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Abstract

Flow control mechanisms are essential for the efficient and stable operation of store-and-forwar d
networks . New transport protocols, such as VMTP and NETBLT, intend to use rate-based flo w
control . We present a model in which a network with connections subject to rate-based flow control
is considered as a dynamical system, i .e ., a set of coupled differential equations . We consider
two scenarios : (1) a single connection over a long delay path involving a bottleneck ; and (2 )
two connections with different roundtrip delays that share a common bottleneck . For a recentl y
proposed control scheme, we obtain closed-form solutions for the dynamical model in both transien t
and steady state regimes, and evaluate appropriate performance measures . We compare our result s
with those obtained by others using experimental and simulation approaches .

1 Introduction

A computer network typically uses store-and-forward routing to transfer data packets betwee n
users at geographically distributed nodes . Packets generated by a source node are delivered t o
their destination by routing them via a sequence of intermediate nodes . The traffic flowing throug h
an intermediate node depends upon the number of source-destination pairs that are routed throug h
that node and the rates at which these sources introduce packets into the network . If the source
rates are increased without constraint, queues of packets waiting to be routed build up at bottlenec k
nodes . Eventually, the buffering capacity of these nodes is exceeded and packets are dropped ,
resulting in low throughput and high delay .

Flow control mechanisms attempt to avoid such breakdown by imposing constraints on th e
source. Two types of constraint are used . In rate-based flow control, a limit is placed on the rate
at which the source can send packets [4, 2] . In window-based flow control, at any time there is a
limit to the number of outstanding packets at the source, but there is no constraint on the rate a t
which packets can be sent [3] .

We can formulate the objective of flow control as follows : To maximize the throughput for th e
source, while minimizing packet loss due to buffer overflows . Consider a source-destination pai r
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whose packets are routed via intermediate nodes . Let p i be the service rate offered by intermediat e
node i to packets of this source- destination pair . For two nodes i and j, pi and pa can differ for
several reasons : the total traffic through them may differ because they support different source -
destination pairs, their hardware may differ, etc . Assuming that the network is in steady-state ,
the ideal flow control policy would be to limit the source rate to ,a = min i(pi ) [6, 2, 4] . Then, no
packet is lost and the bottleneck node is utilized 100% . A higher rate would result in packet loss ,
and a lower rate in underutilization .

In a real network, however, the p i 's vary with time because connections (i .e ., source-destination
pairs) are constantly set up and terminated, and because sources do not maintain constant dat a
rates . Consequently, the rate, as well as the identity of the bottleneck node can change with time .
The source must be informed somehow of such a change, and a control mechanism should adap t
the source rate to the change in the bottleneck rate in minimum time, losing a minimum number
of packets in the process . We will look at different feedback and control mechanisms below .

Because the feedback from intermediate nodes reaches the source only after some delay r, th e
two objectives of adapting in minimum time and losing a minimum number of packets are in con-
flict : If the bottleneck rate decreases at time t, then the source keeps sending at a rate higher than
the bottleneck can handle until time t + r, resulting in a large queue at the bottleneck . In order
to minimize packet loss, the bottleneck queue size at time t would have to be minimized . If the
bottleneck rate increases at time t, then the bottleneck is underutilized until time t + r unless a n
appropriately large queue size existed at time t .

Comparison of different flow control algorithms

One of the most important characteristics of a flow control mechanism is its feedback : What
information does the source obtain about the state of the intermediate nodes . For example, th e
source could be informed of the queue sizes at each intermediate node along the path toward it s
destination . A less ambitious variation of this is the scheme proposed by Ramakrishnan and Jai n
[13], in which each data packet has a reserved bit initially set to 0 . The bit is set to 1 by a n
intermediate node if the average queue size at that node is greater than 1 . Thus, even if only
one node among all intermediate nodes has an average queue size greater than 1, the destinatio n
receives data packets with bits set to 1 . The destination then sends this information back to th e
source in the acknowledgement packets . Upon receipt of an acknowledgement, the source decreases
its window size by a multiplicative factor if the bit is set to 1 . Otherwise, it increases the windo w
size linearly . Clearly, the objective here is to keep the bottleneck node 100% utilized and wit h
no data packet waiting for service . Thus, timeouts and messages losses should be very infrequen t
occurrences here .

The situation is different in TCP, where the feedback consists solely of the arrival times o f
acknowledgement messages . Jacobson noted that, assuming the network is in steady-state, th e
interval between the reception of successive acknowledgement packets equals the bottleneck servic e
time [7] . Thus, the ideal policy in steady-state would be to send a data packet whenever a n
acknowledgement is received . However, this is not appropriate in a dynamic environment; for
example, the source would not be able to adapt to an increase in the bottleneck service rate . The
only way to adapt to this situation is to send at a rate higher that the bottleneck rate . Jacobson
describes a scheme in which the window size increases with time, either exponentially (if it i s
currently less than half the size it was before the last timeout) or linearly (otherwise) . At every
timeout, the window size is reset to 1, the idea being that a packet loss means that the bottlenec k
queue is overflowing . It is clear that in this scheme, the bottleneck queue size is maintained a t
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higher levels than in [13] and packet losses and timeouts are more regular occurrences . A good
round trip delay estimate is an essential part of this scheme .

Observe that in both schemes described above, the send window size is controlled at the source .
NETBLT [4, 10] and VMTP [2] are two protocols where the data transmission rate is intended t o
be controlled by adjusting interpacket gaps . However, it is not clear from the literature how thes e
are adjusted or what the feedback would be in a wide-area network .

Three basic approaches, namely experimental, simulation, and analytic approaches, have bee n
taken to evaluate the performance of flow control mechanisms . Jacobson [7] analyzed the perfor-
mance of his window mechanism by implementing it on a network and observing traces of variou s
parameters characterizing network congestion, delays, etc . We have used an instrumentation of
TCP to examine the effect of clock resolution and the use of different roundtrip delay estimator s
[14] . Ramakrishnan and Jain [13] studied the performance of their window flow control mechanism
with a deterministic simulation model of a connection in a wide-area network . Each link along
the connection is characterized by a fixed service time. The simulation model is run to obtain th e
time-dependent behavior of the window size for various increase and decrease algorithms, feedbac k
schemes, etc . In [1], we presented a Markov model of the performance of window protocols ove r
channels whose delay and loss characteristics depend significantly upon the number of messages i n
transit . Such channels are typical of most store-and-forward networks, including the Internet . We
solved the Markov model numerically to obtain performance measures such as throughput, respons e
time, congestion in the channels, etc .

Most of the analytic models reported in the literature pertain to the steady-state analysis o f
stationary queuing systems . However, the analysis of control mechanisms that dynamically regu-
late data flows according to changing network conditions requires understanding of the dynamic ,
i .e ., time-dependent network behavior . In this paper, we consider deterministic analytic models o f
connections with rate-based flow control in a wide-area network . We show how to solve the model s
to obtain closed-form expressions describing the time-dependent behavior of the sending rate an d
the queue size at the bottleneck in both steady state and transient regimes .

Outline of the paper

We model a network with connections subject to rate-based flow control as a dynamical system ,
i .e ., a set of coupled differential equations involving the source rates and the queue sizes . In
Section 2, we formulate a dynamical model of a single connection . The source-to-destination path
is assumed to traverse a sequence of intermediate nodes, one of them being a bottleneck. The
source rate is controlled with a linear increase/exponential decrease algorithm . We also present
performance measures regarding the source rate and the bottleneck queue size for both transien t
and steady-state regimes .

In Section 3, we obtain analytical closed-form solutions for the transient and steady-state be-
havior of this dynamical model . Following a finite duration transient behavior, the bottleneck queu e
size and the sending rate at the source stabilize into a steady-state limit cycle . We give closed-for m
expressions for the performance measures . Our results show that good steady-state performanc e
can be achieved at the expense of long transient duration ; i .e ., there is a tradeoff between rapid
relaxation to steady state and the efficiency of that steady state . We also show that it is importan t
to take the current roundtrip delay into account when adjusting the sending rate at the source .

In Section 4, we formulate a dynamical model of two connections with different roundtrip delay s
that share a common bottleneck . Both connections use the same rate-based flow-control schem e
as in Section 2 . We present numerical solutions of this dynamical model . Our results show that i f
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sources have identical rate adjustment algorithms, their sending rates converge to fair values ; i .e . ,
both users evenly share the bottleneck 's bandwidth irrespective of differences in their roundtri p
delays . We also show the importance of choosing an appropriate initial send rate .

In Section 5, we point out directions for extending this work .

2 Dynamical Model ofa Single Connectio n

We consider a connection between a source and a destination, where the source and the destinatio n
are on different high-speed local area networks that are connected by a slower, wide-area network .
In this very common scenario, unless care is taken the source can very easily congest the low-spee d
network [7] . We model this by representing the slower network by a single bottleneck node and th e
high-speed networks by fixed delays as shown in Figure 1 .

The parameters describing the connection are :

q(t) : the queue size at time t at the bottleneck

u

	

the bottleneck service rat e
the propagation delay from the source to the bottlenec k

rR,

	

the propagation delay from the bottleneck to the source via the destinatio n
(including processing time at the destination )

A(t) : the rate at which data is sent by the sourc e

q( t ) tz
A(t)	 TF

	

0

Figure 1 : Model of a single connectio n

In this model, we consider A(t) and q(t) to be real-valued continuous variables . There are
several reasons for this choice . First, it allows the adjustments to A(t) to be simply described by
specifying A(t) (we use A(t) to denote d.\(t)/dt) . Second, the dynamical behavior of the model can
be conveniently described in terms of coupled differential equations involving A(t), A(t), q(t) and
q(t) . Third, this is a standard formulation of control theory ; we intend to make use of the result s
and insights available in that field . Continuous real-valued variables can also be thought of as firs t
order fluid approximations of stochastic processes [9] . For example, q(t) can be thought of as th e
expectation of a stochastic process Q(t) which represents the number of packets present at time t

at the bottleneck [9, 11] .

We now derive the equations describing q(t) and A(t) in terms of q(t) and A(t) . Observe tha t
data sent by the source at time t arrives at the bottleneck at time t + rF . Thus, the data arrival
rate at the bottleneck at time t is A(t IT) . If q(t) > 0, data departs from the bottleneck at rate i .

If q(t) 0, data departs at the same rate as it arrived, i .e ., A(t — rF) . This leads us to the following
equation for q(t) :

=

	

0

	

ifq(t)=OandA(t—rF)—EL< 0
q(t)

	

A(t — rF) — tc

	

otherwise
(1 )
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We now derive the equation for A(t) . We assume that, at every time t, a bit value indicatin g
whether q(t) > 0 or q(t) = 0 is fed back to the source from the bottleneck node using a mechanis m
similar to that described in [13] . This bit indicates how to adjust A(t) as follows : A(t) is decreased
exponentially with time constant /3 if q(t -- rrt) > 0 at time t — rR, , i .e ., the bottleneck was 100 %
utilized . A(t) is increased linearly with rate a if q(t — TR) = O. Thus, we get the following :

Clearly, the situation of 100% bottleneck utilization and no waiting delay corresponds to A(t) _
µ and q(t) = 0 . Observe that A(t) is changed not in response to acknowledgement packets sent b y
the destination node, with increase and decrease done on a per-packet basis . Rather, the feedback
information merely indicates how to adjust A(t), i .e ., the rate is increased linearly in time unti l
information is received that indicates to switch to exponential decrease . In a system where dat a
would come in finite-size discrete packets, adjustments to A(t) would not be made continuously .

In our model, adjustments to .(t) are made based on the instantaneous value of q(t — rrt) . In
recently proposed schemes, the bottleneck node computes an average q of recent values of the queu e
size to eliminate short-lived transient variations of q(t) . The feedback information then indicate s
whether q > 0 or q = O . We will not consider such a mechanism here .

Performance measure s

We now define performance measures for the dynamical behavior of the system modeled above .
As was mentioned in Section 1, it is important to consider measures that characterize bot h
steady-state and transient behavior . The system described by our model turns out to have a n
initial transient of finite duration, which we shall denote by to, followed by a steady-state limi t
cycle with a period that we shall denote by T .

We consider the following measures in steady-stat e

gmax

	

: maximum value of q(t )
: average of q(t )

a(q)

	

: standard deviation of q(t )
A —

	

: average of .\(t) — µ
a(a — µ) : standard deviation of A(t )

where average and standard deviation of a function f (t) are defined as follows :

f = ~ fO+tO f(t)d t

0- 2(f) = T f o+t0 [f( t ) - f] 2 dt

We characterize the transient behavior by its duration time to . We could consider measures
similar to those defined above for steady-state, such as the time average o f

o
° q(t)dt of q(t), bu t

they do not prove very interesting as we shall see below .

3 Analytic Solution of the Single Connection Mode l

We now solve equations (1) and (2) of the single connection model, which are repeated below :

A(t)

	

a

	

ifq(t—TR)= 0
t) =

	

_ apt ifq(t---rR)>0

(2)
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0

	

ifq(t)=0andA(t—rF)—µ< 0
q(t) =

— A(t — rF) —

	

otherwise

a(t)
ifq(t—Ta)= 0

ifq(t1R)> 0

The evolution of a(t) and q(t) is depicted pictorially in Figure 2 . We now explain it . Assume
that the source starts sending data at time t = 0 at a rate A(0) < µ . A(t) increases at rate a an d
reaches the value µ at time to = pia . Only now is a(t) large enough to create a queue buildu p
at the bottleneck . Because of the delay rF, the queue at the bottleneck starts building up at tim e
to+rF . Therefore, the source detects the existence of the queue at the bottleneck only at time to+r ,
where the round trip delay r = TF + TR. Thus, A(t) increases linearly from t = 0 to t = ti = to + T ,

at which point A(t 1 ) = µ -p ra .

t1

	

t2

	

t3

	

t4

	

t 5

TF TR

	

TF TR

Figure 2 : Analytic behavior of a(t) and q(t )

At time ti , A(t) starts decreasing . However, the queue keeps increasing since A(t) remains highe r
than for some time . Let t 2 be the time when A(t) again equals µ . Then q(t) reaches its maximu m
at time t 2 + rF, after which it starts decreasing . We define t 3 as the time at which .\(t) has been
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lower than it long enough to drain out the extra packets introduced between to and t 2 (this time
is evaluated below) . q(t) becomes zero at time t3 + rF. Meanwhile, A(t) keeps decreasing until th e
source detects, at time 14 = t3 + r, that the queue size at the bottleneck is down to 0, at whic h
point it starts increasing again .

Let t 5 be the time at which A(t 5 ) = µ . Observe that A(t 5 ) = A(to) and q(t 5 ) = q(to), i .e ., the
state of the system at time t 5 is identical to that at time to . Therefore, the steady-state behavio r
of both A(t) and q(t) is cyclic with period T = t 5 - to . The transient duration to is then to = µ/a .

To summarize, the transient behavior of the system is defined by :
A(t) = at

}0ttO
q(t) = 0

and the steady-state behavior is defined by :

A(t) —

	

(I2 + ar)exp(--(t -- t i — nT ))

	

t 1 + nT < t < t4 + nT
a(t-t 4 -nT)+A,n, in

	

14 +nT<t<t 1 +(n-F1) T

q(t) =
fto( A ( t rF) 12)dt

Example evolutions of q(t) and a(t) are shown in Figure 3 ; the periodic behavior of q(t) and A(t )
is obvious .

Performance measures

From the steady-state solution, we now derive closed-form expressions for the values of gmax ,

Amax, and the period T = t 5 -- to .

We first consider Amax . Since A(t) increases linearly at rate a for t < t1 , it follows that

A max = u + ar

The maximum value gmax of the bottleneck queue is given by gmax = fto2 (A(t) - µ)dt . Since

A(t) = (µ + ar)exp(-yt - t 1 )) for t 1 < t < t 2 , it follows that

gmax =
a 2

+ f
t2-t1

((l2 + ar)e T t -- lc)d t

where t 2 - t 1 is the solution of exp(--(t 2 - t i )) = t27(µ + ar). We obtai n

2

	

gmax = a	 2+ a~r +~QlIl
([tTar )

We now compute the period T - t 5 -to . Observe that T = (t1--to)+(t3-t1)+(t4-t3)+(t5-t4) =
r+(t3—ti)+r+(1-2-Amin)/a= 2r+(t3--t1)+(µ-Amin)/a . Since min = (/2+ar)exp(l(r+t 3 -t i )) ,
the problem reduces to that of finding 1 3

	

However, t 3 is defined such tha t

J
3

	

r 2

	

3 1

(A(t) -- µ)dt
= a + r -

J
After some algebraic manipulations, we obtai n

13 — t 1 = /3ROOt(	 	 arl
)µ~-

l~

ar_~2fj(µ~-a T

((µ + ar)e - s 2 - µ)fit = 0
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where Root(a, b) denotes the unique real solution of 1 — e`x = as — b, with 0 < a < oo and 0 < b .
We have from above

T = 2r + (t3 — t1)+ ~— Ami n

This concludes the computation of T .

First order approximation

We now consider a first-order approximation to our original model . Specifically, we consider a
system model in which A(t) is adjusted as follow s

A(t) —

	

a

	

if q(t — rR, ) = 0
ifq(t—rR )> 0

This amounts to approximating the exponentially decreasing function (p + ar) exp(— (t — t1 )) by
the linearly decreasing function (p + ar) — ~(t — t1) . Then, assuming that Amin > 0, we obtain :

„max

	

= u + ar

max

	

= a2(1-I a)
T

	

= r ( 1 +)( 1 + Q++ p
— 2( ++ -1 )

Setting a/3 =

For convenience and clarity of the presentation, we eliminate the parameter )@ by assuming ,
throughout the rest of the paper, that coefficients a and /3 satisfy the relation a/3 = p . This mean s
that, near the fixed point )(t) = p, q(t) = 0, the rate at which A(t) increases is equal to the rat e
at which it decreases .

We can then simplify the results derived above . For convenience of reference, we now presen t
the values of the performance measures obtained with the first order approximation . Assumin g
that A min > 0, i .e ., p > ar(1 +

	

we have :

p+ ar
ar e
27(2+ ' )

aT

	

(3 )

We will see later that these approximations for gmax, T, and a are quite accurate . We observ e
that the duration of the transient behavior given by to = µ/a is inversely proportional to a.
Therefore, steady-state is reached quickly if a is large . However, a large value of a implies a larg e
value of q,,,,ax and thus a higher probability of packet loss at the bottleneck due to buffer overflow .
In addition, equation (3) indicates that the average steady-state sending rate A moves farther away
from the ideal value 1 as a increases . Therefore, a tradeoff has to be found between a rapi d
relaxation to steady-state and the efficiency of the steady-state behavior . This is consistent with
the results reported in [13] .

In a real network, r varies with time . Therefore, keeping gmax at_a given value requires a t o
vary with time such that a is proportional to 1/r2 . Similarly, keeping A at a given value requires a

max
gmax
T
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to vary with time as 1/r . Which objective is more important will dictate how a should vary wit h
time . But in any case, these results indicate the need for a time-varying value of a .

Example behaviors of a single connectio n

We now present example behaviors of the single-connection model described above . We fix th e
bottleneck rate at u = 1s~ 1 , and we assume that rF = rR so that the round trip propagation delay
r = 2rF . Thus, the free parameters are a and r .

We fix r = 20s and consider different values of a . Figure 3(a) shows the evolutions of A(t )
and q(t) for a = 1/40 . Figure 3(b) shows the evolutions of A(t) and q(t) for a = 1/160 . In each
case, we solve the differential equations for t in the range 0 < t < t y,,,a , = 400s . In Table 1, w e
show the values of the performance measures (defined in Section 2) for different a's . We show th e
measures obtained by solving the differential equations and the measures obtained with the firs t
order approximation .

0 300100 200
(b)

400
time

400
time

0

	

100

	

200

	

300
(a)

Figure 3 : Evolutions of A(t) and q(t) for r = 20s: a = 1/40 in part (a) ; a = 1/160 in part (b )

exact measures approximate measures

	

transient

a g7na~; q - T gmax A T t o

1/10 29 10 .8 0.75 99 .7 40 11 .7 -0 .4 136 .6 1 0
1/20 16 .1 5 .6 0 .75 104 .4 20 5 .8 0 .29 136 .6 20
1/40 8 .8 2 .8 0 .80 114 .4 10 2 .9 0 .65 136 .6 40
1/80 4.65 1 .4 0 .87 123 .4 5 1 .45 0.82 136 .6 80
1/160 2 .4 0 .7 0 .92 129 .3 2 .5 0.73 0 .91 136 .6 16 0
1/320 1 .2 0 .36 0 .96 132 .7 1 .25 0 .37 0 .96 136 .6 320
1/640 0.62 0 .18 0 .98 134 .5 0.625 0 .183 0 .98 136 .6 640

Table 1 : Performance measures versus a for r = 20 s
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As expected, we observe that small values of a provide good steady-state performance, but lon g
transient duration . We verify that the analytical results obtained with the first order approximatio n
are quite accurate for u > ar(1 + i .e., a < 1/50. In particular, the values in Table 1 ar e
consistent with the fact that gmax is proportional to a and A — /2 decreases as a decreases .

We now fix a = 1/40 and consider different values of r . Figure 4(a) shows the evolutions of
A(t) and q(t) when r = 20s for 0 < t < tmax/2 = 400s and r = 30s for tmax/2 < t < t,,, ax = 800s .
We observe that max and A — µ increase as r increases, and it can be shown that the first order
approximation is again accurate when ,u > ar(1 + ~), i .e ., r < 17 .

Recall that, in the approximation, qma, is proportional to r 2 . Therefore, gmax should be constant
as r varies if a varies proportionally to 1/r2 . This is clear is Figure 4(b), which shows the evolution s
of A(t) and q(t) for a = 10/r- 2 , i .e ., a = 1/40 and r = 20s for 0 < t < tmax/2, and a = 1/90 and
r = 30s for tmax/2 < t < tmas .

q(t)

16_

q (t )

16_

i1

	

I I

	 1	 I _,r	 I	 ;	

8 -

0

	

200

	

400

	

600

	

800
(a)

	

time
200

	

400

(b )
0 600 800

time

8 -

0

A(t)

1

0

Figure 4 : Evolutions of A(t) and q(t) with r = 20s for 0 < t < 400s and r = 30s for 400 < t < 800s :
a = 1/40 in part (a) ; a = 1/40 for 0 < t < 400s and a = 1/90 for 400 < t < 800s in part (b)

4 Dynamics of Two Connections Sharing a Bottlenec k

In this section, we consider the situation where two rate-based flow controlled connections share a
common bottleneck as shown in Figure 5 . The parameters describing the system are as follow s

q(t)

	

: the queue size at time t at the bottleneck
: the bottleneck service rat e

71F, 7-1R : the forward and reverse propagation delay for connection 1
r2F, r2R : the forward and reverse propagation delay for connection 2
A 1 (t)

	

: the rate at which data is sent by source 1
X 2 (t)

	

the rate at which data is sent by source 2
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T1 R

A1(t)

	

T1.F

	

q( t ) 1i

A 2( t )

	

T2F

T2 R
a

Figure 5 : A model of two connections sharing a bottleneck node

We now derive the equations describing the dynamical behavior of this system . We proceed as
in Section 2 . The arrival rate at the bottleneck at time t is now al(t .-T1F) + A2(t – T2F) . Therefore ,
q(t) is given by the following equations

f 0
q( t ) =

	

a l (t — T1F) + A2(t — T2F) —

if q(t) = 0 and A1(t — T1F) + A2(t — 7-2F) < t G

otherwise

Assuming that the sending rate of each source is controlled in the way described in Section 2, w e
have the following equations for a l (t) and A 2(t )

a l

	

if q(t – T1R) = 0
–alal(t)/y if q ( t T1R) > 0

a 2

	

if q(t — T2R) = 0
– a 2 A 2( t)/A if q(t – T2R) > 0

We observe that the two sources interact via their feedback q(t) : the feedback used by sourc e
i depends dynamically on the behavior of A 3 (t) . Therefore, we expect the dynamics of A,(t) t o
depend on A 2 (t) .

In the remainder of this section, we consider a scenario in which source 1 starts sending dat a
at time t = 0 and source 2 starts sending data at a time t c > 0 when source 1 has already reached
steady-state . We expect that the transient behavior initiated by source 2 will last for a finite
duration to . Thus, at time to + 4, both connections will have settled into a steady-state limit cycle .
Henceforth, the term `steady-state' applies to the interval t > to + t c and the term `transient' t o
t c <t<to+t c .

The ideal steady-state behavior would be that each source sends at an average rate µ/2 . There -
fore, the performance measures we consider in steady-state are the averages A and A2, the standar d
deviations a(A 1 – u/2) and a(A 2 – JO), and the maximum queue size ns,„ We characterize the
transient behavior by its duration to and the maximum queue size gtma„ achieved during the tran-
sient phase .

A 1 (t) =

f
l



Example behaviors

We now present example behaviors of the above dynamical system . They were obtained by
numerically solving the differential equations describing the system over the range 0 < t < tmax =
800s . We fix the bottleneck rate tc = 1s —1 and the time t, at which source 2 starts sending data a t
to = t ,naa/4 = 200s . Throughout the rest of this paper, we fix we fix 7- 1F = T1R = 10s and a l = 1/40
for connection 1 . For connection 2, we assume 72F = r2R . Thus, a2 and r2 = T2F + T2R = 272F are
the free parameters of the system . In the next three subsections, we examine the behaviors for the
following variations of a2 and r2 : (a) different a 2 's with r2 = rl fixed, (b) different r2 's with a2
fixed and (c) different initial sending rate for source 2 with a 2 and r2 fixed .

Different a 2 's with 7 2 = T1

We fix 72 = rl = 20s. Figure 6(a) shows the evolutions of )1(t), A 2(t) and q(t) for a2 = 1/20 .
Figure 6(b) shows the evolutions of a 1 (t), \2(t) and q(t) for a2 = 1/160 .
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Figure 6 : Evolutions of a l (t), A 2 (t) and q(t) for 72 = 20s: a2 = 1/20 in part (a) ; a2 = 1/160 in
part (b)

Consider the variations of A 2 (t) . We observe a phenomenon similar to that described in Sectio n
3 . Namely, a high value of a 2 results in a short transient duration and a large value of gmas .
However, the dynamics of the system is complicated by the interaction between the two connections .
In Table 2, we show the values of the performance measures defined above for different a 2 's . We
observe that, if a 2 al , then the connections settle in a steady-state limit cycle in which they d o
not evenly share the bottleneck bandwidth. This unfair behavior is particularly clear when a 2 i s
larger than a l .

Recall that the analytical results in Section 3 suggested that, if r varies with time, then a
should vary with time as 1/r or 1/T- 2 . We now realize that this may lead to unfair sharing of th e
bottleneck bandwidth . Fair sharing would require a more elaborate mechanism such as the selective
feedback mechanism described in [12] .
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queue size

	

connection 1

	

_connection 2

Q' 2 gmar a (tt/2 -- A1) -A 2 cr (,u/2 m A 2 )
1/2 123 .0 0 .148 0.15 0 .74 2 .14
1/10 40 .2 0 .308 0 .197 0.52 0 .76
1/40 22 .3 0 .417 0 .265 0.417 0.265
1/160 13,8 0 .46 0 .28 0.413 0 .07
1/640 11 .3 0 .48 0 .28 0 .417 0,02

Table 2 : Performance measures versus a2 for r2 = 20s

Different r2's with a2 fixed

We fix a2 = 1/40 and consider different values of r2 . Figure 7(a) shows the evolutions of A I (t) ,
A 2 (t) and q(t) for r2 = 10s . Figure 7(b) shows the evolutions of ) 1 (t), )2(t) and q(t) for r2 = IS .
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Figure 7 : Evolutions of Al (t), A 2 (t) and q(t) : r2 = 10s in part (a) ; 72 = is in part (b)

The figures clearly show that the rate adjustments made by source 1 and source 2 are no t

independent . In particular, we observe that, in steady-state, ) 1 (t) and A 2 (t) oscillate with equal
frequency. As may be expected, the phase difference, i .e ., the time difference between a peak of

A 1 (t) and the corresponding peak of ) 2 (t), is equal to (rl r2)/2 .

We observed above that the connections settle in a steady-state limit cycle in which they evenl y

share the bottleneck bandwidth if a l = a2 and r1 = r2 . Numerical solutions of the differential

equations of the system appear to indicate that this result holds even if Ti 72 . This suggests
that connections with identical rate adjustment algorithms evenly share the bottleneck bandwidth ,

irrespective of the values of the propagation delays Ti and 72 .

Different initial sending rate for source 2 with rl = 72

In this subsection, we consider a variation on the behavior of source 2 . Specifically, when sourc e
2 starts sending data at time te, it chooses an initial rate A 2 (t,) greater than zero . We shall now

0 0600400
(a)

800
time

800
time
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see that the value chosen for t c and the initial rate strongly affect the dynamics of the system .
Figure 8(a) presents evolutions for tc = 200$ and A 2(tc) = 1s- 1 . Figure 8(b) presents evolution s
for t o = 220s and A 2 (t,) = is—i .
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Figure 8 : Evolutions of a l (t), ) 2 (t) and q(t) for ) 2 (t,) = 1 : t, = 200s in part (a) ; tc = 220s in part
(b)

We observe that a large queue can build up at the bottleneck during the transient . The value
of gmas depends on the values of t, and A 2 (t,) . But in any case, the presence of the queue woul d
result, in a real network, in increased packet loss and retransmissions . Therefore, care should be
taken that the initial sending rate of user 2 be chosen at an appropriately low value . This is
especially important if the bottleneck were already shared by n users when user 2 becomes active .
This suggests that initial sending rates be chosen quite low, since the value of n is not known to a
new connection as it starts sending data . This is consistent with the idea of slow-start [7] .

5 Conclusio n

It appears that dynamical modeling holds great promise in analyzing network congestion and flo w
control problems . It is very encouraging that the behavior (and thus design choices) indicated by th e
relatively simple dynamical model in this paper seems to tie in very well with the results obtained b y
others using experimental and simulation approaches . For example, our single-connection mode l
brings out the tradeoff between good steady-state behavior and rapid adaptability to changin g
network conditions such as bottleneck rate and round trip delay changes . Our two-connection s
model indicated that when a connection starts, it should use a very low sending rate . Both these
are consistent with the schemes proposed by others [7, 13] . However, further validation is required ,
and we intend to do so with discrete-event simulation and experiments [14] .

We are extending the models in several ways . One is to consider a very large number of
connections sharing a common bottleneck . Another is to consider the effects of averaging technique s
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in the feedback mechanism . We are examining the control systems literature for more powerfu l
solution techniques . Our efforts so far have not been particularly rewarding ; it appears that no t
much is available in the area of coupled differential equations with delays .
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