, we propose a learning based
D2D matching algorithm to solve the cross-layer design
based effective capacity maximization problem over mmWave
m-MIMO based 5G mobile wireless networks. To solve the
collaborative-learning based D2D matching problem, we need
to define the following four elements:

• Agents: K users.
• States: Define the multimedia D2D caching based state,

denoted by s(t) ∈ S, where S is the state space, for all
D2D users at time slot t, which is given as follows:

s(t) = [s1(t), s2(t), . . . , sK(t)] (37)

where sk(t) represents the configuration of D2D user Dk

given as follows:

sk(t) = (ck(t), rk(t)) (38)

where ck(t) represents the caching state and rk(t) is the
requesting state at D2D user Dk, which can be given in
the following equations:⎧⎨⎩ck =

[
c
(1)
k , c

(2)
k , . . . , c

(F )
k

]
;

rk =
[
r
(1)
k , r

(2)
k , . . . , r

(F )
k

]
,

(39)

where F = {1, 2, . . . , F} is the multimedia file library,
c
(f)
k is the caching indicator variable which determines

whether D2D user Dk caches multimedia file indexed by
f (f ∈ F), and r(f)

k is the requesting indicator variable
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which represents whether multimedia file indexed by f
is requested at D2D user Dk.

• Actions: Define bk ∈ A as the action for D2D user k
where A represents the action space.

• Rewards: Once the requested packet is delivered, a reward
is collected at the D2D user immediately. Define the
reward for kth D2D link as EC(θr,k, θd,k) given in
Eq. (35).

The Q-value update depends on the states {s̃k, sk}, actions
bk, and the corresponding reward, thus, can be derived as
follows:

Qt+1 (sk, bk)← (1−α̂)Qt (sk, bk)+α̂

×
[
EC(θr,k, θd,k)+δmax

bk∈A

∑
�sk∈S

Qt(s̃k, bk)
]

(40)

where 0 < α̂ ≤ 1 denotes the learning rate, δ is the
discount factor, and max

bk∈A
Qt (s̃, bk) represents the estimate of

the optimal future Q value based on the best selected actions
at time slot t. In addition, we assume that D2D user Dk is
able to use the history of neighboring devices to estimate the
user preference for the multimedia files. Define the historical
knowledge, denoted by Hk(t), for D2D user Dk up to time
slot t as follows:

Hk(t) = [(ck(1), rk(1)) , . . . , (ck(t), rk(t))] , ∀k (41)

At each time slot t, each mobile user obtains a sample set
which includes H different most recent observations from
Hk(t). Define the sample set, denoted by Ŝ(sk(t),Hk(t))
as a function of H observations in Hk(t). In each iteration,
the learning algorithm selects a cluster of non-interacting D2D
user, calculates the current reward functions, and finds the best
D2D matching strategy sets independently. Finally, the D2D
users update their new reward functions and the D2D matching
strategy. The pseudo code of the learning based D2D matching
algorithm is proposed in Algorithm 1.

IV. HETEROGENEOUS STATISTICAL DELAY QOS
GUARANTEES THROUGH EFFECTIVE CAPACITY IN THE

NON-ASYMPTOTIC REGIME

In the previous section, we have derived the D2D matching
algorithm by applying the Shannon’s capacity to characterize
the maximum effective capacity subject to the heterogeneous
statistical delay-bounded QoS constraints in the asymptotic
regime. However, under the low latency requirements for the
5G multimedia data transmissions, the traditional Shannon’s
capacity is no longer appropriate to characterize the maximum
achievable data transmission rate because of the block error
probability introduced by the finite blocklength coding in
the non-asymptotic regime. Towards this end, in this section
we investigate the non-asymptotic case by utilizing the FBC
technique for supporting both the statistical delay-bounded
and error-rate bounded requirements over 5G mobile wireless
networks.

Algorithm 1 Learning Based D2D Matching Algorithm
Input: Tf , Tmax, B,K, and F
Initialization: [Pr,1, . . . ,Pr,K ] =

[P r,1, . . . ,P r,K
]

and
[Pd,1, . . . ,Pd,K ] =

[Pd,1, . . . ,Pd,K
]

for each state sk and action bk do
Q (sk, bk) = 0

end for
Step 1:
Mobile users broadcasts their locations and configuration
information and form the bipartite graph G with all neigh-
boring users
Step 2:
while t ≤ Tmax do

With exploitation probability (1− ε) do
Randomly select a sample set of H recent observations

of the mobile users’ joint actions played at network state
sk(t)

Observe current state and construct the best action for
each network state sk(t)
With probability ε do

Randomly select an action
Calculate the immediate reward EC(θr,k, θd,k)
Update the Q-value function using Eq. (40)
Set t← (t+ 1)

end while

A. FBC Based Block Error Probability Over mmWave
M-MIMO Based Wireless Fading Channels in the
Non-Asymptotic Regime

Consider a message set M = {1, . . . ,M} and a mes-
sage i which is uniformly distributed on M. We define an
(n,M,NT, ε)-code (ε ∈ [0, 1)) over mmWave m-MIMO based
5G mobile wireless networks as follows:

• An encoder Υ: {1, . . . ,M} �→ C
NT×n that maps the

message i ∈ {1, . . . ,M} to a codeword with length
n, i.e., Xn = Υ(i), where Xn represents the encoded
codeword with length n.

• A decoder {DH}H∈CNR×NT : CNR×NT × CNT×n �→
{1, . . . ,M}⋃{e} such that DH(Yn) = î, where î
denotes the estimated received signal at the receiver, Yn

represents the received codeword with length n, H is
the channel’s impulse response matrix, and e is the error
event. The average error probability, denoted by Pne ,
need to satisfy the following maximum error probability
constraint:

Pne � 1
M

M∑
w=1

EH

[
Pr

{̂
i �= i|Xn,H

}]
≤ ε. (42)

Given the blocklength n and block error probability ε, the max-
imum achievable code size, denoted by M∗, is defined as:

M∗ � max {M : ∃(n,M,NT, ε)-code} . (43)

Accordingly, we can derive the maximal achievable finite
blocklength coding rate, denoted by R∗, as follows:

R∗ =
logM∗

n
. (44)
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In addition, we define i(Xn;Yn,H) as the information den-
sity, which is given as in the following equation:

i(Xn;Yn,H) � log
∂PY n|H,Xn (Yn|H,Xn)

∂PY n|H (Yn|H)

=
1

nNT

n∑
t=1

log
∂PYt|H,Xt

(yt|H,xt)
∂PYt|H (yt|H)

=
1

nNT

n∑
t=1

it (45)

where log(·) represents loge(·), xt and yt are the transmit and
codewords at time slot t (t = 1, . . . , n), respectively, and it
denotes the random variable with denotes the random variable
with the same distribution of

it � log
∂PYt|H,Xt

(yt|H,xt)
∂PYt|H (yt|H)

. (46)

B. Coding Rate in the Non-Asymptotic Regime

In the non-asymptotic regime, we first define nr,k as the
number of symbols transmitted during one time frame (i.e.,
one blocklength of channel coding) for user k. In particular,
researchers have derived the accurate approximation of the
maximum achievable data transmission rate, denoted by R∗

r,k,
for user k with error probability, denoted by εr,k with 0 ≤
εr,k < 1 and coding blocklength, denoted by nr,k, over the
real AWGN channel in the non-asymptotic regime as shown
in the following equation [26]:

R∗
r,k �

logM∗
r,k

nr,k

=C(nr,k,Pr,k)−
√
V (nr,k,Pr,k)

nr,k

Q−1(εr,k)
log 2

+
O(lognr,k)

nr,k

(47)

where Q−1(·) is the inverse of Q-function, M∗
r,k is the

maximum achievable code size for user k, C(nr,k,Pr,k) and
V (nr,k,Pr,k) represent the channel capacity and channel dis-
persion, respectively, and f(x) = O(g(x)) if and only if there
exists a positive real numberM and a real number x0 such that
|f(x)| ≤ Mg(x) for all x ≥ x0. Eq. (47) implies that, given
a blockcode with finite length nr,k, the maximum achievable
data transmission rate can be accurately approximated by the
right-hand side of Eq. (47) with block error probability no
larger than εr,k over the real AWGN channel. Authors in [27]
have shown that the above Eq. (47) holds true when the
blocklength nr,k is as short as 100. In the following section,
we will analyze the expressions for channel capacity and
channel dispersion over mmWave m-MIMO wireless fading
channels.

C. Channel Capacity and Channel Dispersion Over
mmWave Based M-MIMO Fading Channels in the
Non-Asymptotic Regime

Given the D2D mode selection indicator variable {bk}Kk=1,
we define Kr and Kd as the number of users using cellular
links and D2D links, respectively. Similar to the cases in the

asymptotic regime, we investigate two different cases with and
without the applying the hybrid processing structure in the
non-asymptotic regime as follows.

Case 1: (Single-Path Wireless Channel) Similar to the case
in the asymptotic regime, we can derive the channel capac-
ity, denoted by Csgl(nr,k,Pr,k), over single-path mmWave
m-MIMO wireless fading channels under perfect CSI scenario
in the non-asymptotic regime as follows:

Csgl(nr,k,Pr,k) = log2

⎛⎜⎝det

⎛⎜⎝INs +
Pr,k

(
H̃r,k

)†
H̃r,k

KrNsσ2

⎞⎟⎠
⎞⎟⎠

= log2

(
1 +
Pr,kNTNR (αr,k)

2

KrNsσ2

)
. (48)

In addition, we can define the channel dispersion, denoted
by V sgl(nr,k,Pr,k), over mmWave m-MIMO based 5G mobile
wireless networks in the non-asymptotic regime as in the
following equation:

V sgl(nr,k,Pr,k) � 1
nr,k

nr,k∑
t=1

Var [it] (49)

where it is given in Eq. (46). Accordingly, we can derive the
channel dispersion over the single-path mmWave m-MIMO
based wireless fading channels in the non-asymptotic regime
as follows [28]:

V sgl(nr,k,Pr,k) = 1−
(

1 +
Pr,kNTNR (αr,k)

2

KrNsσ2

)−2

. (50)

Case 2: (Multi-Path Wireless Channel) We can derive
the channel capacity, denoted by Cmlt(nr,k,Pr,k), over
multi-path mmWave m-MIMO wireless fading channels
under perfect CSI scenario in the non-asymptotic regime as
follows:

Cmlt(nr,k,Pr,k) = log2

(
det

(
INs +

Pr,k (Σr,k)
† Σr,k

KrNsσ2

))
. (51)

In addition, the channel dispersion, denoted by
V mlt(nr,k,Pr,k), over the multi-hop mmWave m-MIMO
based wireless fading channels in the non-asymptotic regime
can be expressed as in the following equation:

V mlt(nr,k,Pr,k) = NT + Var

[
log

(
det

(
Pr,k (Σr,k)

† Σr,k

KrNsσ2

))]
.

(52)

D. Optimal Power Allocation Policies Subject to Statistical
Delay-Bounded QoS Constraint in the Non-Asymptotic Regime

Define P r � [Pr,1, . . . ,Pr,Kr ] and P r �
[P r,1, . . . ,P r,Kr

]
as the resource allocation vector and the average resource allo-
cation vectors, respectively. Using Eq. (33), we can define the
new concept of ε-effective capacity for the (nr,k,M,NT, εr,k)-
code as follows:

Definition 1: For an (nr,k,M,NT, εr,k)-code (εr,k ∈ [0, 1)),
given the error probability εr,k, we can derive the ε-effective
capacity, denoted by ECε(θr,k), between edge user k and
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the mmWave m-MIMO BS in the non-asymptotic regime as
follows:

ECε(θr,k) = − 1
θr,k

log

(
Eαr,k

[
(1− εr,k) e

− θr,k log M∗
r,k

nr,k

])
.

(53)

Then, using Eqs. (47) and (53), we can formulate the opti-
mization problem P2 for maximizing the aggregate ε-effective
capacity, denoted by ECmax

ε (θr), for all K cellular users under
heterogeneous statistical delay-bounded QoS constraints in the
non-asymptotic regime as follows:

P2 : ECmax
ε (θr)

= arg max
P r

{
Kr∑
k=1

− 1
θr,k

log

(
Eαr,k

[
(1−εr,k) e

− θr,k log M∗
r,k

nr,k

])}
(54)

s.t. C1;

C4 : E

[
Kr∑
k=1

Pr,k

]
≤ P r;

C5 :
logM∗

r,k

nr,k
≈C(nr,k,Pr,k)−

√
V (nr,k,Pr,k)

nr,k

Q−1(εr,k)
log 2

;

C6 : nr,k ≥ nth
r,k, ∀k, (55)

where P r is the average transmit power for all K links at
the mmWave m-MIMO BS and nth

r,k represents the minimum
blocklength for constraint C5 given in Eq. (55) to hold true.
Then, we can convert the non-convex maximization problem
P2 into a minimization problem P3 as in the following
equation:

P3 : arg min
P r

{
1
θr,o

log

(
E

[
Kr∑
k=1

(1− εr,k) exp

{
− θr,k

×
(
C(nr,k,Pr,k −

√
V (nr,k,Pr,k)

nr,k

Q−1(εr,k)
log 2

)}])}
(56)

subject to the constraints C1, C4, C5, and C6 specified by
Eqs. (36) and (55) where θr,o (θmin ≤ θr,o ≤ θmax and θmin =
min{θr,1, θr,2, . . . , θr,Kr}, θmax = max{θr,1, θr,2, . . . , θr,Kr})
denotes the unique optimal QoS exponent and the approxima-
tion for its optimal value of θr,o in the high-end SINR region
is derived in [29]. Accordingly, to solve the minimization
problem P3, we investigate the following two different cases
over single-path and multi-path wireless channels for our
proposed multiuser mmWave m-MIMO schemes over 5G
mobile wireless networks, respectively.

Case 1: (Single-Path Wireless Channel) For the single-path
case, according to Eq. (56), we can rewrite problem P3 as in
the following minimization problem P4:

P4 : min
P r

{
Eαr,k

[
Kr∑
k=1

(1−εr,k) exp

{
− θr,k

(
Csgl(nr,k,Pr,k)

−
√
V sgl(nr,k,Pr,k)

nr,k

Q−1(εr,k)
log 2

)}]}

= min
P r

⎧⎪⎨⎪⎩Eαr,k

⎡⎢⎣ Kr∏
k=1

(1− εr,k) exp
{
Q−1(εr,k)

log 2

×

√√√√√ 1
nr,k

⎛⎝1−
(
1+
Pr,kNTNR (αr,k)

2

KrNsσ2

)−2
⎞⎠
⎫⎪⎬⎪⎭

× log2

(
1 +
Pr,kNTNR (αr,k)

2

KrNsσ2

)−�βr,k

⎤⎥⎦
⎫⎪⎬⎪⎭ (57)

subject to the constraints C1, C4, C5, and C6 specified by
Eqs. (36) and (55) where β̃r,k � θr,k/ log 2.

Lemma 1: Given the error probability εr,k ∈ (0, 0.5) and
the transmit power Pr,k, the ε-effective capacity ECε,sgl(θr)
specified by Eq. (53) over the single-path mmWave m-MIMO
based wireless channel is a continuous and monotonically
increasing function of the blocklength nr,k > 0.

Proof: In order to show the continuity and monotonicity
of the ε-effective capacity in terms of the blocklength nr,k > 0,
we need to proceed with the following steps. First, we define
the following function:

F (nr,k,Pr,k) �nr,k log2

(
1+
Pr,kNTNR (αr,k)

2

KrNsσ2

)
− Q−1(εr,k)

log 2

×

√√√√√nr,k

⎛⎝1−
(
1+
Pr,kNTNR (αr,k)

2

KrNsσ2

)−2
⎞⎠.

(58)

Using the definition of continuity, we can prove that for every
Δ > 0, there always exists a δ > 0 such that for all ñr,k,
we have

|nr,k − ñr,k| < δ, (59)

such that the following equation holds:

|F (nr,k,Pr,k)− F (ñr,k,Pr,k)| < Δ. (60)

Second, we can derive the relationship between the ε-effective
capacity and the function F (nr,k,Pr,k) as in the following
equation:

ECε,sgl(θr)=−
Kr∑
k=1

1
θr,k

log Eαr,k

[
(1−εr,k) e

−θr,k
F (nr,k,Pr,k)

nr,k

]
.

(61)

Accordingly, we can show that the ε-effective capacity
ECε,sgl(θr) is a continuous function of the blocklength nr,k. In
addition, the first-order derivative of the function F (nr,k,Pr,k)
can be determined as follows:

∂F (nr,k,Pr,k)
∂nr,k

= log2

(
1+
Pr,kNTNR (αr,k)

2

KrNsσ2

)
− Q−1(εr,k)

2 log 2√nr,k

×

√√√√1−
(

1 +
Pr,kNTNR (αr,k)

2

KrNsσ2

)−2

=
1
2

(
log2

(
1+
Pr,kNTNR (αr,k)

2

KrNsσ2

)
−logM∗

r,k

nr,k

)
(62)
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which is due to the followings:√√√√√ 1
nr,k

⎛⎝1−
(
1+
Pr,kNTNR (αr,k)

2

KrNsσ2

)−2
⎞⎠Q−1(εr,k)

log 2

= log2

(
1 +
Pr,kNTNR (αr,k)

2

KrNsσ2

)
− logM∗

r,k

nr,k
. (63)

Correspondingly, we can prove that ∂F (nr,k,Pr,k)
∂nr,k

> 0. There-
fore, F (nr,k,Pr,k) is an increasing function of the blocklength
nr,k > 0. Accordingly, when Q−1(εr,k) > 0, i.e., εr,k ∈
(0, 0.5), we need to analyze the monotonicity of function
F (nr,k,Pr,k)

nr,k
as follows:

∂
[
F (nr,k,Pr,k)

nr,k

]
∂nr,k

=
nr,kF

′
nr,k

(nr,k,Pr,k)−F (nr,k,Pr,k)
(nr,k)2

=

√
nr,kQ

−1(εr,k)

√
1−

(
1+Pr,kNTNR(αr,k)2

KrNsσ2

)−2

2 log 2(nr,k)2

> 0. (64)

where F ′
nr,k

(nr,k,Pr,k) � ∂F (nr,k,Pr,k)
∂nr,k

. Since e−x is a
monotonically decreasing function and log(x) is a monotoni-
cally increasing function, we can observe that the ε-effective
capacity ECε,sgl(θr,k) for user k is a monotonically increas-
ing function of F (nr,k,Pr,k). Thus, we can show that the
aggregate ε-effective capacity is a monotonically increasing
function of the blocklength nr,k > 0, given the error proba-
bility εr,k, and transmit power Pr,k, completing the proof of
Lemma 1.

Theorem 1: Given the error probability εr,k ∈ (0, 0.5),
an optimal resource allocation policy, denoted by P r,opt

k,sgl,
that maximizes the aggregate ε-effective capacity, denoted
by ECmax

ε,sgl (θr), for the single-path wireless channel data
transmissions between the mmWave m-MIMO BS and user
k under statistical delay-bounded and error-rate bounded
QoS constraints in the non-asymptotic regime is specified as
follows:

P r,opt
k,sgl =

β̃r,k

Kr∏
k=1

(
(1− εr,k)e

θr,kQ−1(εr,k)√
nr,k log 2

) 1
Kr �βr,k+1

(
λ̃

sgl
o

) 1
Kr �βr,k+1

Kr∏
k=1

( �βr,kNTNR(αr,k)2

KrNsσ2

) �βr,k
Kr �βr,k+1

− KrNsσ
2

NTNR (αr,k)
2 (65)

where λ̃
sgl
o is the optimal Lagrange multiplier which can

be numerically obtained by substituting Eq. (65) back into
constraint C4 specified in Eq. (55) for single-path wireless
channel.

Proof: In order to derive the optimal resource allocation
policy over the single-path mmWave m-MIMO wireless fading
channels, we need to proceed with the following steps. First,
we can form the Lagrange function, denoted by J , as in the

following equations:

J = Eαr,k

[
Kr∏
k=1

(1−εr,k) exp

{
θr,kQ

−1(εr,k)
log 2√nr,k

×
√√√√(

1+
Pr,kNTNR (αr,k)

2

KrNsσ2

)}(
1+
Pr,kNTNR (αr,k)

2

KrNsσ2

)−�βr,k
]

+λ̃sgl

(
Eαr,k

[
Kr∑
k=1

Pr,k

]
− P r

)
(66)

where λ̃sgl represents the Lagrange multiplier associated with
the constraint C4 given in Eq. (55) for single-path wireless
channel. Second, applying the Karush-Kuhn-Tucker (KKT)
condition, we can take the first-order derivative of J with
respect to Pr,k and set the results to zero as follows:

∂J

∂Pr,k
= −(1− εr,k)e

θr,kQ−1(εr,k)√
n log 2

β̃r,kNTNR (αr,k)
2

KrNsσ2

×
(

1 +
Pr,kNTNR (αr,k)

2

KrNsσ2

)−1

×
Kr∏
k=1

(
1 +
Pr,kNTNR (αr,k)

2

KrNsσ2

)−�βr,k

× pαr,k(αr,k)dαr,k + λ̃sglpαr,k(αr,k)dαr,k = 0. (67)

Third, using Eq. (67), under statistical delay-bounded and
error-rate bounded QoS constraints, an optimal resource allo-
cation policy that maximizes the ε-effective capacity under
FBC in the high SNR region can be derived as in Eq. (65),
completing the proof of Theorem 1.

Case 2: (Multi-Path Wireless Channel) Similarly, we can
derive the aggregate ε-effective capacity over the multi-path
mmWave m-MIMO based wireless fading channels in the
non-asymptotic regime as in the following equations:

ECε,mlt(θr) = − 1
θr,o

log

{
Eαr,k

[
Kr∑
k=1

(1−εr,k) exp

{
− θr,k

×
(
Cmlt(nr,k,Pr,k)−

√
V mlt(nr,k,Pr,k)

nr,k

Q−1(εr,k)
log 2

)}]}

=− 1
θr,o

log

⎧⎪⎨⎪⎩EΛ

⎡⎢⎣ Kr∏
k=1

(1−εr,k) exp
{
Q−1(εr,k)

log 2

×

√√√√√ 1
nr,k

⎛⎝NT+Var

⎡⎣log

⎛⎝ �N∏
i=1

μ
(i)
r,k

⎞⎠⎤⎦⎞⎠
⎫⎪⎬⎪⎭

×
⎛⎝ �N∑
i=1

(
1 +
Pr,k (Λr,i)

2

KrNsσ2

)⎞⎠−�βr,k
⎤⎥⎦
⎫⎪⎬⎪⎭ (68)

where Ñ = min{NT, NR} and {Λr,i, i = 1, . . . , Ñ} denotes

the eigenvalue of square matrix
(
(Σr,k)

† Σr,k

)
. Accordingly,

we can obtain the following upper bound on the aggregate
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ε-effective capacity in the non-asymptotic regime:

ECε,mlt(θr)≤ 1
θr,o

log

{
EΛ

[
Kr∏
k=1

(1− εr,k) exp

{√
NT

nr,k

× Q
−1(εr,k)
log 2

}⎛⎝ �N∑
i=1

(
1+
Pr,k (Λr,i)

2

KrNsσ2

)⎞⎠−�βr,k ]}
(69)

Correspondingly, we can rewrite the minimization problem
P3 in the high SNR region as in the following optimization
problem P5:

P5 : min
P r

{
EΛ

[
Kr∏
k=1

(1− εr,k) exp

{√
NT

nr,k

Q−1(εr,k)
log 2

}

×
⎛⎝ �N∑
i=1

(
1 +
Pr,k (Λr,i)

2

KrNsσ2

)⎞⎠−�βr,k ]}

≈ min
P r

⎧⎪⎪⎪⎨⎪⎪⎪⎩EΛ

⎡⎢⎢⎢⎣
Kr∏
k=1

(1− εr,k) exp

{√
NT

nr,k

Q−1(εr,k)
log 2

}

×

⎛⎜⎜⎜⎝
Pr,k

�N∑
i=1

(Λr,i)
2

KrNsσ2

⎞⎟⎟⎟⎠
−�βr,k

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (70)

Similar to Case 1 in Section V-D, we can derive the following
lemma to analyze the convexity for the minimization problem
P5 over the multi-path mmWave m-MIMO wireless channels.

Lemma 2: Given the error probability εr,k ∈ (0, 0.5) and
the transmit power Pr,k in the high SNR region, the aggre-
gate ε-effective capacity ECε,mlt(θr) specified by Eq. (68) is
a continuous and monotonically increasing function of the
blocklength nr,k > 0.

Proof: The proof of Lemma 2 is similar to the proof for
Lemma 1 and thus is omitted in this paper.

Theorem 2: In the high SNR region, the optimal resource
allocation policy, denoted by P r,opt

k,mlt, that maximizes the aggre-
gate ε-effective capacity for the wireless data transmissions
between the mmWave m-MIMO BS and edge user k under sta-
tistical delay-bounded and error-rate bounded QoS constraints
in the non-asymptotic regime is determined by the following
equation:

P r,opt
k,mlt =

β̃r,k

Kr∏
k=1

(
(1− εr,k)e

�
NT

nr,k

Q−1(εr,k)
log 2

) 1
Kr �βr,k+1

(
λ̃mlt

o

) 1
Kr �βr,k+1

Kr∏
k=1

⎛⎜⎝ �βkr,

�N�
i=1

(Λr,i)
2

KrNsσ2

⎞⎟⎠
�βr,k

Kr �βr,k+1

(71)

where λ̃mlt
o is the optimal Lagrange multiplier which can

be numerically obtained by substituting Eq. (71) back into
constraint C4 specified in Eq. (55) over multi-path mmWave
m-MIMO wireless fading channels.

Proof: In order to derive the optimal resource allocation
policy over the multi-path mmWave m-MIMO wireless fading
channels, we need to proceed with the following steps. First,
we can form the Lagrange function, denoted by J , as shown
in the following equations:

J = EΛ

⎡⎢⎢⎢⎢⎢⎣
Kr∏
k=1

(1− εr,k) exp

{√
NT

nr,k

Q−1(εr,k)
log 2

}

×

⎛⎜⎜⎜⎝
Pr,k

�N∑
i=1

(Λr,i)
2

KrNsσ2

⎞⎟⎟⎟⎠
−�βr,k

⎤⎥⎥⎥⎥⎥⎦+λ̃mlt

(
Eαr,k

[
Kr∑
k=1

Pr,k

]
−P r

)

(72)

where λ̃mlt represents the Lagrange multiplier associated with
the constraint C4 given in Eq. (55) for multi-path wireless
channel. Then, applying the KKT condition, we can take the
derivative of J with respect to Pr,k and set the results to zero
as follows:

∂J

∂Pr,k
= −(1− εr,k)e

�
NT

nr,k

Q−1(εr,k)
log 2

β̃r,k

�N∑
i=1

(Λr,i)
2

KrNsσ2

×

⎛⎜⎜⎜⎝
Pr,k

�N∑
i=1

(Λr,i)
2

KrNsσ2

⎞⎟⎟⎟⎠
−1

Kr∏
k=1

⎛⎜⎜⎜⎝
Pr,k

�N∑
i=1

(Λr,i)
2

KrNsσ2

⎞⎟⎟⎟⎠
−�βr,k

×pαr,k(αr,k)dαr,k + λ̃mltpαr,k(αr,k)dαr,k = 0. (73)

Consequently, using Eq. (73), under statistical delay-bounded
QoS constraints, we can derive the optimal resource allocation
policy that maximizes the ε-effective capacity using FBC in
the high SNR region as in Eq. (71). As a result, the proof of
Theorem 2 is completed.

E. Maximizing ε-Effective Capacity in the Non-Asymptotic
Regime

To derive the maximum aggregate ε-effective capacity,
we can investigate the following two different cases under
signal-path wireless channel and multi-path wireless channels
in the non-asymptotic regime as follows.

Case 1: (Single-Path Wireless Channel) Using Eq. (57)
and our proposed optimal resource allocation policy specified
in Eq. (65) in Theorem 1, we can derive the maximum
aggregate ε-effective capacity, denoted by ECmax

ε,sgl (θr), in the
non-asymptotic regime as follows:

ECmax
ε,sgl (θr) =

Kr∑
k=1

− 1
θr,k

log
{
Eαr,k [(1−εr,k) f(αr,k)g(αr,k)]

}
(74)

where f(αr,k) and g(αr,k) are defined in Eq. (75), as shown
at the bottom of the next page. Since Eαr,k [f(αr,k)g(αr,k)] >
Eαr,k [f(αr,k)]Eαr,k [g(αr,k)], we can obtain an approximation
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of the maximum aggregate ε-effective capacity, denoted by
ECmax

ε,sgl(θr), as in Eq. (76), as shown at the bottom of this page.
Case 2: (Multi-Path Wireless Channel) Similarly, using

Eq. (71) in Theorem 2, in the non-asymptotic regime, we can
derive the maximum aggregate ε-effective capacity over
multi-path wireless channels in the high SNR region.

V. PERFORMANCE EVALUATIONS

We conduct simulation experiments and numerical analyses
to validate and evaluate our proposed mmWave m-MIMO
based schemes. Throughout our simulations and numerical
analyses, we set the bandwidth B = 100 KHz, the time frame
length Tf = 2 ms, the average transmit power for the mmWave
m-MIMO BS P r,k can be choose from [5, 20] Watt, the average
transmit power for the kth relay node Pd,k can be choose from
[1, 5] Watt, and ω = 2K .

Assume that there are 2 mobile users (K = 2) in the entire
wireless networks. Let θr,1 = 0.001 and θr,2 = 0.5. Set the
number of receive antennas at the mobile user NR = 10 and
data streams for each mobile user Ns = 4. Using Eqs. (22)
and (30), Fig. 2 plots the achievable data transmission rate

with different values of SNR for our proposed hybrid block
diagonalization based model compared with the traditional
ZF beamforming model for the multiuser mmWave m-MIMO
scheme. We can observe from Fig. 2 that in the asymptotic
regime, as the value or SNR increases, the achievable data
transmission rate also increases and finally converges to a
certain value. Compared with the traditional ZF beamforming
model, Fig. 2 shows that our proposed hybrid block diago-
nalization model outperforms the tradition ZF beamforming
model in terms of the achievable data transmission rate over
mmWave m-MIMO based 5G mobile wireless networks.

Using the learning based D2D matching algorithm, Fig. 3
depicts the Q-value update given in Eq. (40). Given the number
of transmit antennas NT, Fig. 3 shows that as the number
of iteration increases, Q-value update converges to a certain
value, which indicates that our learning based D2D matching
algorithm achieves the optimal D2D matching policy. Fig. 4
plots upper and lower bounds on the aggregate effective
capacity with varying number of antennas at the BS over
mmWave m-MIMO based 5G mobile wireless networks in
the asymptotic regime. As shown in Fig. 4, as the value of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(αr,k) �

⎛⎜⎜⎜⎜⎜⎝
�βr,kNTNR(αr,k)2

KrNsσ2

Kr�
k=1

��	(1−εr,k)e

θr,kQ−1(εr,k)√
nr,k log 2


��
1

Kr �βr,k+1

(�λsgl
o )

1
Kr �βr,k+1

Kr�
k=1



�βr,kNTNR(αr,k)2

KrNsσ2

� �βr,k
Kr �βr,k+1

⎞⎟⎟⎟⎟⎟⎠
−

�βr,k
Kr �βr,k+1

;

g(αr,k) � exp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
θr,kQ

−1(εr,k)√
n log 2

√√√√√√√√√√

⎛⎜⎜⎜⎜⎜⎝1−

⎛⎜⎜⎜⎜⎜⎝
�βr,kNTNR(αr,k)2

KrNsσ2

Kr�
k=1

��	(1−εr,k)e

θr,kQ−1(εr,k)√
nr,k log 2


��
1

Kr �βr,k+1

(�λsgl
o )

1
Kr �βr,k+1

Kr�
k=1



�βr,kNTNR(αr,k)2

KrNsσ2

� �βr,k
Kr �βr,k+1

⎞⎟⎟⎟⎟⎟⎠
−2⎞⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

(75)

ECmax
ε,sgl (θr)≈

Kr∑
k=1

− 1
θr,k

log (1− εr,k)− 1
θr,k

log

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Eαr,k

⎡⎢⎢⎢⎢⎢⎢⎢⎣
exp

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
θr,kQ

−1(εr,k)√
n log 2

×

√√√√√√√√√√√

⎛⎜⎜⎜⎜⎜⎜⎝1−
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�βr,kNTNR(αr,k)2

KrNsσ2

Kr∏
k=1

(
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θr,kQ−1(εr,k)√
nr,k log 2

) 1
Kr �βr,k+1

(
λ̃

sgl
o

) 1
Kr �βr,k+1

Kr∏
k=1

( �βr,kNTNR(αr,k)2

KrNsσ2

) �βr,k
Kr �βr,k+1
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⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

− 1
θr,k

log

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Eαr,k
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Fig. 2. Achievable data transmission rate for the proposed hybrid block
diagonalization model v.s. tradition ZF beamforming model.

Fig. 3. The simulated Q-value update under learning based D2D matching
algorithm over mmWave m-MIMO based 5G mobile wireless networks.

SNR increases, the aggregate effective capacity also increases.
We can observe from Fig. 4 that as the number of transmit
antenna increases, the system with larger antenna arrays at
the mmWave m-MIMO BS achieves better effective capacity,
implying that our proposed multiuser mmWave m-MIMO
scheme outperforms the traditional multiuser MIMO scheme
in terms of the effective capacity. Fig. 4 also shows that
very loose QoS constraint (θr,k → 0) and very stringent
QoS constraint (θr,k → ∞) set upper and lower bounds on
the effective capacity, respectively. Also, as we increase the
number of the transmit antennas, the effective capacity is also
increased, which implies that larger antenna arrays at the BS
achieve better aggregate effective capacity for our proposed
multiuser mmWave m-MIMO scheme.

Setting K = 5, NR = 10, and the data stream Ns = 8,
Fig. 5 depicts the normalized aggregate effective capacity
for our proposed multiuser mmWave m-MIMO scheme under
different statistical delay-bounded QoS constraints in the
asymptotic regime. As shown in Fig. 5, we can observe
that as the QoS exponent θ becomes larger, the value of
the aggregate effective capacity decreases. In addition, as the
number of transmit antennas NT gets larger, the gap between
each curve for the normalized effective capacity becomes
smaller. We can also observe from Fig. 5 that for all three
curves, the normalized effective capacity increases as the value
ofNT, which implies that as the antenna arrays becomes larger,

Fig. 4. Upper and lower bounds on the effective capacity with varying
number of antennas at the mmWave m-MIMO BS in the asymptotic regime.

Fig. 5. The normalized effective capacity with varying QoS exponents in
the asymptotic regime.

the m-MIMO scheme achieves better performance under the
statistical delay-bounded QoS constraints.

We set the block error probability εr,k ∈
{
10−6, 10−3

}
.

Fig. 6 plots an upper bound on channel capacity with various
SNR values for our proposed scheme over mmWave m-MIMO
based 5G mobile wireless networks in the non-asymptotic
regime. As shown in Fig. 6, given a desired SNR, the upper
bound on channel capacity increases with the number of
transmit antennas NT. We can observe from Fig. 6 that the
loose error-rate constraint εr,k = 1 × 10−3 and stringent
error-rate constraint εr,k = 1×10−6 represent upper and lower
bounds on the channel capacity, respectively.

Setting SNR to be 20 dB and blocklength nr,k = 800,
Fig. 7 plots the achievable data transmission rate vs. varying
values of average error probability over mmWave m-MIMO
based 5G mobile wireless networks in the non-asymptotic
regime. Fig. 7 shows that the achievable finite blocklength
coding rate decreases when the error-rate bound becomes more
stringent, i.e., εr,k → 0. This implies that a larger value of εr,k

corresponds to a more stringent error-rate requirement. On the
other hand, a smaller value of εr,k implies a looser error-rate
constraint.

Then, we set the SNR to be 20 dB. Fig. 8 depicts the achiev-
able finite blocklength coding rate with different blocklengths
over mmWave m-MIMO based 5G mobile wireless networks
in the non-asymptotic regime. Fig. 8 shows that the achievable
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Fig. 6. An upper bound on channel capacity vs. blocklength over mmWave
m-MIMO wireless channel model in the non-asymptotic regime.

Fig. 7. Achievable data transmission rate vs. average error probability over
mmWave m-MIMO wireless channel model in the non-asymptotic regime.

finite blocklength coding rate increases with the number of
transmit antennas NT at the BS over mmWave m-MIMO based
5G mobile wireless networks. We can observe in Fig. 8 that
for a given error probability, the achievable finite blocklength
coding rate is an increasing function of the corresponding
blocklength. Fig. 8 also shows that we achieve a higher value
of the achievable finite blocklength coding rate under a loose
error-rate constraint. The dashed lines in Fig. 8 imply the
channel capacity of the ideal model in which the data rate
is equal to the instantaneous capacity, i.e., nr,k → ∞ and
εr,k = 0.

Setting the SNR to be 20 dB, Fig. 9 depicts the maxi-
mum ε-effective capacity with different blocklengths and QoS
exponents for our proposed mmWave m-MIMO scheme in the
non-asymptotic regime. We can observe in Fig. 9 that for a
given error probability, the maximum ε-effective capacity is a
decreasing function of the corresponding QoS exponent. Fig. 9
also shows that we achieve a higher value of maximum ε-
effective capacity with a smaller error probability.

VI. CONCLUSIONS

We have proposed heterogeneous statistical QoS driven
resource allocation policies by designing multiuser mmWave
m-MIMO based schemes in both the asymptotic and

Fig. 8. Achievable data transmission rate vs. blocklength over mmWave
m-MIMO wireless channel model in the non-asymptotic regime.

Fig. 9. Maximum ε-effective capacity vs. blocklength and QoS exponent
over 5G mobile wireless networks in the non-asymptotic regime.

non-asymptotic regimes. In particular, we have developed
mmWave m-MIMO based 5G mobile networking system
architectures and then established corresponding mmWave
m-MIMO based 5G mobile wireless networking system mod-
els. Then, we have analyzed hybrid block diagonalization
model for the mmWave m-MIMO scheme with imperfect
knowledge of CSI. Given the heterogeneous statistical delay-
bounded QoS constraints, we have formulated and solved
the effective capacity by deriving optimal resource-allocation
policies over relay-D2D link for our proposed mmWave
m-MIMO scheme in both the asymptotic and non-asymptotic
regimes. We also have conducted a set of simulations that
validate our proposed schemes and show that they outper-
form the other existing schemes under heterogeneous statis-
tical delay-bounded QoS constraints over multiuser mmWave
m-MIMO based 5G mobile wireless networks.
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