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Abstract— We propose a quality-of-service (QoS) driven power
and rate adaptation scheme for multichannel communications
systems over wireless links. In particular, we use multichannel
communications to model the conceptual architectures for either
diversity or multiplexing systems, which play a fundamental role
in physical-layer evolutions of mobile wireless networks. By inte-
grating information theory with the concept of effective capacity,
our proposed scheme aims at maximizing the multichannel-
systems throughput subject to a given delay-QoS constraint.
Under the framework of convex optimization, we develop the
optimal adaptation algorithms. Our analyses show that when
the QoS constraint becomes loose, the optimal power-control
policy converges to the well-known water-filling scheme, where
the Shannon (or ergodic) capacity can be achieved. On the other
hand, when the QoS constraint gets stringent, the optimal policy
converges to the scheme operating at a constant-rate (i.e., the
zero-outage capacity), which, by using only a limited number of
subchannels, approaches the Shannon capacity. This observation
implies that the optimal effective capacity function decreases
from the ergodic capacity to the zero-outage capacity as the
QoS constraint becomes more stringent. Furthermore, unlike
the single-channel communications, which have to trade off the
throughput for QoS provisioning, the multichannel communica-
tions can achieve both high throughput and stringent QoS at the
same time.

Index Terms— Mobile wireless networks, quality-of-service
(QoS), effective capacity, information theory, convex optimiza-
tion, diversity, multiplexing, multicarrier, multiple input multiple
output (MIMO), cross-layer design and optimization.

I. INTRODUCTION

THE INCREASING demand for wireless network services
such as wireless Internet accessing, mobile computing,

and cellular telephoning motivates an unprecedented revo-
lution in wireless broadband communications [1]. This also
imposes great challenges in designing the wireless networks
since the time-varying fading channel has a significant impact
on supporting diverse quality-of-service (QoS) requirements
for heterogeneous mobile users. In response to these chal-
lenges, a great deal of research has been devoted to the
techniques that can enhance the spectral-efficiency of the
wireless communications systems [2]. The framework used
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to evaluate these techniques is mainly based on information
theory, using the concept of Shannon capacity [3]. While
this framework is suitable for an analysis of maximizing
the system throughput, it may overlook the mobile users’
QoS requirements, since Shannon theory does not place any
restrictions on the complexity and delay [4]. Consequently,
to provide QoS guarantees for diverse mobile users, it is
necessary to take the QoS metrics into account when applying
the prevalent information theory to mobile wireless network
designs.

In a companion paper [5], we proposed a QoS-driven
power and rate adaptation scheme for single-input-single-
output (SISO) systems over flat-fading channels. The proposed
scheme aims at maximizing the system throughput subject
to a given delay-QoS constraint. Specifically, by integrating
information theory with the concept of effective capacity [6]–
[9], we convert the original problem to the one with the target
at maximizing the effective capacity, by which the delay-QoS
constraint is characterized by the QoS exponent θ. Using
the effective capacity, a smaller θ corresponds to a looser
QoS guarantee, while a larger θ implies a more stringent
QoS requirement. In the limiting case, when θ → 0, the
system can tolerate an arbitrarily long delay, which is the
scenario studied in information theory. On the other hand,
when θ → ∞, the system cannot tolerate any delay, which
corresponds to an extremely stringent delay-bound. In [5], we
derived the optimal power-control policy which is adaptive to
the QoS exponent θ. The results obtained in [5] show that
when the QoS constraint becomes loose (θ → 0), the optimal
power-control policy converges to the well-known water-filling
scheme [3], [4], where the Shannon (or ergodic) capacity
can be achieved. In contrast, when the QoS constraint gets
stringent (θ → ∞), the optimal policy converges to the total
channel inversion scheme [4], [10] under which the system
operates at a constant rate. Our analyses also demonstrate that
there exists a fundamental tradeoff between the throughput
and the QoS provisioning. For instance, over a flat-fading
Rayleigh channel, the SISO system cannot support stringent
delay QoS (θ → ∞), no matter how much power and spectral
bandwidth resources are assigned for the transmission [5].

As the sequel of [5], in this paper we focus on QoS
provisioning for multichannel communications over wireless
networks. The motivation of this paper is mainly based on
recent advances in physical layer developments, where a
large number of promising schemes can be considered as
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Fig. 1. The system model.

utilizing multichannels to enhance the system performance.
The multichannel communications architecture discussed in
this paper is in a broad sense, which models either multi-
ple diversity branches for diversity combining or a number
of parallel subchannels for multiplexing [11]. Examples of
diversity-based systems include code-division-multiple-access
(CDMA) RAKE receivers which take the advantage of fre-
quency diversity [12] and multiple input multiple output
(MIMO) diversity systems which utilize spatial diversity [13].
On the other hand, examples of multiplexing-based systems
include multicarrier systems employing orthogonal-frequency-
division-multiplexing (OFDM) mechanism [14] and MIMO
multiplexing systems [15].

In this paper, we show that multichannel transmission can
significantly improve the delay-QoS provisioning for wireless
communications. In particular, when the QoS constraint is
loose (θ → 0), the optimal power-control policy also con-
verges to the water-filling scheme that achieves the Shannon
(ergodic) capacity. By contrast, when the QoS constraint
is stringent (θ → ∞), the optimal policy converges to a
scheme which operates at a constant rate (the zero-outage
capacity), where an important observation is that, by using
only a limited number of subchannels, the above resulting
constant rate (the zero-outage capacity) is close to the Shannon
capacity. This implies that the optimal effective capacity
function connects the ergodic capacity and the zero-outage
capacity as the QoS constraint varies. Furthermore, unlike
the single channel transmission scheme which has to tradeoff
the throughput for QoS provisioning [5], the multichannel
transmission scheme can achieve both high throughput and
stringent QoS at the same time. For instance, our simulation
results show that over the Rayleigh fading channel, a multicar-
rier system with 64 independent subchannels can achieve more
than 99% of the Shannon capacity, while still guaranteeing a
constant rate transmission, as if the transmission was over a
wireline network. The above observation demonstrates from
another perspective that the zero-outage capacity approaches
the ergodic capacity as the number of parallel subchannels
increases [16].

The rest of the paper is organized as follows. Section II
describes our general multichannel wireless system model.
Sections III derives the optimal power adaptation for diversity-
based systems. Section IV formulates the optimization prob-
lem for the multiplexing-based systems, and Section V devel-
ops the corresponding optimal solutions. Section VI further
investigates the special cases of our proposed optimal power-
control scheme. Section VII conducts simulations to evaluate

the performance of our proposed scheme. The paper concludes
with Section VIII.

II. THE SYSTEM MODEL

The general multichannel system model over a wireless link
is shown in Fig. 1. We concentrate on a discrete-time system
with a point-to-point link between the transmitter and the
receiver in mobile wireless networks. Let us denote the system
total spectral-bandwidth by B and the mean transmit power
by P , respectively. The power spectral density (PSD) of the
complex additive white Gaussian noise (AWGN) is denoted
by N0/2 per dimension. We assume that AWGN is indepen-
dent identically distributed (i.i.d.) on each subchannel. Unless
otherwise stated, throughout this paper we use “subchannels”
to represent either diversity or multiplexing branches in our
multichannel system model.

First, the upper-layer packets are divided into frames at
the datalink layer, which forms the “data source” as shown
in Fig. 1. The frame duration is denoted by Tf , which
is assumed to be less than the fading coherence time, but
sufficiently long so that the information-theoretic assumption
of infinite code-block length is meaningful [17]. The frames
are stored at the transmit buffer and split into bit streams at
the physical layer. Then, based on the QoS constraint and
channel-state information (CSI) fed back from the receiver,
adaptive modulation and coding (AMC), as well as power
control are applied, respectively, at the transmitter. Depending
on the specific transmission mechanism, the bit streams are
transmitted through N subchannels to the receiver. The reverse
operations are executed at the receiver side. Finally, the frames
are recovered at the “data sink” for further processing. We also
make the following two assumptions:

A1: The discrete-time channel is assumed to be block
fading. The path gains are invariant within a frame’s time
duration Tf , but vary independently from one frame to another.
Making such an assumption is mainly based on the following
reasons. First, the effective capacity expression in a block
fading channel [5, eq. (4)] only depends on marginal statistics
of a service process, which is much simpler than the general
expression given by [5, eq. (3)], where higher order statistics
of a service process are required. Second, more importantly,
through the study of [5] we observe that there exists a simple
and efficient approach to convert the power adaptation policy
obtained in block-fading channels to that over correlated-
fading channels, making the investigation of power adaptation
in block-fading channels more applicable.
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A2: We further assume that given the transmit power, the
specific multichannel transmission scheme, and an instanta-
neous channel gain, the AMC scheme can achieve the Shannon
capacity. Based on the above two assumptions, for each
given power-control policy, the resulting effective capacity
reaches its maximum for all modulation/coding schemes and
all channel realizations.

The wireless channel may be modeled as being frequency-
selective (e.g., in the context of multicarrier OFDM system or
CDMA RAKE receiver-based system), but each subchannel
experiences the flat-fading. Denote the nth subchannel en-
velope process by {αn[i], n ∈ N0, i = 1, 2, ...}, where N0 =
{1, 2, ..., N} represents the index-set of the subchannels and
i ∈ {1, 2, ...} is time-index of the frame. Let λn[i] � α2

n[i] de-
note the path-gain process. Then, the joint probability density
function (pdf) of the path-gains λ[i] � (λ1[i], λ2[i], ..., λN [i])
can be expressed as pΛ(λ) = pΛ1,Λ2,...,ΛN (λ1, λ2, ..., λN ).
Although the scheme discussed in this paper can be applied to
any channel distribution models, we just assume the Rayleigh
channel model for convenience.

Throughout this paper, we also assume that the CSI is
perfectly estimated at the receiver and reliably fed back to the
transmitter without delay. Moreover, the datalink-layer buffer
size is assumed to be infinite. In the following discussions,
since the block-fading channel process is stationary and er-
godic, its instantaneous-time marginal statistics is independent
of the time-index i, and thus we may omit the time-index i
for simplicity.

III. DIVERSITY-BASED SYSTEMS

We first focus on the QoS-driven power adaptation for
diversity-based systems. The key idea of diversity-based sys-
tems is to transmit multiple copies of the same data through
different subchannels. At the receiver side, the multiple copies
are combined together such that the transmission reliability
can be enhanced.

For diversity combining systems, the system performance
is determined by the combined signal-to-noise ratio (SNR)
at the receiver. If we assume that no power control is used,
then the SNR at the receiver combiner can be denoted by
γ[i], which depends not only on the instantaneous channel
condition, but also on the specific diversity scheme used. For
instance, in a maximal-ratio combining (MRC) system with N
diversity branches [18], the SNR at the output of the combiner
can be expressed as γ[i] =

∑N
n=1 Pλn[i]/(N0B), with its

mean γ = P
∑N

n=1 E{λn[i]}/(N0B), where E{·} denotes
the expectation. On the other hand, in a selection combining
(SC) system [18], the SNR at the output of the combiner
is given by γ[i] = Pλmax[i]/(N0B), with the mean γ =
PE{λmax[i]}/(N0B), where λmax[i] = max{λn[i], n ∈ N0}.
Let the pdf of γ[i] be denoted by pΓ(γ). It is well known that
there have been a great deal of research efforts in deriving the
analytical expressions of the pdf pΓ(γ) under different channel
conditions and different diversity combining techniques.

Using diversity combining, the original vector channel (i.e.,
multichannel) transmission problem is converted into a scalar
channel (i.e., single channel) transmission problem. Therefore,
the scheme discussed in [5] can be directly applied to obtain

the optimal power-adaptation policy, where the only difference
is at the pdf pΓ(γ) of the SNR at the combiner output.
Specifically, the optimal policy, denoted by μopt(θ, γ), can
be expressed as [5, eq. (8)]

μopt(θ, γ) =

⎧⎨⎩
1

γ
1

β+1
0 γ

β
β+1

− 1
γ

, γ ≥ γ0

0, γ < γ0

(1)

where we define

β � θTfB

log 2
(2)

as the normalized QoS exponent and γ0 as the cutoff SNR
threshold, which can be numerically obtained by meeting the
following mean power constraint:

∫ ∞

γ0

⎛⎝ 1

γ
1

β+1
0 γ

β
β+1

− 1
γ

⎞⎠ pΓ(γ)dγ = 1. (3)

Note that the threshold γ0 = γ0(θ, pΓ(γ)) depends not only on
the fading distribution pΓ(γ), but also on the QoS exponent θ.
Similar to the conclusion obtained in [5], we can observe that
when the QoS constraint is loose (θ → 0), the optimal power-
control law converges to the water-filling scheme, where the
Shannon capacity can be achieved. On the other hand, when
the QoS constraint is stringent (θ → ∞), the optimal power-
control law converges to the total channel inversion scheme1

such that the system operates at a constant service rate.
Once obtaining γ0, we can derive the optimal effective

capacity, denoted by Eopt
C (θ), as [5]:

Eopt
C (θ) = −1

θ
log

(∫ γ0

0

pΓ(γ)dγ

+
∫ ∞

γ0

(
γ

γ0

)− β
(β+1)

pΓ(γ)dγ

)
. (4)

Given the specific diversity scheme and channel statistics, the
optimal effective capacity given in (4) can be calculated either
by the closed-form expression or by numerical solution.

IV. MULTIPLEXING-BASED SYSTEMS: OPTIMIZATION

PROBLEM FORMULATION

In the following, we consider QoS-driven power adaptation
for multiplexing-based systems. The core idea of multiplexing
systems is to transmit different data streams through different
subchannels. At the receiver side, the parallel data steams
are recovered separately. This transmission strategy can either
combat the frequency selective fading channel (e.g., in mul-
ticarrier systems) or increase the throughput (e.g., in MIMO
multiplexing systems), which are elaborated on, respectively,
as follows.

1In this scheme, the transmission power is proportional to the reciprocal
of the channel power gain.
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A. Multicarrier Systems

Consider a multicarrier system with N subchannels corre-
sponding to N subcarriers. If we assume a constant equal-
power distribution among all subcarriers, then the instanta-
neous transmit power for the nth subchannel at the ith frame,
denoted by Pn[i], is equal to Pn[i] = P/N for all n and i.
The corresponding instantaneous received SNR, denoted by
γn[i], can be expressed as

γn[i] =
λn[i](P/N)
N0(B/N)

=
Pλn[i]
N0B

, for n ∈ N0. (5)

Denote the joint pdf of the SNR vector γ[i] =
(γ1[i], γ2[i], ..., γN [i]) for all subchannels by pΓ(γ) =
pΓ1,Γ2,...,ΓN (γ1, γ2, ..., γN ), and the corresponding power-
adaptation policy for the nth subchannel by μn (θ, γ[i]),
respectively. Then, the instantaneous transmit power for the
nth subchannel becomes Pn[i] = μn (θ, γ[i])P/N . Note that
we limit the mean transmit power by P . Therefore, the power-
control policy needs to satisfy the mean power constraint as
follows:

N∑
n=1

∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
N−fold

μn(θ, γ)pΓ(γ)dγ1 · · ·dγN = N (6)

where

μn(θ, γ) ≥ 0, for all n ∈ N0. (7)

Recall that we assume that the AMC scheme can achieve the
Shannon capacity. Thus, the instantaneous service rate of the
frame i, denoted by R[i], can be expressed as

R[i] =
N∑

n=1

(
TfB

N

)
log2

(
1 + μn (θ, γ[i]) γn[i]

)
. (8)

Thus, from [5, eq. (4)], the effective capacity, denoted by
EC(θ), can be expressed as follows:

EC(θ) = −1
θ

log
(

E

{
e−θR[i]

})
= −1

θ
log

(∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
N−fold

N∏
n=1

[1 + μn(θ, γ)γn]−
β
N

· pΓ(γ)dγ1 · · · dγN

)
(9)

where β is also given by (2). To maximize the effective ca-
pacity, we can formulate an optimization problem as follows:

Eopt
C (θ)

= max
μn(θ,γ),n∈N0

{
−1

θ
log

(∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
N−fold

N∏
n=1

[1 + μn(θ, γ)γn]−
β
N

· pΓ(γ)dγ1 · · · dγN

)}
(10)

subject to constraints given by (6) and (7).

B. MIMO Systems

Let Nt and Nr denote the number of transmit and receive
antennas, respectively, and let C denote the space of complex
numbers. Then, the MIMO multiplexing-based transmission
can be expressed as y[i] = H[i]x[i] +n[i], where y[i] ∈ CNr

denotes the received signal, H[i] ∈ C
Nr×Nt represents the

complex channel matrix, x[i] ∈ CNt stands for the input
signal, and n[i] ∈ CNr is the complex AWGN, where,
without loss of generality, we assume E{n[i]n[i]†} = INr ,
with † denoting the conjugate transpose. It is well known
that for MIMO multiplexing systems, the data streams are
equivalent to transmitting through N parallel singular-value
channels [20], where N = min{Nt, Nr}. Mathematically, the
transmitted signals can be modeled as [20]

ỹ�[i] =
√

λ�[i] x̃�[i] + ñ�[i], for all � ∈ N0 (11)

where {√λ�[i]}N
�=1 are nonzero singular values of the channel

matrix H[i]. Corresponding to our system description in
Section II, {√λ�[i]}N

�=1 and {λ�[i]}N
�=1 can be considered

as the virtual envelope process and path-gain process for
MIMO multiplexing system, respectively. There have been
abundant literatures investigating the joint pdf pΛ(λ) for
λ[i] = (λ1[i], λ2[i], ..., λN [i]). For instance, when the chan-
nels between all transmit and receive antenna pairs are i.i.d.
Rayleigh distributed with unit energy, the pdf pΛ(λ) follows
the well-known Wishart distribution as [20]

pΛ(λ) =

[
N !

(
N∏

i=1

(N − i)!(M − i)!

)]−1

exp

(
−

N∑
i=1

λi

)

·
N∏

i=1

λM−N
i

∏
1≤i<j≤N

(λi − λj)2 (12)

where M = max{Nt, Nr}. Using [5, eq. (4)], we also derive
the effective capacity EC(θ) for MIMO multiplexing system
as follows:

EC(θ) = −1
θ

log
(
E

{
e−θR[i]

})
= −1

θ
log

(∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
N−fold

N∏
�=1

[1 + μ�(θ, λ)λ�]
−β

· pΛ(λ)dλ1 · · ·dλN

)
(13)

where μ�(θ, λ) denotes the power-adaptation policy and β
is also given by (2). To maximize the effective capacity, we
formulate the optimization problem as follows:

Eopt
C (θ)

= max
μ�(θ,λ),�∈N0

{
−1

θ
log

(∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
N−fold

N∏
�=1

[1 + μ�(θ, λ)λ�]
−β

· pΛ(λ)dλ1 · · · dλN

)}
(14)
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subject to the mean power constraint:

N∑
�=1

∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
N−fold

μ�(θ, λ)pΛ(λ)dλ1 · · ·dλN = P (15)

and also the constraint:

μ�(θ, λ) ≥ 0, for all � ∈ N0. (16)

Comparing (10) with (14), we can observe that the two
optimization problems have the same structure except for
certain constant-scalar differences. Therefore, we can develop
a unified approach to derive the optimal power-adaptation
policy. To simplify the presentation, in the next section,
we will mainly focus on multicarrier systems. The detailed
derivations for MIMO multiplexing systems are similar to
those of the multicarrier systems, but omitted in this paper
for lack of space.

C. Independent Optimization

Before getting into details of maximizing the effective
capacity expressed in (10) and (14), we first consider an
alternative strategy, namely, the independent optimization ap-
proach for the following reasons. Since we already obtain
the optimal power-adaptation policy for the single channel
transmission [5], can we directly apply this strategy to multi-
plexing systems? For instance, in a multiplexing system with
N i.i.d. subchannels, one possible solution is to maximize
the effective capacity at each subchannel independently using
the optimal single channel power-adaptation policy. Is this
resulting scheme optimal?

Surprisingly, the answer to the above questions is no. In
fact, this independent optimization approach turns out to be
optimal in maximizing the Shannon capacity (e.g., water-
filling power control for multichannel transmissions). Note
that when θ → 0, the maximum effective capacity approaches
the Shannon capacity. Therefore, this strategy can maximize
the effective capacity as θ → 0. However, as will be shown in
the following sections, the independent optimization approach
is not the optimal policy to maximize the effective capacity
for an arbitrary θ.

To characterize the performance of independent power
adaptation over i.i.d. subchannels, we have the following
proposition:

Proposition 1: Under the same power and spectral-
bandwidth constraints, if we apply an arbitrary power-
adaptation policy to a single channel transmission system, and
apply the same power-adaptation policy to each of N i.i.d. sub-
channels of a multichannel transmission system independently,
then the resulting effective capacities, denoted by EC

(1)(θ) for
the single channel system and EC

(N)(θ) for the multichannel
system, respectively, satisfy EC

(N)(θ) = EC
(1) (θ/N).

Proof: Denote the service rate of the nth subchannel
of multichannel transmission by Rn[i] and the service rate of
single channel transmission by R[i], respectively. When the
channel condition is the same, we have Rn[i] = R[i]/N , ∀n
and ∀i, which is because the nth subchannel only occupies

1/N of the total spectral-bandwidth. Then, the following
equations hold:

EC
(N)(θ) = −1

θ
log

(
E

{
e−θ
�N

n=1 Rn[i]
})

= −1
θ

log
(
E

{
e−θRn[i]

})N

= − 1(
θ
N

) log
(

E

{
e−( θ

N )R[i]
})

= EC
(1)

(
θ

N

)
. (17)

Thus, the proof follows.
Remark 1: Proposition 1 says that as compared to the

single channel transmission, the effective capacity gain of
the multichannel transmission using the independent power
control is 10 log10 N dB. In other words, E(N)

C (θ) is a right-
shifted version of E(1)

C (θ) along θ-axis using the logarithmic
scale, where the difference between these two is 10 log10 N
dB. Over the single channel Rayleigh fading environment, we
prove in [5] that the effective capacity always approaches zero
as θ → ∞. Therefore, according to Proposition 1, by using the
independent power-adaptation policies, as long as the number
of subchannels N is finite, the effective capacity EC

(N)(θ)
also approaches zero as θ → ∞. In the following sections, we
propose a joint optimization approach, which performs much
better than the independent optimization.

V. MULTIPLEXING-BASED SYSTEMS: OPTIMAL

POWER-ADAPTATION STRATEGY

Since log(·) is a monotonically increasing function, for each
given θ > 0, the original maximization problem of (10) is
equivalent to the following minimization problem:

min
μn(θ,γ),n∈N0

{∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
N−fold

N∏
n=1

[1 + μn(θ, γ)γn]−
β
N

· pΓ(γ)dγ1 · · ·dγN

}
(18)

which is subject to the same set of constraints given by
(6) and (7). As derived in Appendix I, we prove that the
objective function in (18) is strictly convex on the space
spanned by

(
μ1(θ, γ), ..., μN (θ, γ)

)
. In addition, it is clear

that the constraints given by (6) and (7) are linear with respect
to

(
μ1(θ, γ), ..., μN (θ, γ)

)
. Therefore, the problem can be

considered as a convex optimization problem which has the
unique optimal solution. Then, using standard optimization
technique, we can construct the Lagrangian function as fol-
lows:

J =

� ∞

0

· · ·
� ∞

0� �� �
N−fold

N�
n=1

[1 + μn(θ, γ)γn]−
β
N pΓ(γ)dγ1 · · · dγN

+ κ0

�
N�

n=1

� ∞

0

· · ·
� ∞

0� �� �
N−fold

μn(θ, γ)pΓ(γ)dγ1 · · · dγN − N

	

−
N�

n=1

κnμn(θ, γ) (19)



4354 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 12, DECEMBER 2007

where all the Lagrangian multipliers {κn}N
n=0 satisfy κn ≥

0. Differentiating the Lagrangian function and setting the
derivative equal to zero [21, Sec. 4.2.4], we obtain a set of N
equations:

∂J
∂μn(θ, γ)

= −βγn

N
[1 + μn(θ, γ)γn]−

β
N −1

·
∏

i∈N0, i�=n

[1 + μi(θ, γ)γi]
− β

N pΓ(γ)

+κ0pΓ(γ) − κn = 0, for all n ∈ N0. (20)

According to the concept of complementary slackness [22,
Sec. 5.5.2], if the strict inequality μj(θ, γ) > 0 holds for a
certain j ∈ N0, then the Lagrangian multiplier κj correspond-
ing to μj(θ, γ) must be equal to zero. Based on this fact, we
consider two different scenarios, respectively, as follows.

A. Scenario-1: The strict inequality μn(θ, γ) > 0 holds for
all n ∈ N0.

Under the conditions of the above Scenario-1, all subchan-
nels are assigned with power for data transmission. Then,
according to the complementary slackness, except for κ0, all
the other Lagrangian multipliers {κn}N

n=1 must be equal to
zero. Thus, (20) reduces to:

[1 + μn(θ, γ)γn]−
β
N −1

∏
i∈N0, i�=n

[1 + μi(θ, γ)γi]
− β

N

=
Nγ0

γn
, for all n ∈ N0 (21)

where we define γ0 � κ0/β, which is a cutoff threshold to
be optimized later. Solving (21), we can obtain the optimal
power-adaptation policy as follows:

μn(θ, γ) =
1

γ
1

β+1
0

∏
i∈N0

γ
β

N(β+1)
i

− 1
γn

, n ∈ N0. (22)

Note that the policy given by (22) is optimal only if
μn(θ, γ) > 0 holds for all n ∈ N0. Specifically, define N1 as
the index-set of SNRs which satisfy this strict inequality as
follows:

N1 �

⎧⎨⎩n ∈ N0

∣∣∣∣∣∣ 1

γ
1

β+1
0

∏
i∈N0

γ
β

N(β+1)
i

− 1
γn

> 0

⎫⎬⎭ . (23)

Then, (22) is the optimal solution only if N1 = N0. Otherwise,
if N1 ⊂ N0, we need to consider the following scenario.

B. Scenario-2: There exist some μn(θ, γ) such that
μn(θ, γ) = 0.

If N1 ⊂ N0, there must exist certain μn(θ, γ) such that
μn(θ, γ) = 0. In other words, some subchannels are not
assigned with any power. In order to identify the set of
subchannels to which the system do not assign power, we
introduce the following lemma:

Lemma 1: If n /∈ N1, then μn(θ, γ) = 0.
Proof: The proof is provided in Appendix II.

Algorithm : QoS − driven power adaptation.

(1) Initialization.

a) Obtain N1, and N1 by (23) and (25), respectively.

b) k = 1.

(2) While (Nk �= Nk−1) do

a) Nk+1 =

���
��

n ∈ Nk

�������
1

γ

N
Nkβ+N
0

�
i∈Nk

γ

β
Nkβ+N

i

− 1

γn
> 0

���
��

.

b) Nk+1 = |Nk+1|.
c) k = k + 1.

(3) Obtain the optimal adaptation policy.

a) Denote N ∗ = Nk and N∗ = Nk , respectively.

b) μn(θ, γ) =

���
��

1

γ
N

N∗β+N

0

	
i∈N∗ γ

β
N∗β+N

i

− 1

γn
, n ∈ N ∗

0, otherwise.

Fig. 2. Algorithm of optimal power adaptation for the multicarrier system.

Lemma 1 states that all the power is assigned to the sub-
channels which belong to N1. Thus, the original minimization
problem of (18) reduces to

min
μn(θ,γ), n∈N1

{∫ ∞

0

· · ·
∫ ∞

0︸ ︷︷ ︸
N−fold

∏
n∈N1

[1 + μn(θ, γ)γn]−
β
N

· pΓ(γ)dγ1 · · ·dγN

}
. (24)

Comparing (24) with (18), we can observe that the two
minimization problems have the same structure except that
the optimization space shrinks from N0 to N1. The above
observation suggests us to solve this minimization problem in
a recursive manner.

Following the same procedure as that used in Section V-A,
if the strict inequality μn(θ, γ) > 0 holds for all n ∈ N1, we
can obtain the optimal power-control policy as follows:

μn(θ, γ) =

⎧⎪⎨⎪⎩
1

γ
N

N1β+N

0

∏
i∈N1

γ
β

N1β+N

i

− 1
γn

, n ∈ N1

0, otherwise

where N1 denotes the number of subchannels belonging to
N1, or, the cardinality of N1, i.e.,

N1 � |N1|. (25)

Otherwise, if not all of the subchannels n ∈ N1 satisfy the
strict inequality μn(θ, γ) > 0, we need to further divide N1

and repeat this procedure itself again. In summary, the QoS-
driven optimal power-adaptation algorithm is described as the
algorithm shown in Fig. 2.

The principle of the optimal power-adaptation algorithm is
to search for the maximum set of SNRs which can simul-
taneously satisfy the strict inequality μn(θ, γ) > 0, i.e., the
maximum set of subchannels which can be assigned power
simultaneously. Once we successfully identify such a set
(Nk = Nk−1 = N ∗), the optimal power-adaptation policy is
obtained. Otherwise, we exclude those undesired SNRs from
current optimization space and repeat this searching procedure
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Fig. 3. The policy regions of different power-adaptation strategies when
the number of subchannels N = 2. The solid lines depicts the result of
joint optimization and the dashed lines depicts the result of independent
optimization. In this example, we set γ0 = 1 and β = 2. The four policy
regions are: (R1) both subchannels are allocated power; (R2) only the first
subchannel is allocated power; (R3) only the second subchannel is allocated
power; and (R4) the system is in outage state.

itself again. If the “while-loop” ends up with (Nk−1 =
Nk = Ø), then no subchannel can satisfy the strict inequality
condition μn(θ, γ) > 0. In this case, we set μn(θ, γ) = 0 for
all n ∈ N0. Thus, the system falls into an outage state and
cannot send any data. Finally, we obtain the optimal resource
allocation policy for multicarrier systems as follows:

μn(θ, γ) =

⎧⎪⎨⎪⎩
1

γ
N

N∗β+N

0

∏
i∈N∗ γ

β
N∗β+N

i

− 1
γn

, n ∈ N ∗

0, otherwise.
(26)

Similarly, for MIMO multiplexing system, we can show that
the optimal power-adaptation policy can be expressed as

μ�(θ, λ) =

⎧⎪⎨⎪⎩
1

λ
1

N∗β+1
0

∏
i∈N∗ λ

β
N∗β+1
i

− 1
λ�

, � ∈ N ∗

0, otherwise

where N ∗ and N∗ can be obtained by a similar algorithm as
shown in Fig. 2.

Given the optimal power-adaptation algorithm, the cutoff
threshold γ0 is determined by meeting the mean power
constraint (6). Note that γ0 is jointly determined by the
QoS exponent θ and channel model distribution pΓ(γ). After
obtaining the cutoff threshold, the optimal effective capacity
can be calculated by (10).

VI. SPECIAL CASES OF THE OPTIMAL POWER CONTROL

A. Two-Subchannel Case (N = 2)

To demonstrate the execution procedure of our proposed
algorithm, let us consider a particular case when the number
of subcarriers N = 2. Using the algorithm described in

Fig. 2, we can see that the joint optimal power-adaptation
policy partitions the SNR-plane (γ1, γ2) into four exclusive
regions by the solid lines as shown in Fig. 3. If (γ1, γ2)
falls into region R1, both subchannels will be assigned with
power for data transmission, where the boundaries of region
R1 is determined by f1(γ1) = γ

−2/β
0 γ

(β+2)/β
1 and f2(γ1) =

γ
2/(β+2)
0 γ

β/(β+2)
1 .2 On the other hand, if (γ1, γ2) falls into

either region R2 or R3, then only one of the subchannels
will be assigned with power. Otherwise, if (γ1, γ2) belongs to
region R4, the system will be in an outage state. As shown
by Fig. 3, the four regions are functions of γ0 and β, which
change as the values of γ0 and β vary. Thus, based on (6), the
cutoff threshold γ0 is determined by satisfying the following
power constraint:∫

R1

[
μ

(1)
1 (θ, γ) + μ

(1)
2 (θ, γ)

]
pΓ(γ)dγ1dγ2

+
∫

R2

μ
(2)
1 (θ, γ)pΓ(γ)dγ1dγ2

+
∫

R3

μ
(2)
2 (θ, γ)pΓ(γ)dγ1dγ2 = 2 (27)

where

μ(1)
n (θ, γ) =

1

γ
1

β+1
0 (γ1γ2)

β
2(β+1)

− 1
γn

(28)

and

μ(2)
n (θ, γ) =

1

γ
2

β+2
0 γ

β
β+2
n

− 1
γn

(29)

for n = 1 and n = 2, respectively. After obtaining γ0 and
using (10), the optimal effective capacity can be derived as
follows:

Eopt
C (θ) = −1

θ
log

( ∫
R4

pΓ(γ)dγ1dγ2

+
∫

R1

2∏
n=1

[
1 + μ(1)

n (θ, γ)γn

]− β
2
pΓ(γ)dγ1dγ2

+
∫

R2

[
1 + μ

(2)
1 (θ, γ)γn

]− β
2

pΓ(γ)dγ1dγ2

+
∫

R3

[
1 + μ

(2)
2 (θ, γ)γn

]− β
2

pΓ(γ)dγ1dγ2

)
. (30)

From the above example, we can find that even for a simple
case of N = 2, the cutoff threshold γ0 and the optimal effec-
tive capacity Eopt

C (θ) generally do not have simple closed-form
solutions. For the case with N > 2, the situation becomes even
more complicated. However, by executing the proposed algo-
rithm, γ0 and Eopt

C (θ) can be easily found through simulations
for any given joint channel distribution pΓ(γ). Thus, in this
paper, except for the trivial case of N = 1, we use simulation
to find γ0 and Eopt

C (θ) for multiplexing-based systems. It
is also worth noting that by using independent optimization
approach, the power-adaptation policy partitions the SNR-
plane (γ1, γ2) into four exclusive regions by the dashed lines
as shown in Fig. 3.

2The functions f1(γ1) and f2(γ1) are obtained by solving the boundary
condition N1 = N0, where N1 is given by (23).
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i.i.d. subchannels in a multicarrier system.

B. Limiting Cases

One of the most significant differences between our pro-
posed QoS-driven power adaptation and most other existing
power-control approaches, such as the conventional water-
filling algorithm, constant power scheme, and the independent
optimization approach mentioned above, is that our proposed
algorithm is executed in a joint fashion. Specifically, the power
assigned to one subchannel depends not only on its own
channel quality, but also on the other subchannels’ qualities,
by which the statistics of the aggregate service rate from all
subchannels can be controlled to meet a certain delay-QoS
requirement. In the following, we further study some limiting
cases of our proposed optimal power-adaptation algorithms.

CASE I: When N = 1, or equivalently, all the subchannels
are fully correlated, i.e., γ1 = γ2 = · · · = γN = γ, the multi-
channel transmission reduces to single channel transmission.
In this case, the joint pdf pΓ(γ) reduces to pΓ(γ). Then, the
optimal power-adaptation policy and power constraint turn out
to be the ones reducing to our previous results [5, eqs. (8) and
(9)], which is expected since single channel transmission is a
special case of our multichannel communications.

CASE II: When the QoS exponent θ → 0, indicating that
the system can tolerate an arbitrarily long delay, the optimal
power-adaptation policy reduces to:

lim
θ→0

μn(θ, γ) =

⎧⎨⎩
1
γ0

− 1
γn

, γn ≥ γ0,

0, otherwise
(31)

for all n ∈ N0, which is the water-filling formula for
multichannel communications, where, as expected, the joint
optimization reduces to the independent optimization. This ob-
servation verifies that the independent optimization approach
is optimal to maximize the effective capacity as θ → 0. Thus,
our QoS-driven power-adaptation scheme converges to water-
filling algorithm when the system can tolerate an arbitrarily
long delay. It also follows that the optimal effective capacity
converges to the Shannon capacity as θ → 0.
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Fig. 5. The optimal effective capacity comparisons for MIMO systems using
the different numbers of antennas.

CASE III: When the QoS exponent θ → ∞, then the
system cannot tolerate any delay. In this case, the cutoff
threshold γ0 → 0 (note that γ0 = κ0/β), which implies
that the system does not enter the outage state almost surely.
Letting θ → ∞ in (26) [i.e., Step (3)-b) in Fig. 2], we obtain
the corresponding optimal strategy as follows:

lim
θ→∞

μn(θ, γ) =

⎧⎨⎩
1

φ
N

N∗
∏

i∈N∗ γ
1

N∗
i

− 1
γn

, n ∈ N ∗

0, otherwise
(32)

where φ � limθ→∞ γ
1

β+1
0 and N ∗ �= ∅ almost surely. The

power-control law given by (32) is just the policy to achieve
the zero-outage capacity of the system [16], [23]. Thus, when
the QoS exponent θ → ∞, the optimal throughput approaches
the zero-outage capacity of the system. In summary, as the
QoS exponent θ increases from zero to infinity, the optimal
effective capacity decreases accordingly from the ergodic
capacity to zero-outage capacity.

Plugging the power-control strategy given by (32) into (8),
we can derive the resulting instantaneous service rate R = R[i]
when θ → ∞ as follows:

R =
N∗∑
n=1

(
TfB

N

)
log2

(
1 + μn(θ, γ)γn

)

=
(

TfB

N

)
log2

⎛⎝ ∏
n∈N∗

⎡⎣ γn

φ
N

N∗
∏

i∈N∗ γ
1

N∗
i

⎤⎦⎞⎠
=

(
TfB

N

)
log2

( ∏
n∈N∗ γn

φN
∏

i∈N∗ γi

)
= TfB log2

(
1
φ

)
. (33)

That is, no matter what the channel realization is, the system
maintains a constant service rate TfB log2(1/φ). This result
is also consistent with our previous work on single channel
transmissions [5], where as the delay-QoS constraint becomes
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Fig. 6. The effective capacity comparisons among different power-adaptation strategies for multiplexing-based systems.
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(c) MIMO multiplexing system.

Fig. 7. The effective capacity gains compared to single channel (SISO) transmissions.

stringent, the optimal power control operates at a constant
service rate. Since the service rate is constant, the effective
capacity is also equal to this constant, i.e.,

lim
θ→∞

Eopt
C (θ) = TfB log2

(
1
φ

)
. (34)

From (34), we can observe that the smaller the value φ
is, the larger the effective capacity Eopt

C (θ) becomes. Our
numerical results show that φ is a monotonic decreasing
function of N . Consequently, when θ → ∞, the optimal
effective capacity Eopt

C (θ) increases as the number of sub-
channels N increases. In contrast, as mentioned in Remark 1
for Proposition 1, by using the independent power-control
policies, as long as the number N of subchannels is finite, the
effective capacity EC(θ) always approaches zero as θ → ∞.
Thus, our proposed joint optimization-based power control
shows significant advantages over all the other independent
power-control strategies as the delay-QoS constraint becomes
stringent. For the MIMO multiplexing system, by using a
similar procedure, we can show that

lim
θ→∞

Eopt
C (θ) = NTfB log2

(
1
ϕ

)
(35)

where ϕ � limθ→∞ λ
1

Nβ+1
0 . From (35), we can observe that

when the QoS exponent θ → ∞, the effective capacity of the
MIMO multiplexing system is almost a linearly increasing
function of the number of subchannels N = min{Nt, Nr},
which implies the significant superiority of employing the
MIMO infrastructure for the QoS provisioning in mobile
wireless networks.

VII. SIMULATION EVALUATIONS

We evaluate the performance of proposed QoS-driven
power-adaptation algorithms by simulations. In this sec-
tion, we mainly focus on three different diversity-based and
multiplexing-based multichannel systems. We first simulate
the multicarrier system which utilizes frequency domain mul-
tiplexing. The fading statistics of different subcarriers are
assumed to be i.i.d. Rayleigh distributed with average SNR
γ = 0 dB. We then simulate two MIMO systems which apply
either diversity combining or multiplexing. For simplicity, we
also assume that the fading statistics between all transmit and
receive antenna pairs are i.i.d. Rayleigh distributed with aver-
age SNR γ = 0 dB per receive antenna. The diversity com-
bining MIMO scheme is Tx-beamforming/Rx-MRC (briefly
termed as “beamforming” in the following for convenience)
since this scheme provides the maximum spectral-efficiency
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among all MIMO diversity schemes. Furthermore, the system
total spectral-bandwidth B is fixed to B = 100 KHz and the
frame duration Tf is set to Tf = 2 ms for all simulations.

Fig. 4 plots the optimal effective capacity of multicarrier
system against the QoS exponent θ with different number of
subcarriers, where for comparison purpose, we also plot the
effective capacity using independent optimization approach.
As mentioned in Section IV, independent optimization of N
subcarriers can right-shift the effective capacity curves for
10 log10 N dB, compared to single-carrier system. Conse-
quently, all the effective capacity curves approach zero as the
QoS exponent θ increases. In contrast, based on our proposed
joint optimization, the effective capacities are significantly
larger than those of independent optimizations. As the QoS
exponent θ increases, the effective capacity approaches a
nonzero constant, where the larger the number of subcarriers,
the higher the effective capacity. For example, by using
only N = 8 i.i.d. subcarriers, the proposed scheme can
achieve more than 90% of the Shannon capacity while still
guaranteeing a constant rate transmission (as θ → ∞).

Fig. 5 plots the optimal effective capacities of MIMO
diversity and multiplexing systems with different numbers of
transmit and receive antennas. We can observe from Fig. 5
that the effective capacity increases as the number of antennas
increases. When M = N = 2, where as defined in the above,
M = max{Nt, Nr} and N = min{Nt, Nr}, the performance
loss of beamforming system compared to multiplexing sys-
tem is virtually indistinguishable. However, as the number
of antennas increases, the diversity gain is limited, but the
multiplexing gain almost linearly increases with N . On the
other hand, we can observe that just using a small number of
transmit and receive antennas, the effective capacity of MIMO
transmission is close to the Shannon capacity as θ → ∞, since
all effective capacities are virtually constants, which implies
that the MIMO system can guarantee stringent QoS with the
service rate near Shannon-capacity.

To compare the impact of different power adaptations on
QoS provisioning, Fig. 6 plots the effective capacities of
multicarrier system and MIMO multiplexing system under dif-
ferent power-control policies. The power-adaptation schemes
shown in Fig. 6 include our proposed optimal optimization,
independent optimization for i.i.d multicarrier system, water-
filling scheme, and equal power distribution scheme. As
expected, our proposed optimal power adaptation achieves
the maximum effective capacity among all power-control
policies. The optimal scheme converges to the water-filling
for a small θ and converges to a constant for a large θ,
where the effective capacity of all other schemes converges to
zero for a large θ, which implies the significant advantage of
our proposed scheme on supporting stringent QoS over other
existing schemes.

Fig. 7 compares the effective-capacity gain of multichannel
(N > 1) transmission with the single channel (N = 1)
transmission. We can observe from Fig. 7 that by using
the optimal power adaptation, our multichannel transmission-
based scheme has the significant advantage over single channel
transmission-based scheme, where the larger the QoS expo-
nent θ, the higher the effective capacity gain. This means that
multichannel transmission can support much more stringent
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Fig. 8. The optimal effective capacity improvements as the function of
the system diversity order compared to the Shannon capacity when the QoS
exponent θ → ∞.

QoS than single channel transmission. In particular, since the
effective-capacity gain at θ → 0 is actually the spectral-
efficiency gain, we can observe that for MIMO diversity
and multiplexing system, the superiority of employing MIMO
infrastructure in terms of enhancing QoS-guarantees is even
more significant than that in terms of improving the spectral-
efficiency.

Finally, Fig. 8 shows how much percentage of the Shannon
capacity that the constant service rate can achieve by using our
proposed optimal power adaptation (as θ → ∞). As expected,
when the number of subchannels increases, the service rate
gets closer and closer to the Shannon capacity. The percentage
of Shannon capacity achieved is approximately proportional
to the diversity order of the system, where for multicarrier
systems, the diversity order is N , but for MIMO systems,
the diversity order is M × N . We can observe from Fig. 8
that when the system diversity order is 64, all multichannel
systems can achieve more than 99% of the Shannon capacity,
while still guaranteeing a constant rate transmission. In this
case, a simple and efficient approach is to just use the fixed
power-adaptation policy of our proposed scheme with θ → ∞,
no matter what the delay-QoS constraint is, since this fixed
power-adaptation policy can support both loose and stringent
QoS requirements with only a slight throughput loss compared
to the optimal Shannon capacity.

VIII. CONCLUSION

We have proposed and analyzed the QoS-driven power
and rate adaptation schemes for diversity and multiplexing
systems by integrating information theory with the effective
capacity. The proposed resource allocation policies are general
and applicable to different fading channel distributions. Our
results showed that as the QoS exponent increases from zero
to infinity, the optimal effective capacity decreases accordingly
from the ergodic capacity to zero-outage capacity. Moreover,
the multichannel transmission provides a significant advantage
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over single channel transmission for the stringent delay-
QoS guarantees. Compared to the single channel transmission
which has to deal with the tradeoff between throughputs
and delay, the multichannel transmissions can achieve high
throughput and stringent QoS at the same time.

APPENDIX I
PROOF OF THE STRICT CONVEXITY OF THE OBJECTIVE

FUNCTION IN EQ. (18)

Proof: To show the strict convexity of the objective
function in (18), we introduce the following proposition:

Proposition 2: If x = (x1, x2, ..., xn) and f(x) =∏n
i=1 x−α

i , where xi > 0 for all i = 1, 2, ..., n and α > 0,
then f(x) is strictly convex on the domain where x =
(x1, x2, ..., xn) is defined.

Proof: It is easy to show that

∂2f(x)
∂x2

k

=
α(α + 1)

x2
k

n∏
i=1

x−α
i (36)

and

∂2f(x)
∂xk∂xl

=
α2

xkxl

n∏
i=1

x−α
i , for k �= l. (37)

Thus, the Hessian of f(x) can be expressed as

∇2f(x) = α

n∏
i=1

x−α
i

[
αyT y + diag

(
1
x2

1

, ...,
1
x2

n

)]
(38)

where y = (1/x1, 1/x2, ..., 1/xn). For any nonzero v =
(v1, v2, ..., vn), we have

v
(∇2f(x)

)
vT

= α

n∏
i=1

x−α
i

[
α
(
vyT

)2
+

n∑
i=1

(
vi

xi

)2
]

> 0. (39)

The Hessian of f(x) is positive definite and therefore f(x) is
strictly convex on the domain where x is defined.

By Proposition 2, since [1 + μn(θ, γ)γn] > 0 always holds,∏N
n=1 [1 + μn(θ, γ)γn]−

β
N is strictly convex on the space

spanned by
(
[1 + μ1(θ, γ)γ1] , ..., [1 + μN (θ, γ)γN ]

)
. Also,

since μn(θ, γ) is just a linear variety of [1 + μn(θ, γ)γn],(
μ1(θ, γ), ..., μN (θ, γ)

)
preserves the convexity of∏N

n=1 [1 + μn(θ, γ)γn]−
β
N [22, Sec. 3.2.2]. Thus,∏N

n=1 [1 + μn(θ, γ)γn]−
β
N is strictly convex on the space

spanned by
(
μ1(θ, γ), ..., μN (θ, γ)

)
. Furthermore, the integral

in (18) is a linear operation, which also preserves the strict
convexity. Thus, the objective function in (18) is strictly
convex on the space spanned by

(
μ1(θ, γ), ..., μN (θ, γ)

)
.

APPENDIX II
PROOF OF LEMMA 1

Proof: Without loss of generality, we assume N1 =
{γ1, γ2, ..., γN1}, where N1 < N . Let us denote the comple-
mentary set of N1 by N 1, i.e., N 1 = {γN1+1, γN1+2, ..., γN}.
To prove Lemma 1, we need to show that for any nonempty
subset C ⊆ N 1, there is no policy μn(θ, γ) such that
μn(θ, γ) > 0 for all n ∈ C ∪ N1.

If C = N 1, we already know there is no such a policy, due
to the condition of Scenario-2.

Otherwise, if C ⊂ N 1, without loss of generality, we assume
C = {γN1+1, γN1+2, ..., γN1+G}, where 1 ≤ G ≤ N −N1−1.
Suppose there exists such a policy, from Section V-B we know
that the policy can be expressed as

μn(θ, γ) =

⎧⎨⎩
1

γ
N
ω
0

∏N1+G
i=1 γ

β
ω

i

− 1
γn

, n ∈ C ∪ N1

0, otherwise
(40)

where ω = (N1 + G)β + N . In particular, we have
μN1+G(θ, γ) > 0 in (40), which is equivalent to the following:

γN1+G >

(
γN
0

N1+G−1∏
i=1

γβ
i

) 1
(N1+G−1)β+N

. (41)

On the other hand, from the definition of N1, we know

1

γ
1

β+1
0

∏N
i=1 γ

β
N(β+1)
i

≤ 1
γn

(42)

where n ∈ {N1 + 1, N1 + 2, ..., N}. Plugging n = N1 + G
into (42), we get

γN1+G ≤
⎛⎝γN

0

N1+G−1∏
i=1

γβ
i

N∏
j=N1+G+1

γβ
j

⎞⎠
1

(N−1)β+N

. (43)

Furthermore, letting n = (N1 +G+1), (N1+G+2), ..., N in
(42), respectively, we obtain a set of (N−N1−G) inequalities.
Multiplying the left-hand sides and right-hand sides of these
(N − N1 − G) inequalities, respectively, we generate a new
inequality as follows:

N∏
j=N1+G+1

γβ
j ≤

(
γN
0

N1+G∏
i=1

γβ
i

) β(N−N1−G)
ω

. (44)

Finally, substituting (44) into the right-hand side of (43) and
re-arranging the expression, we get

γN1+G ≤
(

γN
0

N1+G−1∏
i=1

γβ
i

) 1
(N1+G−1)β+N

(45)

which contradicts (41). Therefore, such a policy does not exist.
The proof follows.
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