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Abstract— Metaverse streaming, as one of the key wireless
services over 6G mobile networks, generates the delay/error-
sensitive and bandwidth-intensive wireless traffics with stringent
quality-of-service (QoS) requirements. Consequently, metaverse
streaming can be modeled as a new type of massive ultra-reliable
low-latency communications (mURLLC) traffic over 6G mobile
networks. However, how to efficiently support metaverse stream-
ing with constrained wireless resources and dynamic network
conditions has imposed many new challenges not encountered
before. To conquer these difficulties, in this paper we propose
the Neyman-Pearson criterion driven network functions virtu-
alization (NFV) and software-defined network (SDN) architec-
tures and optimal resource-allocations for statistical-QoS theory
based mURLLC streaming over 6G metaverse mobile networks
using finite blocklength coding (FBC). First, we use Neyman-
Pearson hypothesis tests for characterizing metaverse streaming
requests’ distribution profiles to predict their future accessing
frequencies/patterns. Second, our formulated NFV/SDN architec-
tures and virtual-network slices are assigned to the designated
metaverse mobile users with the same predicted data request
distributions, categories, and statistical-QoS requirements. Third,
integrating the statistical QoS theory with FBC, we develop
metaverse-streaming schemes by maximizing aggregate ϵ-effective
capacity and deriving optimal transmit power allocations. Finally,
we use numerical analyses to validate and evaluate our proposed
schemes over 6G mobile networks.

Index Terms— 6G, metaverse, Neyman-Pearson test, m-MIMO,
ϵ-effective capacity, statistical delay/error-rate bounded QoS.

I. INTRODUCTION

THE 6G wireless networks are envisioned to provide
various advanced wireless services featuring massive
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access/connection, ultra-reliability, low latency, intelligence,
and security while maximizing spectral and power efficiencies.
Widely recognized as a new wave of wireless technologies,
metaverse streaming provides immersive environments, includ-
ing digital twins (DTs), in the virtual space generated by
computers for communications. Metaverse streaming is con-
sidered to be a type of massive ultra-reliable and low-latency
communications (mURLLC) service, which is expected to be
the dominant traffic type in 6G networks supporting massive
numbers of mobile users (MUs) demanding stringent quality
of service (QoS) requirements with one-way radio latency less
than 1 ms and successful-transmission probability higher than
99.99999% [1], [2].

The integration of widely envisioned 6G key wireless tech-
niques including massive multiple-input and multiple-output
(massive-MIMO) [3], [4], [5], statistical QoS theory [6], [7],
[8], [9], [10], [11], finite blocklength coding (FBC) [12],
etc., is expected to provide an efficient solution to implement
mURLLC transmissions [3], [4], [13]. Using massive numbers
of antennas on the base station (BS) or multiple antennas on
the access point (AP), it is possible to direct the main beam
of signal waves towards the targeted MUs, serve more users
through the spatial multiplexing, and mitigate the multipath
effect via the spatial diversity provided by different MIMO
antennas. The conventional Shannon theory based analysis is
usually not applicable for simultaneously guaranteeing both
the low-latency and the high-reliability of wireless transmis-
sions, because the traditional Shannon formalism is based on
the assumption that the coding block length tends to infinity
to achieve arbitrarily-high or even perfect reliability. Towards
this end, the statistical QoS theory has been proposed to
support both statistical delay and error-rate bounded QoS pro-
visioning for wireless transmissions over time-varying wireless
fading channels. Furthermore, the FBC technique has been
developed to enable small packet communications for adap-
tive error-control and real-time transmissions, where senders
encode their messages into short packets (i.e., packets with
small numbers of bits) to reduce the transmission latency while
constraining and controlling the decoding error probability.

There have been various studies conducted on meta-
verse streaming transmissions and techniques. The authors
of [14] proposed a distributed collaborative computing frame-
work for vehicular metaverse streaming by employing coded
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distributed computing and blockchain schemes. The work
of [15] proposed a novel digital twin scheme to support meta-
verse communications by jointly integrating communications,
computations, and storage techniques through the applications
of mobile edge computing and mURLLC. To study the inter-
action between the metaverse service provider and the network
infrastructure provider, the work of [16] designed an optimal
framework to maximize the quality of experience for meta-
verse users. An edge computing-assisted metaverse system is
designed by [17] to partially offload the sensing data col-
lected from physical objects to the edge computing platform,
ensuring the promptness of metaverse services and satisfying
latency requirements of metaverse users. However, in addi-
tion to the stringent QoS provisioning for general mURLLC
streaming, metaverse streaming also need to take into account
humans’ activities, e.g, data items’ accessing/requesting, fre-
quencies/patterns, heterogeneous QoS requirements, and MU’s
mobility, etc., which impose a number of new challenges. One
of the main challenges is how to predict humans’ behaviors in
terms of data-access frequencies and patterns so that we can
optimize network architectures and resource allocations [18]
to best fit and improve the statistical QoS in human-centric
metaverse mobile wireless networks.

To efficiently integrate the above described 6G techniques
and architectures and optimize the wireless resource-allocation
for supporting human-centric metaverse streaming, in this
paper we propose to develop the Neyman-Pearson cri-
terion driven network functions virtualization (NFV) and
software-defined network (SDN) [19], [20] architectures
and optimal resource-allocations for statistical-QoS based
mURLLC-streaming over 6G human-centric metaverse mobile
networks using FBC. We apply the Neyman-Pearson crite-
rion based sequential hypothesis testing technique [21], [22],
[23] to predict humans’ activities, in terms of data-content
items’ requests probability distribution profile. The sequential
hypothesis testing technique has been broadly applied in a
large number of detection applications because it provides
efficient rules to make a decision by accepting one of multiple
hypotheses at any stage in a sequence of observations. In the
setting of this paper, the hypothesis represents the metaverse
mobile networks’ claim/statement on the distribution for a
sequence of stochastic observations regarding that an MU
requests/accesses the designated metaverse data item. Here,
in order to apply sequential testing, we observe a set of
data items’ requests and calculate the likelihood ratio of
these data requests. We accept one of a set of appropriate
hypotheses accordingly or take another observation, depending
on the threshold regions of the likelihood ratio. We repeat
these procedures until a hypothesis is selected. In this paper,
we model the probability distributions of MUs’ requests for
metaverse data items as a series of Zipf distributions, and each
hypothesis is characterized by an individual Zipf distribution
with a specific parameter.

In particular, first our proposed schemes conduct a Neyman-
Pearson criterion based sequential hypothesis test, the outcome
of which is the prediction of an MU’s requesting probability
distribution for metaverse streaming. Using the obtained
prediction of metaverse request distributions, we formulate

and select the NFV and SDN architectures to implement the
metaverse streaming while satisfying data items’ statistical
delay and error-rate bounded QoS requirements, through
adaptively designing the optimal network architectures and
allocating the necessary wireless resources. Second, our
schemes map MUs that are estimated to have the same data
request probability distribution into one virtual network slice,
since each data request probability distribution represents a
specific category of metaverse streaming (e.g., virtual-reality
(VR) online gaming, e-health care, etc.) and metaverse data
in the same category share the same delay and error-rate
bounded QoS requirements. Finally, combining the statistical
QoS theory and FBC, we derive a number of closed-form
expressions to accurately model and analyze our newly defined
metaverse streaming performance metrics and controlling
functions, including the optimal transmit power allocation
policies and the corresponding maximum ϵ-effective capacity
functions, etc.

The rest of this paper is organized as follows. Section II
establishes systems models for our proposed Neyman-Pearson
criterion hypothesis testing driven NFV/SDN architectures for
statistical-QoS based mURLLC-streaming over 6G human-
centric metaverse mobile networks using FBC. Section III
develops the decision making schemes to derive the opti-
mal sequential hypothesis testing. Section IV creates the
modeling framework and a set of performance metrics to
characterize and analyze our proposed metaverse streaming
schemes by deriving the aggregate ϵ-effective capacity and the
optimal transmit power allocations to maximize the aggregate
ϵ-effective capacity. Section V validates and evaluates our
developed schemes and our derived analytical results for
supporting the statistical delay and error-rate bounded QoS
based metaverse streaming in the non-asymptotic regime. This
paper concludes with Section VI.

II. THE SYSTEM MODELS FOR OUR PROPOSED
METAVERSE-STREAMING SCHEMES

A. Neyman-Pearson Criterion Driven NFV/SDN Architectures
Over 6G Metaverse Wireless Networks

Figure 1 shows our proposed Neyman-Pearson criterion
driven NFV/SDN architectural system models to support meta-
verse streaming with mURLLC traffic requirements over 6G
mobile networks. Since the 6G metaverse streaming includes
different types of traffic, such as VR-based online gaming,
high-resolution video streaming, digital twins, e-health-care,
conference, and education, etc., MUs that request different
categories of metaverse streaming demand diverse statistical
QoS requirements. In Fig. 1, we map each category of
metaverse streaming into one virtual network slice, enabling
the sharing of all wireless network functionalities among
multiple metaverse service providers and transmitting different
metaverse services under diverse QoS requirements and logical
architectures through the same infrastructure. The SDN-based
computing algorithm dynamically allocates wireless resources
(i.e., transmit power, sub-channels, etc.) to different network
slices, maximizing the overall networks performance met-
rics. Physical devices function as simple packet forwarding
devices (data plane). The intelligent control logic functions
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Fig. 1. The system models of our proposed Neyman-Pearson hypothesis testing driven network-functions virtualization and software-defined architectures
and optimal resource allocations for statistical-QoS based mURLLC-streaming over 6G human-centric metaverse (virtual-reality) mobile networks using FBC,
where hypotheses Hj , Hi, and Hv , with i, j, v ∈ J and i ̸= j ̸= v, represent three different metaverse data request probability-distributions profiles.

are performed by the control plane that assigns wireless
resources based on the MU’s metaverse service types and
their corresponding statistical QoS requirements. As shown in
Fig. 1, each metaverse MU communicates (down-stream/up-
stream) with the massive-MIMO BS or MIMO AP by using
the FBC technique with a finite blocklength equal to n.

B. Our Proposed Neyman-Pearson Criterion Based
Sequential Hypothesis Test for Metaverse Streaming

Assume that we take an observation for an MU’s requested
metaverse data item at each time slot. Let q be the index of
the time slot/stage, where q ∈ {1, 2, 3, · · · }. Define {Xq}
as a sequence of random variables taking values on a set
of all metaverse data-content items D = {1, 2, . . . , D} with
|D| = D denoting the total number of different metaverse data
content items, where Xq is the observation random variable for
the requested data item by an MU at the time slot q. Assume
that elements in {Xq},∀q, are independent and identically
distributed (i.i.d.) random variables. We consider multiple
hypotheses {Hj},∀j ∈ J = {0, 1, 2, . . . , J}. Hypothesis
Hj implies that Xq follows the probability distribution Pj
(i.e., metaverse data request probability distribution at the time
slot q is Pj), which is a probability measure as follows:

Hj : Xq ∼ Pj = Zipf(rj , D), ∀ rj ∈ (ξj , ξj+1], (1)

where Zipf(rj , D), ∀j, denotes the Zipf distribution with the
exponent rj ; and we also define ξ0 = 0; ξj > 0,∀j ≥ 1;
and ξj+1 > ξj . The probability mass function (pmf) for
the dth data content item, ∀d ∈ {1, 2, . . . , D}, of a Zipf
distribution is given by

frj (d) =
d−rj∑D
k=1 k

−rj

. (2)

Assume frj (d) ̸= fri(d) if j ̸= i. Let t be the total number
of time slots for observing an MU’s data requests. Define z(t)

j,i

as the likelihood ratio of the hypothesis Hj ,∀j ∈ J , to the
hypothesis Hi,∀i ∈ J , by the time slot t, which is given as
follows [24]:

z
(t)
j,i ≜

t∏
q=1

frj
(Xq)

fri(Xq)
(3)

where Xq ∈ D. According to [25], we also define the log
likelihood ratio of the conditional density functions, denoted
by Zj,i(q), as follows:

Zj,i(q) ≜ log
(
frj (Xq|X1, X2, . . . , Xq−1)
fri

(Xq|X1, X2, . . . , Xq−1)

)
. (4)

Based on Eq. (3) and Eq. (4), we define the sequential hypoth-
esis test [25], [26] by two sequences of decision functions
(ψt)t≥0 and (δt)t≥0, where ψt : Dt 7→ T is the stopping
rule, denoted by ψt, that maps the current observations to
a decision that stops the testing at time slot/stage T ; and
δt : Dt 7→ {0, 1, . . . , J}, where δt = j corresponds to a
decision for accepting Hj upon stopping. For the rest of this
paper, we formally denote our proposed sequential hypothesis
test by the decision-functions pair: (ψt, δt).

We propose to estimate an MU’s future metaverse data
requests, in terms of a Zipf distribution with a specific param-
eter rj , by using the Neyman-Pearson criterion [27] based
sequential hypothesis testing according to the observations for
this MU’s past data requests. We define two types of errors:
Type I error is defined as “Reject Hj (i.e., accept Hi, i ̸= j)
when Hj is the actual MU’s data request distribution” and
Type II error is defined as “Accept Hj when Hi, i ̸= j, is
the actual MU’s data request distribution”. Type I error can
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be considered as the false alarm and Type II error can be con-
sidered as the miss detection. We denote the probabilities of
Type I and Type II errors as P F(j, i) and PM(j, i), respectively.
Then, the hypothesis hitting probability, denoted by PH(j, j),
can be written as PH(j, j) = 1−

∑
i P

F(j, i). For a decision
rule δt, we define the error probability P F(j, i) as follows:

P F(j, i) = Pj{δt = i}, if j ̸= i (5)

where Pj{·} represents the probability of an event under the
hypothesis Hj being true, and define the hypothesis hitting
probability PH(j, j) as follows:

PH(j, j) = Pj{δt = j}, ∀j. (6)

We apply Neyman-Pearson criterion based hypothesis testing
scheme to maximize the hypothesis hitting probability subject
to constraints of upper-bounding the Type I and Type II error
probabilities as follows:

max
(ψt,δt)

PH(j, j) (7)

s.t.: C1: Ei,j
[
P F(j, i)

]
≤α;

C2: Ei,j
[
PM(j, i)

]
≤β,

where Ei,j [·] denotes the expectation for all i and j, ∀i, j ∈ J ;
and α and β are the upper bounds on the Type I and Type II
error probabilities, respectively.

C. Integrating Effective Capacity With FBC to Support
Metaverse Streaming

The statistical delay-bounded QoS guarantees [6], [7], [9],
[10], [28], [29] have been shown to be powerful in analyzing
queuing behavior for the stochastic arrival and service pro-
cesses over the time-varying wireless fading channels. The
key statistical-QoS performance metric is the effective capacity
which measures the maximum packet’s constant arrival rate
such that the given statistical delay-bounded QoS can be
guaranteed. Based on the large deviation principle (LDP) [7],
under sufficient conditions, the queue-length process Qd(t) for
the metaverse data-content item d converges in distribution to
a random variable Qd(∞) such that

− lim
Qth,d→∞

log(Pr{Qd(∞) > Qth,d})
Qth,d

= θd (8)

where Qth,d is the queue length threshold (bound) and θd >
0 is defined as the QoS exponent for the data item d. The
insights of Eq. (8) reveal that the probability of the queueing
process exceeding a certain threshold Qth,d decays exponen-
tially fast at the rate of θd as the threshold Qth,d increases and
tends to infinity. A smaller θd corresponds to a slower decay
rate, which implies that the system can only provide a looser
QoS guarantee, while a larger θd leads to a faster decay rate,
which implies that a more stringent QoS can be supported.
In particular, when θd → 0, the system can tolerate a long
delay; when θd →∞, the system cannot tolerate any delay.

However, the conventional statistical-QoS theory modeled
by Eq. (8) focuses only on the statistical delay-bounded QoS
without considering the transmission reliability, which is thus
not feasible to support mURLLC in our proposed metaverse

wireless networks. To support the stringent both statistical
delay and error-rate bounded QoS provisioning for mURLLC,
we propose to integrate the effective capacity theory with the
FBC scheme, which is an emerging and powerful solution in
wireless networks, to encode the message. Using the FBC
scheme, terminals send messages using packets with small
numbers of bits to achieve low latency transmissions while
mitigating the packet’s decoding error probability for reliable
transmissions. We define an FBC scheme in the following
definition.

Definition 1: Consider a fading channel which uses input
blockcode set A and output blockcode set B. We define that
an (n,W, ϵ)-code, for a memoryless channel consists of [12]
• A message set W = {c1, · · · , cW } with the cardinality
W and the message length equal to log2W .

• An encoder is a function: W 7→ An, where An is the
set of codewords with length n. At the receiver end,
a decoder produces an estimate of the original message
by observing the channel output, according to a function:
Bn 7→ Ŵ , where Bn is the set of received codewords
with length n and Ŵ is the estimation of W .

• The decoding error probability, denoted by ϵ, is defined as
ϵ ≜ (1/W )

∑W
w=1 Pr{cw ̸= ĉw}, with cw ∈ W , ĉw ∈ Ŵ .

where usually ϵ > 0 if n <∞. ■
Thus, the triple-tuple (n,W, ϵ) represents that a source with

the cardinality W can successfully transmit messages with a
probability of success (1− ϵ) over n channel uses.

To integrate the effective capacity with the FBC scheme,
we propose to employ the ϵ-effective capacity, which measures
the maximum packet’s arrival rate that a wireless channel can
support under a given QoS exponent and a given decoding
error-rate. Let k be the index of an MU. Let ϵd and Pd,k,j
be the decoding error probability requirement of the data
item d and the transmit power allocation for transmitting
the data item d to the kth MU if accepting the hypothesis
Hj , respectively. Denote by ECk(θd, ϵd,Pd,k,j) the ϵ-effective
capacity for the kth MU, which characterizes both statistical
delay and error-rate bounded QoS provisionings under the
power allocation Pd,k,j . We define the ϵ-effective capacity
ECk(θd, ϵd,Pd,k,j) as follows [13, Definition 5]:

Definition 2: Using the (n,W, ϵ)-code for the
metaverse data-content item d, the ϵ-effective capacity
ECk(θd, ϵd,Pd,k,j) for the kth MU is defined as the
maximum packet’s constant arrival rate for a given service
process considering the delay QoS exponent θd and the
non-vanishing decoding error probability ϵd, subject to
statistical delay and error-rate bounded QoS constraints,
respectively, which is given as follows:

ECk(θd, ϵd,Pd,k,j)

≜ − 1
nθd

log
{
ϵd + (1− ϵd) Eγk

[
e−θdnR(γk(Pd,k,j))

]}
(9)

where γk(Pd,k,j) is the signal-to-noise ratio (SNR) of the
kth MU under the transmit power allocation Pd,k,j , Eγk

[·]
denotes the expectation with respect to the SNR γk(Pd,k,j),
and R (γk(Pd,k,j)) is the data rate (bits/sec/Hz) under the SNR
γk(Pd,k,j). ■
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D. Hypothesis Testing Based NFV/SDN Network
Architectures for Metaverse Streaming

We propose an optimal hypothesis testing to solve Eq. (7)
and accept one hypothesis Hj ,∀j ∈ J , as the estimated
MU’s data request pmf profile for its metaverse streaming.
Then, using the hypothesis testing outcome, we propose to
map all MUs, which have the same metaverse data requests
pmf profile Zipf(rj , D), into the same virtual network slice
and let them exchange metaverse data with other MUs in this
virtual network slice. This is because MUs having the same
metaverse data requests pmf profile are predicted to request the
same metaverse data-content items with the same probability
and uniform statistical QoS requirements, including the QoS
exponent θd and decoding error probability ϵd, for each
metaverse data-content item d. Then, we develop Algorithm 1
given in TABLE I which shows our proposed hypothesis
testing based NFV/SDN network architectures and resources
allocation schemes.

III. OPTIMAL DECISION AND BOUNDS OF SEQUENTIAL
HYPOTHESIS TESTING

A. Optimal Decision of Sequential Hypothesis Testing

In order to determine the optimal sequential hypothesis
testing, our proposed decision schemes consist of the following
two steps.
Step 1: Selecting the Optimal Subset of Hypotheses

Around ξj , there exists the interval (ξ
j
, ξj), where ξ

j
≜

ξj − σ/2 and ξj ≜ ξj + σ/2, for σ > 0 [30], and σ =
ξj − ξj is a constant, ∀j. Let Rj be the sequential hypothesis
test for testing the hypothesis Hξ

j
: “accepting ξ

j
” against

Hξj
: “accepting ξj”. Similar to the two types of errors in

Section II-B, we define another two types of errors: Type I
error is defined as “Reject ξ

j
when ξ

j
is true”, whose

probability is upper bounded by αj , and Type II error is
defined as “Accept ξ

j
when ξj is true”, whose probability is

upper bounded by βj . According to [30] and [31], we select
two positive constants Aj and Bj and set the values of Aj
and Bj , respectively, as

Aj ∝
1− βj
αj

, Bj ∝
βj

1− αj
, and Bj < Aj (10)

where φ(x) ∝ g(x) implies limx→∞ φ(x)/g(x) = 1. Define
the likelihood ratio of Rj by time t as z(t)

ξj
, which is given by

z
(t)
ξj

≜
t∏

q=1

fξj
(Xq)

fξ
j
(Xq)

=

(∑D
d=1 d

−(ξ
j
+σ)∑D

d=1 d
−ξ

j

)t
︸ ︷︷ ︸

g(ξ
j
)

(
t∏

q=1

Xq

)σ
. (11)

We accept Hξj
if z(t)

ξj
> Aj , accept Hξ

j
if z(t)

ξj
< Bj ,

and take an additional observation if Aj < z
(t)
ξj

< Bj .
The decision procedure of this multiple sequential hypothesis
testing is: (1) All Rj’s are testing simultaneously at each stage
until each z

(t)
ξj

leads to the hypothesis testing Rj stopping.
(2) Based on the result of each Rj , we select an optimal
subset of hypotheses from multiple hypotheses {Hj},∀j ∈ J .

TABLE I

Algorithm 1 Neyman-Pearson Criterion Driven NFV-
SDN Architectures and Optimal Resource-Allocations for
Statistical-QoS Based mURLLC Over 6G Metaverse Mobile
Networks Using FBC

1: Input: The BS/AP set and MU set; all hypotheses
{Hj},∀j; each metaverse streaming’s delay-bounded QoS
exponent θd and error probability ϵd,∀d; and each MU’s
channel fading hk,∀k.

2: for each BS/AP do
3: Assign each BS/AP to a virtual network slice that

supports one type of metaverse streaming.
4: end for
5: for each MU do
6: Observe its requested data content items and accept an

optimal hypothesis Hj , i.e., the pmf frj
(d).

7: According to the accepted hypothesis Hj , assign the
MU to the corresponding virtual network slice that
supports this metaverse streaming.

8: end for
9: for Each MU in each network slice do

10: Derive the optimal wireless resources (i.e., transmit
power) for each MU using frj

(d) to maximize the
average aggregate ϵ-effective capacity over the entire
network slice based on the required delay QoS exponent
θd and error probability ϵd for the metaverse data and
MU’s wireless channel fading hk.

11: end for
12: Output: optimal wireless network slicing, optimal MU’s

mapping and wireless resource allocations, and maximum
average aggregate ϵ-effective capacity of each virtual
network slice.

The optimal subset selection needs to consider the following
Case 1 and Case 2, respectively.

Case 1. All Aj’s are equal to each other, i.e., Aj = A,∀j,
and all Bj’s are equal to each other, i.e., Bj = B, ∀j. For
this cases, if z(t)

ξj
> A, i.e., accepting ξj , we must reject

all ξ
j̃
, where j̃ > j; if z(t)

ξj
< B, i.e., accepting ξ

j
, we

must reject all ξj̃’s, where j̃ < j. This is because of the
following derivations. When z

(t)
ξj

> A, we have g(ξ
j
) >

A
(∏t

q=1Xq

)−σ
. Observing that g(ξ

j
) in Eq. (11) is an

increasing function of ξ
j
, we must have g(ξ

j̃
) > g(ξ

j
)

when j̃ > j, and thus, g(ξ
j̃
) > A

(∏t
q=1Xq

)−σ
. Therefore,

g(ξ
j̃
) < B

(∏t
q=1Xq

)−σ
(i.e., accepting ξ

j̃
) must not hold,

due to B < A as shown in Eq. (10). Using the similar
derivation, we obtain that if z(t)

ξj
< B, i.e., accepting ξ

j
,

we must reject all ξj̃’s, where j̃ < j.
At one stage, if there exist multiple j’s which result in

z
(t)
ξj

> A, we make the decision to accept ξj such that ξj is

the smallest number satisfying z(t)
ξj

> j. Similarly, at another

stage if there exist multiple j’s which result in z
(t̃)
ξj

< B,
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we make the decision to accept ξ
j

such that ξ
j

is the largest

number satisfying z
(t̃)
ξj

< B, where t̃ ̸= t. We continue with
this procedure until all tests stop.

Case 2. Aj ̸= Aj̃ and Bj ̸= Bj̃ if j ̸= j̃. To satisfy both
z
(t)
ξj
> Aj and z(t)

ξj̃
> Aj̃ , let

Aj [g(ξj)]−1 ≥ Aj̃ [g(ξj̃)]
−1 if j > j̃. (12)

Since g(ξj) > g(ξj̃) for j > j̃, we must design the sequential
hypothesis testing such that Aj > Aj̃ to let Eq. (12) hold.
Similarly, we design the testing such that Bj > Bj̃ for j > j̃.

Based on the conditions in Case 1 and Case 2, if we happen
to accept two hypotheses Hξj

and Hξ
j+1

, then we will accept

the hypothesis Hj as the optimal distribution estimation for the
future data request probability profile; otherwise, we obtain a
set of accepted hypotheses, denoted by {Hs},∀s ∈ S, which
is the optimal subset of {Hj} and S ⊂ J .
Step 2: Deriving the Optimal Hypothesis from the Subset

We further derive the optimal hypothesis from the above
obtained subset of hypotheses. The optimizing problem in
Eq. (7) is converted to the equivalent problem of minimizing
the cost of stopping a sequential procedure at the time slot t,
denoted by Ct(X1, X2, . . . , Xt), based on the observations
(X1, X2, . . . , Xt), as follows:

min
(ψt,δt)

EPj [Ct(X1, X2, . . . , Xt)] (13)

s.t.: C1: Ei,j
[
P F(j, i)

]
≤α;

C2: Ei,j
[
PM(j, i)

]
≤β,

where EPj
[·] denotes the expectation under the condition that

Hj is the actual data request probability distribution.

B. Exponentially Bounded Stopping Time of Zipf Sequential
Hypotheses Testing

Suppose that the sequential hypothesis testing stops at stage
T , and the test stops when T is the smallest number of t such
that llow < lt(j, i) < lup is violated, where lt(j, i) ≜ log

(
z
(t)
j,i

)
with z

(t)
j,i defined by Eq. (3), and llow ≜ log(Bj) and lup ≜

log(Aj) are stopping bounds of lt(j, i), j ̸= i, with Aj and Bj
defined by Eq. (10). Suppose that X1, X2, . . . are i.i.d. random
variables. Define Yq ≜ y(Xq), q = 1, 2, . . . , as a function y(·)
that maps the range of Xq into an Euclidean k-space, k ≥ 1,
and define Y t ≜ 1

t

∑t
q=1 Yq . Then, we have the following

Theorem 1.
Theorem 1: If a sequential hypothesis test is testing the

Zipf exponent under a Zipf distribution, then the following
three claims hold.

Claim 1. E[Y1] = ε exists and is finite.
Claim 2. There exist, respectively, a neighborhood N of ε,

a real-valued continuous function Φj,i(·) on N , and a finite
bound constant Ij,i > 0 such that if Y t ∈ N , t = 1, 2, . . . ,
then ∣∣lt(j, i)− tΦj,i(Y t)

∣∣ < Ij,i (14)

where | · | is the absolute value, Ij,i given by Eq. (14)
is the Kullback-Leibler divergence measurement between

distributions Pj and Pi which is specified as follows:

Ij,i =
∣∣∣∣EPj

[
log

frj (X1)
fri

(X1)

]∣∣∣∣ , (15)

and

lt(j, i) ≜ log
(
z
(t)
j,i

)
= log

[
t∏

q=1

frj
(Xq)

fri(Xq)

]

= log

[
t∏

q=1

(
Xri−rj
q

∑D
d=1 d

−ri∑D
d=1 d

−rj

)]

= (ri − rj)
t∑

q=1

logXq + tMj,i (16)

where z(t)
j,i is given by Eq. (3) and

Mj,i ≜ log

(∑D
d=1 d

−ri∑D
d=1 d

−rj

)
. (17)

Claim 3. Φj,i(ε) ̸= 0 or the first-order derivative of function
Φj,i(·) satisfies the following equation:

Pr
{
∂Φj,i(Y1 − ε)

∂X1
= 0
}
< 1. (18)

Proof: The proof is provided in Appendix A. ■
Remarks on Theorem 1: Theorem 1 ensures that our

proposed Neyman-Pearson based sequential hypotheses test
will eventually stop and accept a hypothesis as the optimal
data request pmf profile. In addition, Theorem 1 shows
that Ij,i =

∣∣EPj

[
log
{
frj

(X1)/fri
(X1)

}]∣∣, which is the
Kullback–Leibler divergence measurement.

Theorem 2: If a sequential hypothesis test is testing the Zipf
exponent under a Zipf distribution, then the stopping time of
this sequential hypothesis test is exponentially bounded [23],
namely, for some c < ∞ and 0 < ρ < 1, the following two
equations hold:{

Pr{T <∞} = 1, (19)
Pr{T > t} < cρt, t = 1, 2, . . . (20)

Proof: The proof is provided in Appendix B. ■
Remarks on Theorem 2: Theorem 2 reveals that the stopping

time of our proposed sequential hypothesis test is exponen-
tially bounded, implying that the convergency speed is an
exponentially decaying function.

C. Bounds and Convergency on Stopping Time for
Neyman-Pearson Hypothesis Test

Simplify the notation of P F(j, i) as αj,i. For every 0 <
η < 1, there exists η̃ > 1 such that ηη̃ < 1, and let t∗ be the
greatest integer such that

t∗ ≤ η min
j,i,j ̸=i

{
|logαj,i|
Ij,i

}
. (21)

Since Pj is the σ-finite probability measure as defined by
Eq. (1) and Eq. (2) we use

∫
ϕdPj to represent Pj{ϕ} if ϕ is
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a measurable function. Then, for the decision-functions pair
(ψt, δt), we can derive the probability αj,i as follows:

αj,i ≜ P F(j, i) =
∫
{j ̸=i}

exp

{
−

T∑
q=1

Zj,i(q)

}
dPj

(a)=
∫
{j ̸=i}

exp {−lT (j, i)} dPj

≥
∫
{j ̸=i,T≤t∗,lT (j,i)≤η̃t∗Ij,i}

exp {−lT (j, i)} dPj

≥exp{−η̃t∗Ij,i}Pj{j ̸= i, T ≤ t∗, lT (j, i)≤ η̃t∗Ij,i} (22)

where j, i ∈ J , (a) holds due to Eq. (4) with {Xq},∀q, being
i.i.d. and Eq. (16), and Zj,i(q) is specified in Eq. (4). From
Eq. (21), we can get

η̃t∗Ij,i ≤ ηη̃ |logαj,i| (23)

and thus, it follows from Eq. (22) and Eq. (23) that

αj,i≥exp {−ηη̃ |logαj,i|}Pj{j ̸= i, T ≤ t∗, lT (j, i)≤ η̃t∗Ij,i}
= exp {ηη̃ logαj,i}Pj {j ̸= i, T ≤ t∗, lT (j, i) ≤ η̃t∗Ij,i}
= (αj,i)

ηη̃
Pj {j ̸= i, T ≤ t∗, lT (j, i) ≤ η̃t∗Ij,i} . (24)

From Eq. (24), we can further obtain the followings:

(αj,i)
1−ηη̃ ≥ Pj {j ̸= i, T ≤ t∗, lT (j, i) ≤ η̃t∗Ij,i} . (25)

Using Eq. (25), we can get

Pj {j ̸= i, T ≤ t∗}
≤ (αj,i)

1−ηη̃ +Pj {T ≤ t∗, lT (j, i) ≥ η̃t∗Ij,i}

≤ (αj,i)
1−ηη̃+Pj

{
max
T≤t∗

lT (j, i) ≥ η̃t∗Ij,i

}
. (26)

Since Eq. (26) holds for each j, summing up Eq. (26)’s for
all j with j ̸= i and then taking the supremum over (ψt, δt),
we obtain:

sup
(ψt,δt)

Pj {T ≤ t∗} ≤
∑

j∈J ,j ̸=i

(αj,i)1−ηη̃

+
∑

j∈J ,j ̸=i

Pj

{
max
T≤t∗

log
frj (X1, . . . , XT )
fri

(X1, . . . , XT )
≥ η̃t∗Ij,i

}
. (27)

Since
∑
j αj,i → 0, η̃ > 1, and using Eq. (23) and

1
T

log
frj

(X1, . . . , XT )
fri(X1, . . . , XT )

→ Ij,i, a.s. [Pj ] (28)

which is due to Eq. (14), we can further derive Eq. (27) as
follows:

sup
(ψt,δt)

Pj {T ≤ t∗} ≤
∑

j∈J ,j ̸=i

Pj

{
max
T≤t∗

T ≥ η
| logαj,i|
Ij,i

}
.

(29)

Thus, for every 0 < η < 1, we have

inf
(ψt,δt)

Pj

{
T ≥ ηmin

j ̸=i

{
| logαj,i|
Ij,i

}}
→ 1. (30)

For each αj,i, let Cj,i be a positive constant such that

logCj,i ∝ | logαj,i|, as
∑
j,i

αj,i → 0 (31)

where ∝ is defined in the text following Eq. (10). Define U
as

U ≜ inf
{
t ≥ 1 :

∏t

q=1

frj
(Xq)

fri(Xq)
≥ Cj,i

}
, (32)

implying that the test stops sampling at time slot U and accepts
Hj if z(U)

j,i ≥ Cj,i. As
∑
j,i αj,i → 0, using Eq. (28) and

Eq. (31), we get

U

minj ̸=i{| logαj,i|/Ij,i}
→ 1, a.s. [Pj ]. (33)

Thus, for every 0 < η < 1, we get

inf
(ψt,δt)

Pr {T ≥ ηU} → 1 (34)

and the error probability of the test as follows:

Pj{(ψt, δt) rejects Hj} ≤
1
Cj,i

Pi{(ψt, δt) rejects Hi}. (35)

We also extend the results of Eq. (34) into the notion of
κ-quick convergency, which is defined as follows: for κ > 0,
a sequence {Ψt} of random variables is said to converge κ-
quickly [32], to a constant λ if E[(La)κ] < ∞ for all a > 0,
where La = supt{t ≥ 1 : |Ψt − λ| ≥ a}. Therefore, we can
obtain from Eq. (30) that

inf
(ψt,δt)

E [Tκ] ≥ ηκ
(

min
j ̸=i

{
| logαj,i|
Ij,i

})κ
(1 + o(1)) (36)

where φ(x) = o(g(x)) if limx→∞ φ(x)/g(x) = 0. Using the
definition of κ-quick convergency given above, let 0 < a <
minj ̸=i{Ij,i}, and define

La

≜ sup
t

t≥1 : max
i=0,...,J
j ̸=i

∣∣∣∣1t log
frj

(X1, . . . , Xt)
fri

(X1, . . . , Xt)
− Ij,i

∣∣∣∣>a
 .

(37)

When U − 1 ≥ La, we have∣∣∣∣ 1
U − 1

log
frj

(X1, . . . , XT )
fri(X1, . . . , XT )

−Ij,i
∣∣∣∣ ≤ a. (38)

Suppose Ij,i > 0, Eq. (38) is equivalent to

(Ij,i − a)(U − 1) < log
frj

(X1, . . . , XU−1)
fri

(X1, . . . , XU−1)
< logCj,i. (39)

Then, for U ≤ La + 1, we have the complementary event of
Eq. (39) as follows:

U ≥ 1 + min
j ̸=i

{
logCj,i
Ij,i − a

}
. (40)

For some positive constant κ, Eq. (28) can be further enhanced
into

1
T

log
frj

(X1, . . . , XT )
fri

(X1, . . . , XT )
→ Ij,i, κ-quickly under Pj . (41)

Thus, combing Eq. (40) and Eq. (41) we obtain the
lower-bound on the stopping time as follows:

inf
(ψt,δt)

E [Tκ] ∝ E [Uκ] ≥
(

min
j ̸=i

{
| logαj,i|
Ij,i

})κ
. (42)
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IV. NFV/SDN ARCHITECTURE TO MAXIMIZE
ϵ-EFFECTIVE CAPACITY FOR EACH METAVERSE

STREAMING VIRTUAL SLICE

After observing all MUs’ data requests and determining an
optimal hypothesis for each MU, we apply the NFV/SDN
architectures to map all MUs which are predicted to have
the same metaverse streaming request probability profile,
according to their corresponding accepted hypotheses, into
one virtual network slice and allocate the optimal wireless
resources, i.e., transmit power, to maximize their average
aggregate ϵ-effective capacity [3], [4]. We derive the average
aggregate ϵ-effective capacity by first obtaining the aggregate
ϵ-effective capacity over all MUs, and then calculating its
average using each metaverse data request probability.

A. The ϵ-Effective Capacity Over Nakagami-m Fading for
Metaverse Streaming Through Single Antenna Transmission

We employ the Nakagami-m fading channel model, since
it is a more practical model to characterize the multipath
scattering. Let hk be the fading amplitude of the kth MU fol-
lowing the Nakagami-m distribution, and let N0 be the power
of additive white Gaussian noise (AWGN). The SNR of the
kth MU is given by γk(Pd,k,j) = (h2

kPd,k,j)/N0. Under the
Nakagami-m fading wireless channel, the probability density
function (pdf) of the SNR γk(Pd,k,j), denoted by PΓ(γk),
is given by

PΓ(γk) =
γm−1
k

Γ(m)

(
m

γk

)m
exp

(
−m

γk
γk

)
(43)

where m is the fading parameter of the Nakagami-m distri-
bution, γk = (E[h2

k]Pd,k,j)/N0 is the average SNR, ∀k, and
Γ(·) is the gamma function. Under the Nakagami-m fading
channel, we give a closed-form expression for the ϵ-effective
capacity, defined in Eq. (9), in the following theorem.

Theorem 3: Under our proposed NFV/SDN architectures
for metaverse streaming, if the metaverse streaming is trans-
mitted through a single antenna wireless channel experiencing
the Nakagami-m fading with m > 1, where the pdf of
the received SNR is characterized by Eq. (43), then the
closed-form expression for the ϵ-effective capacity defined by
Eq. (9) for the kth metaverse MU using the (n,W, ϵ)-code in
the non-asymptotic regime is determined by

ECk(θd, ϵd,Pd,k,j)

= − 1
nθd

{
log

[
ϵd + (1− ϵd)

(
1 + γk

2ϵ̃d
√
V (γk)

)−θ̃d
]}

(44)

where θ̃d ≜ (log2 e)θdn, ϵ̃d ≜ Q−1(ϵd)/
√
n, and V (γk) ≈

1 − [1/(1 + γk)2] is the channel dispersion of the AWGN
channel [12, Eq. (293)], where Q−1(·) is the inverse of the
Q-function.

Proof: The proof is provided in Appendix C. ■
Remarks on Theorem 3: The closed-form expression derived

in Eq. (44) of Theorem 3 identifies the explicit relationships
between the ϵ-effective capacity and other important control
variables over a single-input-single-output channel, which are
to be used to derive the ϵ-effective capacity over the massive
MIMO channel in Theorem 5 of this paper.

B. Channel Estimations for Massive MIMO Communications
for Metaverse Mobile Users

Suppose that there are MT antennas on the BS/AP and there
are MR antennas for each MU, where MT ≫ MR. Denote
by gk,ν ∈ CMR×1 the channel gain between the kth MU
and the νth antenna on the massive antenna equipped BS/AP,
where CMR×1 denotes a set of elements each consisting of
a complex-valued matrix with MR rows and one column.
Denote by Rk the distance between the kth MU and antennas
of the BS/AP, assuming that the distance between two antennas
on the BS/AP is small comparing with the distance between an
MU and the BS/AP. We give gk,ν as follows [5, Eq. (2.19)]:

gk,ν =
√
βkhk,ν (45)

where βk ≈ [λ/(4πRk)]
2 is the large-scale fading coefficient,

where λ is the wavelength, and hk,ν ∈ CMR×1 indicates
the effect of small-scale fading between all antennas on the
kth MU and the νth antenna on the BS/AP. We consider that
each coherence interval is divided into two phases: (1) uplink
training phase to estimate the channel gain and (2) down-
link payload data transmission phase to download the
data.

1) Uplink Training Phase: Denote by τul,p the number of
samples for the uplink pilot signal, where we assume that
τul,p ≥ MR. Define ϕ = [ϕ1, · · · , ϕτul,p ] ∈ C1×τul,p as an
orthogonal pilot training sequence satisfying ∥ϕ∥2 = 1, where
∥ · ∥ is the Euclidean norm. The pilot signal sending from
the kth MU to the BS/AP is denoted by x(p)

k = √
τul,pϕ ∈

C1×τul,p . In the training phase, we assign MR orthogonal pilot
sequences to MR antennas of the MU k, and both the MU
k and the BS/AP know these pilot sequences. Let ρul be
the transmit power over uplink and W(p) ∈ CMR×τul,p be
the AWGN matrix, whose elements are i.i.d., following the
complex Gaussian distribution CN (0, 1). The received pilot
signal, denoted by Y(p)

k,ν ∈ CMR×τul,p , at the νth antenna of
the BS/AP, is given by

Y(p)
k,ν=

√
ρulgk,νx

(p)
k + W(p) =

√
τul,pρulgk,νϕ + W(p). (46)

Applying the de-spreading scheme [5, Section 3.1.2] to the
received pilot signal, the BS/AP performs a de-spreading
operation by correlating its received signals with the pilot
signal. Denote by y(p)

k,ν ∈ CMR×1 the received signal after
the de-spreading operation, which is given by

y(p)
k,ν = Y(p)

k,νϕ
H =

√
τul,pρulgk,ν + w(p) (47)

where (·)H denotes the Hermitian transpose, w(p) ≜
W(p)ϕH ∈ CMR×1 is the AWGN after de-spreading,
and each element of w(p) follows CN (0, 1). Let Gk =
[gk,1,gk,2, · · · ,gk,MT

] ∈ CMR×MT be the channel gain
matrix between all antennas on the kth MU and all antennas
on the BS/AP. Let Ĝk = [ĝk,1, ĝk,2, · · · , ĝk,MT

] ∈ CMR×MT

be the estimated channel gain matrix, indicating the estima-
tion of Gk. Using the minimum mean-square error (MMSE)
estimation, we obtain the estimated channel gain ĝ(l)

k,ν between
the lth antenna (with ∀l ∈ {1, · · · ,MR}) on the kth MU and
the νth antenna (with ∀ν ∈ {1, · · · ,MT }) on the BS/AP as
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follows [5, Eq. (3.7)] [33, Eq. (4)]:

ĝ
(l)
k,ν=E

[
g
(l)
k,ν

∣∣∣y(p,l)
k,ν

]
=

E
[
y
(p,l)∗
k,ν g

(l)
k,ν

]
E
[∣∣∣y(p,l)

k,ν

∣∣∣2] y
(p,l)
k,ν =

√
τul,pρulβk

1+τul,pρulβk
y
(p,l)
k,ν

(48)

where E [·|·] denotes the conditional expectation, (·)∗ denotes
the conjugate, and ĝ(l)

k,ν and y(p,l)
k,ν are the lth element of ĝk,ν

and y(p)
k,ν , respectively. Substituting each element of y(p)

k,ν given
by Eq. (47) into Eq. (48), the channel estimation ĝk,ν is
given by

ĝk,ν =
τul,pρulβk

1 + τul,pρulβk
gk,ν +

√
τul,pρulβk

1 + τul,pρulβk
w(p). (49)

2) Downlink Payload Data Transmission Phase: During
the downlink payload data transmission phase, the BS/AP
treats the channel estimation ĝk,ν as the true channel to
transmit the data packet to the MU k. Let bk be symbol
intended to the MU k, satisfying E[|bk|2] = 1. Let x =
[x1, x2, · · · , xMT

]⊺ ∈ CMT×1 be the weighted symbol trans-
mitted from all antennas of the BS/AP, where (·)⊺ is the
transpose. Let Kd be the total number of MUs in a virtual
network slice requesting the same metaverse data item d. Let
Pmax be the total transmit power from the BS/AP to all MUs
for transmitting the same metaverse data. Using the maxi-
mum ratio transmission (MRT) precoding as the beamforming
scheme to focus the signal of the payload metaverse data
towards the kth MU, each element xν ,∀ν, of x, which is the
transmit signal on the νth antenna of the BS/AP, is given by

xν =
Kd∑
k=1

√
Pd,k,j

(
ηk,ν

) 1
2 ĝ∗k,νbk, (50)

where Pd,k,j is the downlink transmit power for transmitting
the data item d to the kth MU if accepting Hj as its data
request pmf profile and

∑Kd

k=1 Pd,k,j = Pmax,∀d, j, ηk,ν ∈
R1×MR is the power control coefficient for the signal from
the νth antenna of the BS/AP to the kth MU, each element
of ηk,ν , denoted by η

(l)
k,ν , satisfies η(l)

k,ν ∈ [0, 1],∀l, and (·) 1
2

is taking square root for each element. The received signal
at the kth MU, denoted by yk ∈ CMR×1, is given by yk =
Gkx+wk, where wk ∈ CMR×1 is the AWGN on all antennas
of the kth MU, whose element is denoted by w

(l)
k following

CN (0, 1). Each element y(l)
k of yk, ∀l ∈ {1, 2 · · · ,MR},

representing the received signal by the lth antenna of MU
k, is given by

y
(l)
k =

MT∑
ν=1

g
(l)
k,νxν + w

(l)
k =

√
Pd,k,j

MT∑
ν=1

g
(l)
k,ν

(
ηk,ν

) 1
2 ĝ∗k,νbk

+
MT∑
ν=1

K∑
u=1,u ̸=k

√
Pd,u,jg(l)

k,ν

(
ηu,ν

) 1
2 ĝ∗u,νbu + w

(l)
k︸ ︷︷ ︸

effective additive noise N(l)
k

(51)

where bu is the symbol intended to the MU u, u ̸= k, and
N

(l)
k is the effective additive noise of the kth MU on its

lth antenna.

C. The Average SNR Over Nakagami-m Channels for
Massive MIMO Metaverse Streaming

Denote the SNR of the lth antenna on the kth MU
under the BS/AP power allocation Pd,k,j by γMIMO

k,(l) (Pd,k,j)
over the massive MIMO channel. The key step to derive
ϵ-effective capacity of massive MIMO communications is
deriving the expression for γMIMO

k,(l) (Pd,k,j). Using Eq. (51),
the SNR γMIMO

k,(l) (Pd,k,j), ∀l, for the massive MIMO channel
is given by [34] and [35]

γMIMO
k,(l) (Pd,k,j)

≜

Var

[√
Pd,k,jbk

MT∑
ν=1

g
(l)
k,ν

MR∑
i=1

√
η
(i)
k,ν ĝ

(i)∗
k,ν

]

Var

MT∑
ν=1

K∑
u=1,u̸=k

√
Pd,u,jg(l)

k,ν

(
ηu,ν

) 1
2 ĝ∗u,νbu

+1

(52)

where Var[·] is derived with respect to both the random
distance Rk and the random h

(l)
k,ν , which is the lth ele-

ment of hk,ν , representing the small-scale fading amplitude
between the lth antenna on MU k and the νth antenna of
the BS/AP. We assume that all h(l)

k,ν ,∀l, ν, are i.i.d., following
the Nakagami-m distribution. We can derive a closed-form
expression for γMIMO

k,(l) (Pd,k,j) specified by Eq. (52) in the
following theorem.

Theorem 4: For our proposed NFV/SDN architectures to
support metaverse streaming, if the metaverse streaming is
transmitted over a massive MIMO channel experiencing the
Nakagami-m fading and assume that all metaverse MUs are
uniformly distributed within a wireless cell with the inner
radius Rmin and the outer radius Rmax, then we can derive
a closed-form expression for SNR γMIMO

k,(l) (Pd,k,j), which is
defined by Eq. (52), as follows:

γMIMO
k,(l) (Pd,k,j) =

Pd,k,jNk,1
(Pmax − Pd,k,j)Nk,2 + 1

(53)

where

Nk,1 =
β3
kτul,pρulηMTMRh

2

(1 + τul,pρulβk)2
(
1+τul,pρulβkMTMRh

2
)

(54)

and

Nk,2 =
βkηMTMRh

2
λ2

(4π)2(R2
max−R2

min)

{
τul,pρul

(
τul,pρulh

2
+1
)
(Xmax−Xmin)

+
MT (MR−1)λ2

(4π)2(R2
max−R2

min)

[
log
(
Xmax

Xmin

)]2}
, (55)

where η ≜ E
[
η
(i)
k,α

]
, h ≜ E

[
h

(l)
k,ν

]
, and

Xmax =
λ2

16π2(R2
min + ι2) + τul,pρulλ2

,

Xmin =
λ2

16π2(R2
max + ι2) + τul,pρulλ2

,
(56)

where we define ι as the height of a BS/AP.
Proof: The proof is provided in Appendix D. ■
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Remarks on Theorem 4: Theorem 4 reveals that all
γMIMO
k,(l) (Pd,k,j),∀l, are the same, since random variables

h
(l)
k,ν ,∀l, ν, are i.i.d.
According to Eq. (44), the ϵ-effective capacity is a function

of the average SNR for a wireless channel. Using Remarks on
Theorem 4, the average SNR for the massive MIMO channel,
denoted by γMIMO

k (Pd,k,j), over all elements γMIMO
k,(l) (Pd,k,j),

∀l, is given by

γMIMO
k (Pd,k,j) = γMIMO

k,(l) (Pd,k,j), ∀l. (57)

D. The Optimal Transmit Power Allocation for Maximizing
Aggregate ϵ-Effective Capacity Over Massive-MIMO
Channels for Each Virtual Network Slice

Define Pk,j ≜ [P1,k,j , · · · ,PD,k,j ]⊺ as the transmit power
allocations for transmitting all metaverse data items to the
kth MU if accepting Hj as the data requests pmf profile,
and define P∗

k,j as the optimal value of Pk,j that max-
imizes the average aggregate ϵ-effective capacity. Defining
ECMIMO

k (θd, ϵd,Pd,k,j) as the ϵ-effective capacity for the
kth MU over the massive MIMO channel, we formulate the
average aggregate ϵ-effective capacity maximization problem
for a virtual network slice as follows:[
P∗

1,j , · · · ,P
∗
K,j

]
= arg max

[P1,j ,··· ,PK,j ]

D∑
d=1

frj
(d)

Kd∑
k=1

ECMIMO
k (θd, ϵd,Pd,k,j) (58)

s.t.: C1:
Kd∑
k=1

Pd,k,j ≤ Pmax,

C2: Pd,k,j ≥ 0, ∀k.

To solve the maximization problem specified by Eq. (58),
we give closed-form expressions for the maximum aver-
age aggregate ϵ-effective capacity and the optimal transmit
power allocation P∗

k,j , respectively, in the following theorem,
by extending the results of Theorem 3 over the single antenna
channel into the massive MIMO channel version.

Theorem 5: If the metaverse streaming for each virtual
network slice is dictated under our proposed Neyman-Pearson
hypothesis testing driven massive MIMO NFV/SDN archi-
tectures and optimal resource allocation schemes, then the
following two claims hold true.

Claim 1. The closed-form expression for the maximum
ϵ-effective capacity, denoted by ECMIMO

k (θd, ϵd,P∗d,k,j), for
the kth MU over the massive-MIMO channel in its correspond-
ing virtual network slice is determined by

ECMIMO
k (θd, ϵd,P∗d,k,j)

=− 1
nθd

log

ϵd+(1−ϵd)

(
1 + γMIMO

k (P∗d,k,j)

2ϵ̃d
√
V (γMIMO

k (P∗d,k,j))

)−θ̃dMR

(59)

where P∗d,k,j is the optimal Pd,k,j to be specified by Claim 2
of this theorem, and γMIMO

k (P∗d,k,j) is the average SNR under

the optimal transmit power allocation P∗d,k,j given by

γMIMO
k (P∗d,k,j)

=



1
Nk,2

[
ϱ∗γ,12

ϵ̃kNk,1

frj
(d)

(1 +Nk,2Pmax)

] 1
2

− Nk,1
Nk,2

,

if γMIMO
k (P∗d,k,j) ≫ 1,

1
Nk,2

[
ϱ∗γ,2Nk,1

frj (d)
(1 +Nk,2Pmax)

] 1
2

− Nk,1
Nk,2

,

if 0 < γMIMO
k (P∗d,k,j) < 1,

(60)

where Nk,1 and Nk,2 are given by Eq. (54) and Eq. (55),
respectively, and ϱ∗γ,1 and ϱ∗γ,2 are given, respectively, by the
following equations:

ϱ∗γ,1 =frj (d)


Kd∑
k=1

1
Nk,2

[
Nk,1
2ϵ̃k

(1+Nk,2Pmax)
] 1

2

Kd∑
k=1

1 +Nk,2Pmax

Nk,2
− Pmax


2

,

ϱ∗γ,2 =frj
(d)


Kd∑
k=1

1
Nk,2

[Nk,1(1 +Nk,2Pmax)]
1
2

Kd∑
k=1

1 +Nk,2Pmax

Nk,2
− Pmax


2

.

(61)

Claim 2. The closed-form expression for the optimal solu-
tion

[
P∗

1,j , · · · ,P
∗
K,j

]
for the maximization problem given

by Eq. (58) can be obtained by deriving each of its element,
denoted by P∗d,k,j ,∀k, d, which is the optimal transmit power
allocation for sending the data item d to the kth MU using
the estimated data request pmf profile frj (d) obtained from
Section III-A. The closed-form expression for P∗d,k,j ,∀k, d,
is determined as follows:

P∗d,k,j=



1+Nk,2Pmax

Nk,2
− 1
Nk,2

[
frj(d)Nk,1

1+Nk,2Pmax

ϱ∗γ,12ϵ̂k

]1
2

,

if γMIMO
k (P∗d,k,j) ≫ 1,

1+Nk,2Pmax

Nk,2
− 1
Nk,2

[
frj

(d)Nk,1
1+Nk,2Pmax

ϱ∗γ,2

]1
2

,

if 0 < γMIMO
k (P∗d,k,j) < 1.

(62)

Proof: The proof is provided in Appendix E. ■

V. PERFORMANCE EVALUATIONS

We conduct the extensive numerical analyses to validate
and evaluate our developed schemes. Figure 2 shows a case
study of testing a set of metaverse data items between two
hypotheses with Zipf exponents rj = 0.3 and ri = 0.1. In this
case study, suppose that there are totally 99 metaverse data
items. We set that the e-health care data is at the top-ranked
data range, the educational data is at the medium-ranked data
range, and the online gaming data is at the low-ranked data
range. For sake of the fairness, we also set that each type of
metaverse data evenly shares the total 99 data items, and thus,
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Fig. 2. A case study of request probability profile for three categories of
metaverse data items with rj = 0.1 and ri = 0.3.

Fig. 3. The stopping time T of the sequential hypothesis testing against the
minimum value of hypothesis testing error probability under different values
of the Zipf distributions difference Ij,i.

the number of each type of metaverse data items is 33. We take
t observations for an MU and select a pmf profile between
Hi and Hj . If our proposed sequential hypothesis testing
selects Hj , this MU is more likely to request more e-health
care metaverse streaming with a distribution Zipf(0.3, 99) in
the future and we can map it into a virtual network slice
where other MUs also request the e-health care data with the
distribution Zipf(0.3, 99). Otherwise, if accepting Hi, the MU
is more likely to request e-health care data with a distribution
Zipf(0.1, 99) and we map it into a virtual network slice
that other MUs also request the e-health care data with the
distribution Zipf(0.1, 99).

Figure 3 plots the stopping time T versus the minimum
value of error probability minj ̸=i{| logαj,i|} of the sequential
hypotheses testing under three values for the difference of
two Zipf distributions Ij,i =

∣∣EPj

[
log
{
frj (X1)/fri(X1)

}]∣∣ .
Figure 3 shows that the stopping time T is a decreasing
function of minj ̸=i{| logαj,i|}, because a larger number of
observations yields a hypothesis testing with a lower error
probability. Figure 3 also shows that the stopping time T is
a decreasing function of the Zipf distributions difference Ij,i,
because a smaller difference of Zipf distributions also requires
a larger number of observations to distinguish two hypotheses.

Fig. 4. The function of aggregate ϵ-effective capacity∑Kd
k=1 ECMIMO

k (θd, ϵd,Pd,k,j) with different numbers of antenna
MT on the massive-MIMO BS/AP.

Fig. 5. The ϵ-effective capacity ECMIMO
k (θd, ϵd,Pd,k,j) under different

values of the delay QoS exponent θd and the transmit power allocation Pd,k,j .

We show the aggregate ϵ-effective capacity∑Kd

k=1EC
MIMO
k (θd, ϵd,Pd,k,j), i.e., the sum of ϵ-effective

capacity over all MUs on a virtual network slice, under
different numbers of antennas MT of the massive-MIMO
BS/AP in Fig. 4. We set the number of antennas for each
MU as MR = 2; the maximum and minimum distances
to the massive-MIMO BS/AP antennas as Rmax = 30m
and Rmin = 5m, respectively; and λ = 10m, τul,p = 16,
ρul = 1W, Pmax = 10W. Observing Fig. 4, we obtain that
the aggregate ϵ-effective capacity monotonically increases
as the number of antennas MT increases, because a larger
number of antennas can improve the massive-MIMO channel
performance. We can also observe that the increasing rate of
the aggregate ϵ-effective capacity decreases as MT increases,
since these antennas also results in the interference to each
other.

In Fig. 5, we show the ϵ-effective capacity
ECMIMO

k (θd, ϵd,Pd,k,j) of the kth MU under different
values of the delay QoS exponent θd and the transmit
power allocation Pd,k,j . The parameters are the same as
in Fig. 4. We observe from Fig. 5 that the ϵ-effective
capacity is a monotonically increasing function of the
transmit power allocation. We also observe that in a high
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Fig. 6. The function of ϵ-effective capacity with respect to the delay QoS
exponent θd under different values of the transmit power Pd,k,j and the
Nakagami-m fading parameter m.

power regime (Pd,k,j > 3 W), the increasing speed of
ECMIMO

k (θd, ϵd,Pd,k,j) decreases as the transmit power
increases, showing that a large power allocation cannot
produce a large benefit in this regime. Thus, there exists an
optimal power P∗d,k,j that maximizes the average aggregate
ϵ-effective capacity under a maximum transmit power
constraint.

Figure 6 plots the function of ϵ-effective capacity
ECk(θd, ϵd,Pd,k,j) for a single antenna channel with respect
to the delay QoS exponent θd under different values of the
transmit power Pd,k,j and the Nakagami-m fading parameter
m. We set Pd,k,j = 0.1, 0.5 and m = 0.5, 1, 2, respectively.
We set other parameters as follows: the length of a codeword
n = 1000, the average SNR γk = 20 dB, and the fading
power range h2

k = [0.1, 1]. Figure 6 shows that for the
same Nakagami-m fading parameter, the ϵ-effective capacity
increases as the transmit power allocation Pd,k,j increases,
since a larger value of Pd,k,j yields a larger value of SNR
for the same channel fading hk. We can also observe from
Fig. 6 that for the same transmit power, ϵ-effective capacity
increases as the fading parameter m increases, because a larger
m represents a better channel quality. For each value of m
and Pd,k,j , ϵ-effective capacity monotonically decreases as the
delay QoS exponent θd increases. This is because θd indicates
the stringency of the statistical delay QoS, and thus, a channel
with a less stringent delay QoS requirement can support a
larger data arrival rate.

Figure 7 shows the ϵ-effective capacity ECk(θd, ϵd,Pd,k,j)
under different values of the delay QoS exponent θd and
decoding error probability ϵd. Similar to Fig. 6, the ϵ-effective
capacity is a monotonically decreasing function of the delay
QoS exponent θd. Figure 7 reveals that the ϵ-effective capacity
is also a monotonically decreasing function of the decoding
error probability ϵd. This is because a smaller decoding error
probability indicates a better channel quality and a larger
achievable data rate, which yield a larger ϵ-effective capacity.

VI. CONCLUSION

As metaverse streaming in 6G wireless networks is expected
to demand stringent QoS provisionings on delay and decoding

Fig. 7. The function of ϵ-effective capacity under different values of the
delay QoS exponent θd and the decoding error probability ϵd.

error probability and will need to be transmitted among mas-
sive MUs, we have proposed to use the mURLLC technique
to support metaverse traffic, by integrating massive MIMO,
FBC, statistical QoS theory, and NFV/SDN architectures.
To estimate the MU’s future metaverse data request probabil-
ity profile, we have proposed a Neyman-Pearson hypothesis
testing based human-centric data prediction scheme and have
shown that the stopping time for the hypothesis testing is
bounded and converges. According to the estimated data
request probability profile, we have proposed to dynamically
map MUs that request the same set of metaverse data items
into the same virtual network slice using NFV/SDN archi-
tectures and have derived optimal transmit power allocations
to maximize the average aggregate ϵ-effective capacity, which
guarantees both statistical delay and error-rate bounded QoS,
for this virtual network slice.

APPENDIX A
PROOF OF THEOREM 1

Proof: We proceed with the proof by showing Claim 1,
Claim 2, and Claim 3, respectively. For presentation conve-
nience, we prove Claim 2 first.

Claim 2: We construct the functions: y(·) and Φj,i(·),
respectively, as follows:{

Yq = y(Xq) ≜ logXq − 1
tEPj

[logX1]
Φj,i(x) ≜ (ri − rj)x+ t−1

t Mj,i

(63)

where Mj,i is defined in Eq. (17) and EPj
[·] is defined in the

text following Eq. (13). Thus, we can derive tΦj,i(Y t) given
in Eq. (14) as follows [23, Eqs. (3.2) and (3.9)]:

tΦj,i(Y t) = t(ri − rj)Y t + (t− 1)Mj,i

= (ri − rj)

[(
t∑

q=1

logXq

)
− EPj

[logX1]

]
+ (t− 1)Mj,i. (64)

Substituting Eqs. (16) and (64) into
∣∣lt(j, i)− tΦj,i(Y t)

∣∣ of
Eq. (14), we obtain∣∣lt(j, i)− tΦj,i(Y t)

∣∣ = ∣∣EPj
[(ri − rj) logX1+Mj,i]

∣∣ . (65)
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Comparing Eq. (65) with Eq. (14), we can show that Eq. (14)
holds true which is detailed as follows:

Ij,i =
∣∣EPj

[(ri − rj) logX1 +Mj,i]
∣∣ (b)=

∣∣∣∣EPj

[
log

frj (X1)
fri

(X1)

]∣∣∣∣
(66)

where (b) follows by using Eq. (17) and Eq. (2). Thus,
Eq. (66) shows that Eq. (15) holds true, implying that Ij,i is
the Kullback-Leibler divergence between Pj and Pi, regardless
whatever neighborhood N is chosen, which completes the
proof for Claim 2.

Claim 1: Using Eq. (63), we can obtain ε as follows:

ε = E[Y1] = EPj

[
logX1 −

1
t
EPj

[logX1]
]

=
t− 1
t

D∑
d=1

(log d)d−rj∑D
d=1 d

−rj

(67)

and thus Claim 1 holds.
Claim 3: Substituting Eq. (67) into Eq. (63), we can derive

Φj,i(ε) as follows:

Φj,i(ε) =
t− 1
t

[
(ri − rj)

∑D
d=1 [(log d)d−rj ]∑D
d=1 d

−rj

+Mj,i

]
(68)

If ri and rj satisfy the following condition:∑D
d=1 [(log d)d−rj ]∑D

d=1 d
−rj

̸= − Mj,i

ri − rj
(69)

and also applying the condition of Eq. (69) into Eq. (68),
then we have Φj,i(ε) ̸= 0 for Claim 3. On the other hand, if
Φj,i(ε) = 0, using Eq. (63), we can obtain the following:

∂Φj,i(Y1 − ε)
∂X1

= (ri − rj)
1
X1

. (70)

Thus, Eq. (70) implies that Pr{(ri − rj)(1/X1) = 0} < 1,
which is equivalent to Eq. (18). Then, since rj ̸= ri, X1 ∈
{1, 2, . . . , D}, and D ≤ ∞, we obtain Eq. (18), completing
the proof of Claim 3. Therefore, the proof for Theorem 1
follows. ■

APPENDIX B
PROOF OF THEOREM 2

Proof: According to [23, Theorem 2.1], Eq. (19) follows
due to Claim 1, Claim 2, and Claim 3 stated in Theorem 1.
To show Eq. (20), we need first to show that there exists a
ς > 0 such that:

Pr
{
lt+1(j, i) > lup|X1, . . . , Xt, l

low<lt(j, i)<lup}≥ ς (71)

which is equivalent to

Pr
{
lt+1(j, i)−lt(j, i)>∆|X1, . . . , Xt, l

low<lt(j, i)<lup}≥ ς
(72)

where ∆ = lup − llow. We derive lt+1(j, i)− lt(j, i) as

lt+1(j, i)− lt(j, i) = (ri − rj) logXt+1 +Mj,i (73)

when 0 < rj < ri < 1 or rj > ri > 1. Therefore, we have
lt+1(j, i) − lt(j, i) > 0, and then, there exists a ς > 0 such
that

Pr {lt+1(j, i)− lt(j, i) > ∆} ≥ ς. (74)

Thus, Eq. (72) holds. Based on [23, pp. 1864], Eq. (72) implies
that Eq. (20) holds for every −∞ < llow < lup < ∞,
completing the proof of Theorem 2. ■

APPENDIX C
PROOF OF THEOREM 3

Proof: Using the FBC scheme, R (γk(Pd,k,j)) in Eq. (9)
is given by [12, Eq. (1)]

R(γk(Pd,k,j))

= log2 (1 + γk(Pd,k,j))−
√
V (γk(Pd,k,j))

n
Q−1(ϵd)

= log2

(
1 + γk(Pd,k,j)

2ϵ̃d
√
V (γk(Pd,k,j))

)
(75)

where ϵ̃d is defined in the text following Eq. (44). To simplify
the notation, we replace γk(Pd,k,j) by γk in this proof.
We derive Eγk

[
e−θdnR(γk)

]
in Eq. (9) as follows:

Eγk

[
e−θdnR(γk)

]
= Eγk

[(
1 + γk

2ϵ̃d
√
V (γk)

)−(log2 e)θdn
]
. (76)

Using Taylor-series expansion over
√
V (γk), we obtain [36,

Eq. (34)] √
V (γk) = −

∞∑
i=0

Bi(1 + γk)−2i (77)

where B0 = −1 and

Bi =
∣∣∣∣( 1

2

i

)∣∣∣∣ =
∣∣∣∣∣
(

1
2

) (
1
2 − 1

)
· · ·
(

1
2 − i+ 1

)
i!

∣∣∣∣∣ , ∀i ≥ 1. (78)

Defining θ̃d ≜ (log2 e)θdn and substituting Eq. (77) into
Eq. (76), Eq. (76) can be rewritten as

Eγk


 1 + γk

2
ϵ̃d

∞∑
i=0

Bi(1+γk)−2i

−θ̃d


=
∫

(1 + γk)−θ̃d2
−θ̃d ϵ̃d

∞∑
i=0

[Bi(1+γk)−2i]
PΓ(γk)dγk

(c)=
∞∑
j=0

(−θ̃dϵ̃d log 2)j

j!

∫
(1 + γk)−θ̃d

( ∞∑
i=0

[
Bi(1+γk)−2i

])j

× PΓ(γk)dγk

=
∞∑
j=0

(−θ̃dϵ̃d log 2)j

j!

∫ ( ∞∑
i=0

[
Bi(1+γk)

−
(

2i+
θ̃d
j

)])j

× PΓ(γk)dγk (79)

where PΓ(γk) is given by Eq. (43), (c) holds by using Taylor-

series for 2x,∀x. Defining Ωj ≜
∞∑
i=0

Hi, where

Hi ≜ Bi(1 + γk)
−
(

2i+
θ̃d
j

)
, (80)
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the jth moment of Ωj , denoted by E
[
(Ωj)j

]
, can be derived

using the jth order derivative of the moment generating
function of Ωj , denoted by E

[
e−sΩj

]
, with parameter s [37,

Eq. (4.89)]. We derive E
[
e−sΩj

]
as follows:

E
[
e−sΩj

]
=E
[
e−s

∑∞
i=0Hi

]
=

∞∑
µ=0

(−s)µ

µ!
E

[( ∞∑
i=0

Hi

)µ]
.

(81)

We then expand (
∑∞
i=0Hi)

µ in Eq. (81) using the multinomial
theorem as follows:( ∞∑

i=0

Hi

)µ
=

∑
a1+a2+···+aı=µ

(
µ

a1, a2, · · ·, aı

) ı∏
ȷ=1

Haȷ
ȷ (82)

where {a1, a2, · · · , aı} are all combinations of nonnegative
integers such that the sum of all aȷ,∀ȷ ∈ {1, 2, · · · , ı}, is µ,
and (

µ

a1, a2, · · · , aı

)
=

µ!
a1!a2! · · · aı!

. (83)

Substituting Eq. (82) into Eq. (81), we can derive
E
[
(
∑∞
i=0Hi)

µ] in Eq. (81) as follows:

E

[( ∞∑
i=0

Hi

)µ]
=

∑
a1+···+aı=µ

(
µ

a1, a2, · · · , aı

)

×
∏
i

BiEγk

[
(1 + γk)ℓ

]
. (84)

where ℓ ≜ −(2 + θ̃d

j )− (4 + θ̃d

j )− · · ·. Using the binomial
theorem, we further derive Eγk

[
(1 + γk)ℓ

]
in Eq. (84) as

follows:

Eγk

[
(1+γk)ℓ

]
=

∞∑
v=0

(
ℓ

v

)
Eγk

[(γk)v]
(d)
≈

∞∑
v=0

(
ℓ

v

)
γvk =(1 + γk)

ℓ

(85)

where (d) is obtained by applying Eq. (43) into the derivation
of Eγk

[(γk)v] as follows:

Eγk
[(γk)v]

=
∫ ∞

0

(γk)v
γm−1
k

Γ(m)

(
m

γk

)m
exp

(
−m

γk
γk

)
dγk

=
(
m

γk

)−v 1
Γ(m)

∫ ∞

0

(
m

γk
γk

)m+v−1

exp
(
−m

γk
γk

)
d

(
m

γk
γk

)

=
(
m

γk

)−v Γ(m+ v)
Γ(m)

(e)
≈
(
m

γk

)−v
mvΓ(m)

Γ(m)
= γvk (86)

where (e) holds true when m > 1. Applying the results of
Eq. (85) into Eq. (84), we further derive Eq. (84) as

E

[( ∞∑
i=0

Hi

)µ]
≈

∑
a1+···+aı=µ

(
µ

a1, a2, · · · , aı

)∏
i

Bi(1+γk)
ℓ

=
∞∑
i=0

[E (Hi)
µ] . (87)

Substituting Eq. (87) into Eq. (84) and then substituting
Eq. (84) into Eq. (81), we further derive Eq. (81) as follows:

E
[
e−sΩj

]
≈ e

−s
∞∑

i=0
E[Hi]

= e

−s
∞∑

i=0

Bi(1+γk)
−
(
2i+

θ̃d
j

)
(88)

and thus we can derive the integral in Eq. (79) as∫ ( ∞∑
i=0

[
Bi(1+γk)

−
(

2i+
θ̃d
j

)])j
PΓ(γk)dγk

= E
[
(Ωj)j

]
= (−1)j

∂j
(
E
[
e−sΩj

])
∂sj

∣∣∣∣∣
s=0

=

( ∞∑
i=0

[
Bi(1 + γk)

−
(

2i+
θ̃d
j

)])j
. (89)

Substituting Eq. (89) into Eq. (79) and then substituting
Eq. (79) into Eq. (76), we have

Eγk

[
e−θdnR(γk)

]

=Eγk


 1 + γk

2
ϵ̃d

∞∑
i=0

Bi(1+γk)−2i

−θ̃d


=
∞∑
j=0

(−θ̃dϵ̃d log 2)j

j!

( ∞∑
i=0

[
Bi(1 + γk)

−
(

2i+
θ̃d
j

)])j

=(1+γk)
−θ̃d2

−θ̃dϵ̃d
∞∑

i=0
Bi(1+γk)−2i

=
(

1 + γk

2ϵ̃d
√
V (γk)

)−θ̃d

, (90)

which yields the main term in Eq. (44), completing the proof
of Theorem 3. ■

APPENDIX D
PROOF OF THEOREM 4

Proof: In order to obtain a closed-form expression for
γMIMO
k,(l) (Pd,k,j), we further derive the numerator of Eq. (52) as

Var

[√
Pd,k,jbk

MT∑
t=1

g
(l)
k,ν

MR∑
i=1

√
η
(i)
k,ν ĝ

(i)∗
k,ν

]

= Pd,k,jE

∣∣∣∣∣
MT∑
t=1

MR∑
i=1

g
(l)
k,ν

√
η
(i)
k,ν ĝ

(i)∗
k,ν

∣∣∣∣∣
2


(f)= Pd,k,j
(

τul,pρulβk
1+τul,pρulβk

)2
E

∣∣∣∣∣
MT∑
t=1

MR∑
i=1

√
η
(i)
k,νg

(l)
k,νg

(i)∗
k,ν

∣∣∣∣∣
2


+ Pd,k,j
(√

τul,pρulβk

1+τul,pρulβk

)2
E

∣∣∣∣∣
MT∑
t=1

MR∑
i=1

√
η
(i)
k,νg

(l)
k,νw

(i)∗
p

∣∣∣∣∣
2
 (91)

where w
(i)
p is the ith element of w(p), and (f) follows by

applying Eq. (49) and using the identity of E[|X + Y |2] =
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E[|X|2]+E[|Y |2] when X and Y are two independent random
variables and E[Y ] = 0. We further derive

E

∣∣∣∣∣
MT∑
t=1

MR∑
i=1

√
η
(i)
k,νg

(l)
k,νg

(i)∗
k,ν

∣∣∣∣∣
2
=β2

k

MT∑
t=1

MR∑
i=1

E
[(
h

(l)
k,ν

)2
η
(i)
k,ν

(
h

(i)
k,ν

)2]

+β2
k

MT∑
t=1

MR∑
i=1

E

h(l)
k,ν

√
η
(i)
k,νh

(i)
k,ν

∑
(q,p)̸=(t,i)

h
(l)
k,q

√
η
(p)
k,qh

(p)
k,q

. (92)

According to Section IV-A that the small-scale fading fol-
lows the Nakagami-m fading, we have E

[
h

(i)
k,ν

]
= h and

E
[ (
h

(i)
k,ν

)2 ]
= h

2
. We further derive Eq. (92) by using

E[XY ] = E[X]E[Y ] if X and Y are uncorrelated random
variables as follows:

E

∣∣∣∣∣
MT∑
t=1

MR∑
i=1

√
η
(i)
k,νg

(l)
k,νg

(i)∗
k,ν

∣∣∣∣∣
2
 = β2

kηM
2
TM

2
Rh

4
. (93)

Similarly, we also derive the expectation in the last part of
Eq. (91) as

E

∣∣∣∣∣
MT∑
t=1

MR∑
i=1

√
η
(i)
k,νg

(l)
k,νw

(i)∗
p

∣∣∣∣∣
2
 = βkη

MT∑
t=1

MR∑
i=1

E
[(
h

(l)
k,ν

)2
]

= βkηMTMRh
2
. (94)

Thus, substituting Eq. (93) and Eq. (94) into Eq. (91), we can
rewrite Eq. (91) as follows:

Var

[√
Pd,k,jbk

MT∑
t=1

g
(l)
k,ν

MR∑
i=1

√
η
(i)
k,ν ĝ

(i)∗
k,ν

]
= Pd,k,jNk,1 (95)

where Nk,1 is given by Eq. (54). We also derive the first term
of the denominator in Eq. (52) as

Var

MT∑
t=1

Kd∑
u=1,u ̸=k

√
Pd,u,jg(l)

k,ν

(
ηu,t

) 1
2 ĝ∗u,tbu



=

 kd∑
u=1,u ̸=k

Pd,u,j

 ηMTMRE
[(
g
(l)
k,ν

)2(
ĝ
(i)∗
u,t

)2]

+

 kd∑
u=1,u ̸=k

Pd,u,j

 ηM2
TMR(MR−1)E

[(
g
(l)
k,ν

)2](
E
[
ĝ
(i)∗
u,t

])2

=(Pmax−Pd,k,j)ηβkh
2
MTMR

τul,pρul(τul,pρulh
2
+1)

×E
[

β2
u

(1+τul,pρulβu)2

]
+MT (MR−1)

(
E

[
β

3
2
u

1+τul,pρulβu

])2.
(96)

Using the assumption that MUs are uniformly distributed
within a wireless cell with inner radius Rmin and outer radius

Rmax and defining the random variable of an MU’s distance
to the BS/AP as R, the pdf of the distance R, denoted by
pR(r), is given by:

pR(r) =
2r

R2
max −R2

min

. (97)

Defining X ≜ βu/(1 + τul,pρulβu), we derive the cumulative
distribution function (cdf) of X , denoted by PX(x), as:

PX(x) = Pr
{

λ2

(4π)2 (R2 + ι2) + τul,pρulλ2
≤ x

}
(g)
= 1− 1

R2
max −R2

min

(
λ2(1− τul,pρulx)

(4π)2x
− ι2

)
(98)

where (g) is obtained by using Eq. (97) and ι is the height of
a BS/AP. Then, using Eq. (98), we have the pdf of X , denoted
by pX(x), as follows:

pX(x) =
∂PX(x)
∂x

=
λ2

16π2x2(R2
max −R2

min)
. (99)

Therefore, we have:

E
[

β2
u

(1 + τul,pρulβu)2

]
= E

[
X2
]

=
∫ Xmax

Xmin

x2pX(x)dx

=
λ2

16π2(R2
max −R2

min)
(Xmax −Xmin) (100)

where Xmax and Xmin are given by Eq. (56). Similarly,
we also have

E

[
β

3
2
u

1+τul,pρulβu

]
≈ E[X] =

∫ Xmax

Xmin

xpX(x)dx

=
λ2

16π2(R2
max−R2

min)
log
(
Xmax

Xmin

)
.

(101)

Substituting Eq. (100) and Eq. (101) into Eq. (96), we further
derive Eq. (96) as

Var

MT∑
t=1

K∑
u=1,u̸=k

√
Pd,u,jg(l)

k,ν

(
ηu,t

) 1
2 ĝ∗u,tbu


= (Pmax−Pd,k,j)Nk,2, (102)

where Nk,2 is given by Eq. (55). Substituting Eq. (95) and
Eq. (102) into Eq. (52), we obtain Eq. (53), completing the
proof for Theorem 4. ■

APPENDIX E
PROOF OF THEOREM 5

Proof: We proceed with the proof by showing the Claim 1
and Claim 2, respectively.

Claim 1: Denote the received SNR of the kth MU
on all antennas by the vector γMIMO

k (Pd,k,j) ≜[
γMIMO
k,(1) (Pd,k,j), · · · , γMIMO

k,(MR)(Pd,k,j)
]
. First, extending

the derivations for the data rate given in Eq. (75) over
the single antenna channel into its massive-MIMO-channel
version, we can obtain the data rate for the massive-MIMO
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channel, denoted by R(γMIMO
k (Pd,k,j)), which is a function

of the SNR vector γMIMO
k (Pd,k,j), as follows:

R
(
γMIMO
k (Pd,k,j)

)
=

MR∑
l=1

log2

(
1 + γMIMO

k,(l) (Pd,k,j)

2ϵ̃d
√
V (γMIMO

k,(l) (Pd,k,j))

)
(h)= MR log2

(
1 + γMIMO

k (Pd,k,j)

2ϵ̃d
√
V (γMIMO

k (Pd,k,j))

)
(103)

where (h) is due to Eq. (57). Replacing R (γk) in Eq. (90) by
R
(
γMIMO
k (Pd,k,j)

)
derived in Eq. (103), we can obtain

Eγk

[
e−θdnR(γMIMO

k (Pd,k,j))
]

=
(

1 + γMIMO
k (Pd,k,j)

2ϵ̃d
√
V (γMIMO

k (Pd,k,j))

)−θ̃dMR

.

(104)

Replacing Eγk

[
e−θdnR(γk(Pd,k,j))

]
in Eq. (9) by the expression

in Eq. (104), we can obtain a closed-form expression for ϵ-
effective capacity of the kth MU ECMIMO

k (θd, ϵd,Pd,k,j) over
the massive-MIMO channel as follows

ECMIMO
k (θd, ϵd,Pd,k,j)

=− 1
nθd

log

ϵd+(1−ϵd)

(
1 + γMIMO

k (Pd,k,j)

2ϵ̃d
√
V (γMIMO

k (Pd,k,j))

)−θ̃dMR


(105)

Employing the optimal transmit power allocation P∗d,k,j for
Eq. (105), we obtain Eq. (59). Second, taking the summation∑Kd

k=1EC
MIMO
k (θd, ϵd,Pd,k,j) for all MUs, which request the

same data item d, and using the estimated data request pmf
frj

(d) of each metaverse data item d by the selected optimal
hypothesis Hj , we obtain the average for the aggregate ϵ-
effective capacity given by

D∑
d=1

frj
(d)

Kd∑
k=1

ECMIMO
k (θd, ϵd,Pd,k,j)

=
D∑
d=1

frj(d)
Kd∑
k=1

− 1
nθd

×

log

ϵd+(1−ϵd)
(

1 + γMIMO
k (Pd,k,j)

2ϵ̃d
√
V (γMIMO

k (Pd,k,j))

)−θ̃dMR


. (106)

The optimization for the aggregate ϵ-effective capacity given
by Eq. (106) is equivalent to individually optimizing each term
frj

(d)
∑Kd

k=1EC
MIMO
k (θd, ϵd,Pd,k,j) in Eq. (106). Moreover,

observing Eq. (44), we obtain that ECMIMO
k (θd, ϵd,Pd,k,j) is

a monotonically increasing function of (1 + γk)/2
ϵ̃k
√
V (γk).

Thus, we can convert the optimization problem in Eq. (58)
into the following optimization problem:(
P∗d,1,j , · · · ,P∗d,Kd,j

)
= arg max

(Pd,1,j ,··· ,Pd,Kd,j)
frj

(d)
Kd∑
k=1

1 + γMIMO
k (Pd,k,j)

2ϵ̃k
√
V (γMIMO

k (Pd,k,j))
, ∀d

s.t.: C1:
Kd∑
k=1

γMIMO
k (Pd,k,j)(1 +Nk,2Pmax)
Nk,1 + γMIMO

k (Pd,k,j)Nk,2
≤ Pmax,

C2: γMIMO
k (Pd,k,j) ≥ 0, ∀k. (107)

To solve Eq. (107), we can formulate a Lagrangian function
L as follows:

L = frj (d)
1 + γMIMO

k (Pd,k,j)

2ϵ̃k
√
V (γMIMO

k (Pd,k,j))

−ϱγ

(
Kd∑
k=1

γMIMO
k (Pd,k,j)(1+Nk,2Pmax)
Nk,1 + γMIMO

k (Pd,k,j)Nk,2
− Pmax

)
(108)

where ϱγ is the Lagrangian multiplier for the constraint
C1 of Eq. (107). Then, using Karush-Kuhn-Tucker (KKT)
conditions, we can get the following equations, respectively:

∂L
∂γMIMO

k (Pd,k,j)
=

frj(d)

2ϵ̃k
√
V (γMIMO

k (Pd,k,j))

[
1− (log 2)ϵ̃k

×
(
1+γMIMO

k (Pd,k,j)
)−2[

V
(
γMIMO
k (Pd,k,j)

)]− 1
2
]

− ϱγNk,1(1 +Nk,2Pmax)[
Nk,1 + γMIMO

k (Pd,k,j)Nk,2
]2 = 0, ∀k, (109)

Kd∑
k=1

γMIMO
k (Pd,k,j)(1 +Nk,2Pmax)
Nk,1 + γMIMO

k (Pd,k,j)Nk,2
− Pmax = 0, (110)

γMIMO
k (Pd,k,j) ≥ 0, ∀k. (111)

Solving Eq. (109), we can obtain the average SNR
γMIMO
k (P∗d,k,j) under the optimal transmit power allocation
P∗d,k,j . Depending on the average SNR γMIMO

k (P∗d,k,j) falling
in the high-regime or low-regime, we need to consider the
following two cases, respectively:

Case 1. If γMIMO
k (P∗d,k,j) ≫ 1, then we have

V
(
γMIMO
k (P∗d,k,j)

)
≈ 1 and by solving Eq. (109), we can

obtain

γMIMO
k (P∗d,k,j)≈

1
Nk,2

[
ϱ∗γ,12

ϵ̃kNk,1

frj
(d)

(1+Nk,2Pmax)

]1
2

−Nk,1
Nk,2

,

(112)

where Nk,1 and Nk,2 are given in Eqs. (54) and (55),
respectively.

Case 2. If 0 < γMIMO
k (P∗d,k,j) < 1, then we have

V
(
γMIMO
k (P∗d,k,j)

)
≈ 0 and by solving Eq. (109), we can

obtain

γMIMO
k (P∗d,k,j)≈

1
Nk,2

[
ϱ∗γ,2Nk,1

frj
(d)

(1 +Nk,2Pmax)
]1

2

−Nk,1
Nk,2

,

(113)

where Nk,1 and Nk,2 are given in Eqs. (54) and (55),
respectively. Combining Eq. (112) and Eq. (113), Eq. (60)
holds. Substituting γMIMO

k (P∗d,k,j) specified by Eq. (112) and
Eq. (113), respectively, into Eq. (110), we can obtain Eq. (61),
completing the proof for Claim 1 of Theorem 5.
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Claim 2: Substituting Eq. (60) into Eq. (57) and substituting
Eq. (57) into Eq. (53), we obtain the optimal power allocation
as shown in Eq. (62), completing the proof for Claim 2. This
completes the proof for Theorem 5. ■
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