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ELEN 248 Laboratory Policies and Report Format

Reports are due at the beginning of the lab period. The reports are intended to be a compete
documentation of the work done in preparation for and during the lab. The report should be
complete so that someone else familiar with digital design could use it to verify your work.
Portions of the prelab needed during lab should be duplicated before you arrive since the TA will
collect the original. The prelab and postlab report format is as follows: 

1. A neat thorough prelab must be presented to your lab instructor at (or before) the
beginning of your scheduled lab period. Lab reports should be submitted on 8.5” x 11”
paper, typed on one side only. Your report is a professional presentation of your work in
the lab. Neatness, organization, and completeness will be rewarded. Points will be
deducted for any part that is not clear. 

2. Each report will contain the following sections:

a) Cover Page: Include your name, ELEN 248, Section No., Lab No., TA’s name,
and date

b) Objectives: Enumerate 3 or 4 of the topics that you think the lab will teach you.
DO NOT REPEAT the wording in the lab manual procedures. There should be
one or two sentences per objective. Remember, you should write about what you
will learn, not what you will do. These are not necessarily the same things.

c) Design: This part contains all the steps required to arrive at your final circuit.
This should include diagrams, tables, equations, K-maps, explanations, etc. Be
sure to reproduce any tables you completed for the lab. This section should also
include a clear written description of your design process. Simply including a
circuit schematic is not sufficient. 

d) Schematics: As part of the design process for each lab (with the exception of the
first two), you will create a gate-level schematic and turn it in with your report.
The schematic must be complete. You should be able to copy it directly into
Max+II and create a working circuit. Since the design process is completed
before you come into lab, you may turn in a hand-drawn schematic, but it must
be neatly drawn. Schematics that are difficult to read will receive no credit. 

e) Questions: Specific questions asked in the lab should be answered here. 
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3. Late prelabs will have 50% of the points deducted for being one day late. If a prelab is 2
days late, a grade of 0 will be assigned. The prelab for a two-week lab is due at the
beginning of the first week’s lab period.

4. Your work must be original and prepared independently. However, if you need any
guidance or have any questions or problems, please do not hesitate to call your Teaching
Assistant (TA) during office hours. Copying any prelab will result in a grade of 0. The
incident will be formally reported to the University.

5. Each laboratory exercise (circuit) must be completed and demonstrated to your TA before
the prelab for the subsequent lab is due (1-2 weeks later) in order to receive working
circuit credit. This is the procedure to follow:

a) Circuit works: If the circuit works during the lab period (3 hours), call your TA,
and he/she will sign and date it. You should then save your circuits on your own
Zip disk before leaving the lab. This is the end of this lab, and you will get a
complete grade (100) for this portion of the lab. 

b) Circuit does not work: If the circuit does not work, you must make use of the
open times for the lab room (Zachry 115D) to complete your circuit. When your
circuit is ready, contact your TA to set up a time when the two of you can meet to
check your circuit.

6. You are guaranteed a computer and workspace in 115D Zachry only during your lab
period. If you need to work on your circuits at a time other than your regularly scheduled
lab period, the lab in 115D either is open or can be opened any time the instrument room
is open (8 am - 9 pm M-F and 9 am - 5 pm Saturday). However, if another lab section is
in progress, ask the TA if he/she has any open lab stations.

7. Attendance at your regularly scheduled lab period is required. An unexpected absence
will result in loss of credit for your lab. Your lab instructor may permit rescheduling if
you arrange for the change ahead of time.
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Lab 1: Introduction to Combinational Design

1.1 Introduction

The purpose of this experiment is to introduce you to the basics of circuit wiring, troubleshooting,
positive/negative logic, threshold voltages, clock, delay concepts, and gate behavior. In this lab,
you will test the behavior of several of the basic logic gates and you will connect several logic
gates together to create simple circuits.

1.2 Background

None.

1.3 Prelab

None.

1.4 Lab Procedure

We will look at the behavior of some basic logic gates, including inverters, AND gates, OR gates,
XOR gates, NAND gates, and NOR gates. Each of these gates is embedded in an integrated
circuit package. See Figures 1.1 and 1.2 for pinouts for these circuits. More detailed
specifications may be found in the TTL (Transistor-Transistor-Logic) book found in the
instrument room (Zachry 111A). We will also investigate the concepts of positive and negative
logic, threshold voltages, clock pulse, and delay.

1.4.1 Experiment 1

We will start by setting up the DC power supply and multimeter for our use. Be sure both are
turned off. Then check to see that the multimeter is set to measure DC (button on far left), and be
sure the red lead is connected to the red multimeter input that is marked for voltage (not current).
Finally, set the scale to the 20V scale. Now, set the DC power supply voltage output to zero (turn
the coarse adjustment counterclockwise until it stops). Connect the red lead of the power supply
to the red lead of the multimeter. Likewise, connect the black lead of the power supply to the
black lead of the multimeter.

*** NOTE - DO NOT CONNECT POWER (RED) AND GROUND (BLACK)
TOGETHER. This will cause a short.
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Fig. 1.1: Pinouts of the 7400 series TTL logic gates.
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Fig. 1.2: Pinouts of the 7400 series TTL logic gates.
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Turn on both the multimeter and the power supply. The multimeter should read very near zero.
Turn the coarse adjustment clockwise until the multimeter reads 5V. If the multimeter display
does not change significantly when you turn the coarse adjustment, turn the power supply off and
recheck your connections. You may have a short. When the multimeter reads 5V, the adjustments
are complete and you should turn off the power supply. You are ready to test your first gate. We
will start by wiring a 74LS04 (inverter) gate. The pinouts for this chip may be found in Figure
1.1. Insert the 74LS04 chip onto the breadboard. Be sure you are not shorting pins together.
Identify the power (VCC) and ground (GND) pins for the 74LS04. Connect the VCC pin to
the red lead of the power supply and connect the GND pin to the black lead of the power supply
(or multimeter). This chip (7404) contains 6 different inverter gates. Each inverter gate has an
input pin and a corresponding output pin. Choose one of the gates and connect the red lead of the
multimeter to the gate output. The black lead of the multimeter should always be connected to the
black lead of the power supply (at the GND pin). Then connect a wire from either the VCC pin to
the input (for a logic high input) or from the GND to the input (for a logic low input). Do not
connect both at the same time, as this will cause a short. Turn on the power supply and observe
the gate output. 

Assume A is the input to the inverter (either H or L) and that Y is the output. Fill in Table 1.1
according to the logic behavior that you observe. 

Note: First fill in the second column of the table using the readings from the multimeter. Then
determine the answers to the last column based upon these readings. If the output is high (H), the
multimeter will read approximately 4.4 volts; when it is low (L), the multimeter will read about
0.15 volts. If you read a voltage between these values, you have likely wired your circuit
incorrectly.

Tab. 1.1: Inverter logic behavior

1.4.2 Experiment 2

In a circuit, logic variables (values 0 and 1) can be represented as levels of voltage. The most
obvious way of representing two logic values as voltage levels is to define a threshold voltage;
any voltage below the threshold, represents one logic value and voltages above the threshold
correspond to the other logic value. 

To implement the threshold – voltage concept, a range of low and high voltage levels is defined,
as shown in Fig. 1.3. This figure indicates that voltages in the range Gnd to Vo,max represent
logic value 0. Similarly, the range from V1,min to Vcc corresponds to logic value 1. Logic
signals do not normally assume voltages in undefined range except in transition from one logic
value to the other. 
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Gnd

V0,max

V1,min

Vcc

Voltage

Logic Value 1

Undefined

Logic Value 0

Fig. 1.3: Representation of logic values by voltage levels

Creating a variable input voltage from 0 to 5 volt, you will use a potential meter connected
between Gnd and Vcc. Then connect its third pin (middle pin) to input of an inverter gate and
measure its output voltage with the multimeter while the input voltage of the gate changes from 0
to 5 volt. Draw Vo–Vin curve for the inverter gate, what are the threshold values for high and low
logic levels? Demonstrate the results to your TA.

1.4.3 Experiment 3

We are going to repeat the same experiment with the gates 74LS00 (NAND), 74LS02 (NOR),
74LS08 (AND), 74LS32 (OR), and 74LS86 (XOR). Note that each of the gates has two inputs
and one output. Fill in Tables 1.2 and 1.3 to indicate the observed responses of these gates. 

So far we have reviewed the voltage behavior (H/L) of various gates. These devices will always
behave according to the logic described in Tables 1.1-1.3. There is an abstract way to interpret
this voltage behavior. We call this logic interpretation. Logic interpretation can be of two classes:
positive or negative. The logic interpretation assigns logic levels (0 or 1) to the voltage inputs and
outputs (H or L) of the devices. The levels are assigned according to Table 1.4. Use Table 1.4 to
fill out Tables 1.5 and 1.6. Note that the tables should be filled with 0’s and 1’s, not H’s and L’s.
If you still have questions, see your TA.

Tab. 1.2: Basic gate logic behavior, part I
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Tab. 1.3: Basic gate logic behavior, part II

Tab. 1.4: Logic Interpretation

Tab. 1.5: Positive/Negative logic

Tab. 1.6: Positive/Negative logic

1.4.4 Experiment 4

This experiment will introduce you to the procedures of wiring schematics. Connect the circuit in
Figure 1.4 and complete logic behavior Table 1.7 using this circuit. Assume positive logic.
Demonstrate this circuit to your teaching assistant.
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Fig. 1.4: Circuit A

Tab. 1.7: Circuit A logic behavior

1.4.5 Experiment 5

This experiment will introduce you concept of clock signal and delay. Clock is a control signal
that allows the changes in the states of digital circuits to occur only at well–defined time
intervals, as if they were controlled by a clock. It should be noted that either rising clock edges,

, or falling edges, , is lead to changes in the states not its logic level (0 or 1). Actually clock
is a periodic signal that is equal to 1 at regular time intervals to suggest that this is how the clock
signal usually appears in a real system. 
Connecting an odd number of inverter gates in series, you will make a clock signal. Fig 1.5
depicts the simple clock pulse circuit. You should connect the last gate output to first gate input.
Then look at the output signal on oscilloscope and measure its frequency. Then calculate average
delay of each gate and demonstrate your result to your TA. Keep in mind, more number of
inverter gates, more accurate results.
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Odd number of inverter gates

Clock signal

Fig. 1.5: Construction of a clock signal using inverter gates

1.5 Post lab

None.
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Lab 2: Introduction to Max+Plus II

2.1 Introduction

In this lab you will repeat the experiments from Lab 1; however, this time you will be using the
Altera MAX+plus II software to program the Altera EPM7128S P(rogrammable) L(ogic)
D(evice). This is the simulation technique we will use for the rest of the semester. 

2.2 Background

The only background material you need is an understanding of combinational circuits, covered in
Lab 1.

2.3 Prelab

None.

2.4 Lab Procedure

To begin this lab, log on to the computer using your Novell Network login. A unique username
and password is automatically assigned to every student that is registered for an electrical
engineering laboratory. The username has the format “fml6789” where “fml” represent your
initials and “6789” represents the last 4 digits of your student ID number. Your password is your
entire student ID number, including dashes. Your account may not be active during the first
couple of weeks of lab, so you may have to obtain a temporary login from your TA.

After you have logged in, find the Max+plus Icon and run the program (double-click the icon).
Once in Max+, create a new file by clicking on the toolbar icon at the far left. A dialog window
will appear and will ask what type of file you wish to create. Choose the .gdf file. This should be
the default choice. Now proceed to the first experiment.

2.4.1 Experiment 1

As in Lab 1, we will look at the behavior of some basic logic gates. We will first program an
inverter (not) gate. To do this, left click on your .gdf file at the location where you would like the
inverter to be placed. You can always move it later. Then go to the Symbol pull down menu and
select Enter Symbol. A dialog window will appear (see Figure 2.1). Type “not” on the top line of
the dialog window and hit <enter>. An inverter gate will appear in your .gdf file. We now need to
create an input pin and an output to connect to the inverter gate. Repeat the procedure above, but
type “input” in the dialog window. This will give you an input pin. Now create an “output” pin.
To create the wires to connect the pins to the gate, click on the line tool button, which is the 
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Fig. 2.1: Enter Symbol dialog box

button on the left with a picture of a right angle. You can then drag a straight line with one 90-
degree bend to connect any two gates or wires in the schematic. There are two important things to
remember when creating schematics in Max+II. First, always look for a dot to appear whenever
you connect two wires together. If there is no dot, you cannot be sure that there is (isn’t) a
connection. Second, make sure that your wires are not laid across the dotted-line borders of your
symbols, as this can cause errors.

Next, you must name your input and output pins. You can do this by double-clicking on the name
shown (which defaults to PIN NAME) and typing a new name. Not that all pin names must be
unique. Before you can compile your simulation file and program the PLD, you must make your
.gdf file the “current project”. The command to set the project name to your current file is found
in the File menu. Scroll down to Project, which opens a submenu. Inside this submenu, scroll
down to Set Project to Current File. Note that if you have not yet saved your program, you must
do so at this point. All files must be saved to your Zip disk, which is the E: drive.

Now you can compile your circuit. This command can be found in the File menu, under Project,
as before. In the same submenu, click Save and Compile. The compiler will open a window
containing messages about your program’s status. At this point, one of two things will happen.
Either you will see messages in red, indicating errors, or the program will compile successfully.
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Note that you may see warnings, but these can generally be ignored. If your file has errors then
you will need to go back and correct them. Under some circumstances, you may double (left)
click on the red message and the program will return to the .gdf file and highlight, in red, the part
of the circuit that the program believes is in error.

Before you can program the EPM7128S PLD that is embedded in the Altera circuit board, you
must assign specific PLD pin numbers to the input and output pins you have placed in your .gdf
file. Many of the pins on the PLD have been prewired to switches, LEDs, or pushbuttons. Page 16
provides you with a pin-out that will describe these connections. To assign a pin number to one of
your input/output pins, first right click on the pin. Choose Assign, then Pin/Location/Chip from
the resulting pull down menu. A new dialog box will appear. The first time you specify a pin
number, you have to push the Assign Device button and choose the PLD part number
EPM7128S. Click OK to return to the first dialog box. Now place a pin number in the Pin box
and click OK. Repeat this procedure for each pin in your .gdf file. Remember, you only have to
Assign Device once.

You will find the Programmer in the MAX+plus II pull down menu; click on Program, and your
program will be written to the chip.

After programming is complete, observe the behavior of the inverter circuit. Suppose A is the
input to the inverter and Y is the observed response (H or L). Fill in Table 2.1. Remember that if
an LED is on, it is indicating a logic L.

Tab. 2.1: Inverter logic behavior

2.4.2 Experiment 2

Perform the above experiment with gates and2, or2, nand2, nor2, and xor. Since each of these
gates has two inputs and one output, you will need to create another input pin. Fill in Table 2.2.

Tab. 2.2: Basic logic gate logic behavior
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2.4.3 Experiment 3

Create the circuit in Fig. 2.2 using the Max+II software and complete the logic behavior Table
2.3. Assume positive logic. Demonstrate this circuit to your TA.

Fig. 2.2: Circuit A

Tab. 2.3: Circuit A logic behavior

2.4.4 Experiment 4

This experiment will introduce you one out of huge number of blocks that Max+II provide you to
use in constructing digital circuits. Each of these blocks has its own special function. Accessing
to each block, repeat the procedure in experiment 1 and type the name of the block in the dialog
window. In this experiment you will connect three  inputs and one output to the 21mux block and
then fill in its truth table shown in Fig. 2.3. Guess its function and demonstrate to your TA. 
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A
B
C

F

21mux

Fig. 2.3: 21mux block 

Tab. 2.4: Multiplexer 2:1 logic behavior

2.5 Postlab

There is no postlab requirement for Lab 2. The prelab for Lab 3 is due at the beginning of lab
next week.
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Lab 3: Adders

3.1 Introduction

The purpose of this experiment is to introduce the design of simple combinational circuits, in this
case half adders and full adders. The student should also be able to design an n-bit ripple carry
adder using n full adders. 

3.2 Background

We will be using two types of adders for this lab and throughout the semester. A half adder adds
two bits together and therefore has possible sums of 0, 1, or 2. A full adder adds a carry-in bit to
two bits and has possible sums of 0, 1, 2, or 3. See Figure 3.1

Fig. 3.1: Adders

To create an n bit ripple carry adder, you may connects n full adders together in the fashion of
Figure 3.2. The carry-out from a full adder becomes the carry-in for the next significant bit in the
next full adder.

In Figure 3.3 you can see the interaction of the input and output signals shown in Figure 3.2.
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Fig. 3.2: 2-bit ripple carry adder

Fig. 3.3: 2-bit addition

3.3 Prelab

Complete Designs 1, 2, and 3, answer the questions, and follow the prelab report format carefully.

3.3.1 Design 1

Construct a truth table for a half adder circuit, including the sum and carry-out outputs. Write
equations for the outputs of the half adder that are minimal in terms of the number of gates
required for implementation. Note that XOR and NOT gates count as one gate each. Draw a
gate-level schematic for the half-adder, including Max+II input and output pin numbers.

3.3.2 Design 2

Construct a truth table for a full adder circuit, again including the sum and carry-out outputs.
Write the equation for each output that is minimal in terms of the number of gates required for
implementation. Draw a gate-level schematic including Max+II input and output pin numbers.

3.3.3 Design 3

Design a 3-bit ripple carry adder using full adders as building blocks. Include the carry-in to the
LSB. There should be 7 inputs: (A2A1A0) one 3-bit operand, (B2B1B0) another 3-bit operand, and
Cin, the carry-in to the LSB of the adder. There should be 4 outputs:
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 (S2S1S0), which is the sum, and Cout, which is the carry-out of the MSB. Calculate the expected
results for each test in Table 3.1

Tab. 3.1: 3-bit ripple carry adder logic behavior

3.3.4 Questions

1. How would you make a 6-bit ripple carry adder using only 3-bit adder blocks like the one
in Figure 3.4? (Do not use individual full adders as building blocks.) Draw the schematic.

Fig. 3.4: 3-bit adder block

2. How would you make a 4-bit ripple carry adder using only 3-bit adders? Hint: use one
3-bit adder for the least significant 3 bits and use the most significant bit from the other
3-bit adder for the fourth bit. (Again, do not use individual full adders as building
blocks.) Draw the schematic.

3. Using your design for the full adder, determine the worst case propagation delay from the
inputs to the carry-out output bit. Assume each gate has the same delay, 1 gate delay.
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4. Using your designs for the full adder and the 3 bit ripple carry adder (Design 3),
determine the worst case propagation delay from the least significant input bit (of either
input number A or B) to the carry-out output bit. Again, assume each gate has the same
delay, 1 gate delay.

3.4 Lab Procedure

Complete Experiments 1-4.

3.4.1 Experiment 1

Implement and test your half adder design using the MAX+plus II software.

3.4.2 Experiment 2

Implement and test your full adder design using the MAX+plus II software. When it is working,
demonstrate it to your TA.

3.4.3 Experiment 3

You will create symbols (modules) for your adder circuits so that they may be used easily in later
labs. You can do this by opening the File menu and selecting Create Default Symbol. From this
point on, when you open the Enter Symbol window, you should see your full adder in the
”Symbol Files” area.

3.4.4 Experiment 4

Implement your design for the 3-bit ripple carry adder from prelab design 3. Test it via Table 3.1
and demonstrate it to your TA.

3.5 Postlab

None.
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Lab 4: Signed Numbers 

4.1 Introduction

A digital system is one that manipulates numbers. Hence, in digital systems design three concepts
play an important role:

• how to represent numbers

• how to manipulate the numbers

• how to represent and manipulate numbers conveniently and efficiently

You’ve already gained a taste for the first two concepts in previous labs. In Labs 1 through 3, you
extended the numbers you dealt with from single-digit bits to multiple-digit words. As well, you
experimented with manipulating these numbers with various operators, from the Boolean
functions of Labs 1 and 2, to the arithmetic addition operation of Lab 3.
In this Lab, we are going to extend the representation of numbers from the positive integers to
signed integers (i.e. both positive and negative integers). By doing so, we’ll also introduce the
concepts of convenience and efficiency into digital systems design.

4.2 Background

4.2.1 Two’s Complement Numbers

There are many ways to represent numbers. Here, we will develop one possible way called the
Two’s Complement representation. We will find that this is a convenient and efficient manner of
representation.

To begin, let’s consider 3-bit numbers. With 3 bits, we can represent 23 = 8 numbers. Table 4.1
shows the straightforward unsigned integer representation that you’ve explored in Lab 3. Now,
the whole process of assigning a numerical magnitude to a particular representation is arbitrary
and up to the designer’s discretion. It is the convenience and efficiency of the assignment that
makes a designer prefer one assignment over the other. For instance, in Table 4.1 we could have
assigned “011” to represent 0, “111” to represent 1, etc. But, on inspecting Table 4.1, you can see
that 

1. the normal ordering of the positive integers is maintained by our assignment
(i.e.subsequent assignments are greater than the preceding assignment by 1). This leads to
an efficient assignment, as we can use the normal adders of Lab 3 to manipulate the
numbers.

2. by assigning “000” to represent 0, we have a common representation for 0, regardless of
the number of bits (e.g. for 3-bits we have 0 being represented by “000”, for 7- bits we
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would have 0 being represented by “0000000”, and so on). This makes our assignment
convenient; if we had to extend our design by scaling (i.e. increasing or decreasing) the
numbers of bits, we would not need to worry about re-assigning the 0.

Tab. 4.1: One Possible Scheme for Unsigned Integer Representation

With this in mind, we can now go ahead and try to represent both positive and negative (i.e.
signed) integers; Table 4.2 shows one possible representation.

Tab. 4.2: One Possible Scheme for Signed Integer Representation
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On inspecting this representation we notice some characteristics:

1) the ordering of integers is maintained

2) the representation is symmetrical about zero, as with integers

3) the zero maintains its representation regardless of the number of bits

4) using a regular adder (e.g. the one from Lab 3), we can add complementary pairs (e.g.   n

and -n) to get zero

5) using only inverters and a regular adder, we can obtain the negative of any represented

number

The first three points refer to the convenience of the representation; it maintains the properties of
the mathematical set of integers. The last two points attest to the efficiency of the representation;
no new hardware elements are required to manipulate these numbers. For these reasons and more,
the representation of Table 4.2 is widely-used and is called the Two’s Complement
Representation.

4.2.2 Signed Integer Arithmetic

We mentioned that a convenient property of this representation is that we can add complementary
pairs of numbers to obtain zero. What about any two pairs of numbers in general? 

The result of addition or subtraction is supposed to fit within the significant bits used to represent
the numbers. If n bits are used to represent signed numbers in 2’s complement scheme, then the
result must be in the range –2n-1 to 2n-1-1. If the result does not fit in this range, then we say that
arithmetic overflow has occurred. To ensure the correct operation of an arithmetic circuit, it is
important to be able to detect the occurrence of overflow. 

Figure 4-1 presents the six different cases where 2’s complement numbers are added. Because we
are using four-bit numbers, there are three significant bits, b2-0. When the numbers have opposite
signs, there is no overflow (V=0). But if both numbers have the same sign, based on the
magnitude of added numbers maybe overflow occurs. The key to determining whether overflow
occurs is the carry-out from the MSB position, called C3 in the figure, and from the sign-bit
position, called C4. It can be proved that: 

nn CCV ⊕= −1                                                                                                                               (1)

where
V is overflow and Cn-1, the carry-out from the MSB position, and Cn the carry-out from the sign-
bit position (Fig. 4-2).

In (a), (c), (e) and (f), 78 +≤≤− S where S stands for sum, so V=0 and the addition can be
shown by 4 bits regardless of Cn and V values. It is apparent that in this case the computation is
correct and it doesn’t need correction. On the other hand, in (b) and (d) value of V is 1, it means
that 4 bits are not enough for showing the computation S and it should be corrected. To correct it,
we should use carry-out (Cn) along with S. In this case Cn shows sign bit and the 4-bit number
represents magnitude.
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Breifly, when V is equal to zero, the n-bit number S shows the correct computation; otherwise, Cn
shows the sign bit and S shows the magnitude.

+ 5
+ 2

-------
+ 7

0101
0010
-------
00111

C3=0, C4=0
V=0

+ 5
+ 4

-------
+ 9

0101
0100
-------
01001

- 5
- 2

-------
- 7

1011
1110
-------
11001

C3=1, C4=1
V=0

- 5
- 4

-------
- 9

1011
1100
-------
10111

- 5
+ 7

-------
+ 3

1011
0111
-------
10010

- 7
+ 4

-------
- 3

1001
0100
-------
01101

(a) (b) (c)

(d) (e) (f)

+ + + + + +

+

+ + + + +

+

+

C3=1, C4=0
V=1

C3=0, C4=1
V=1

C3=1, C4=1
V=0

C3=0, C4=0
V=0

Fig. 4-1: Addition of a pair of two’s complement numbers

 Cn-1   Cn-2  ...   C0   0
   An     An-1  …   A1  A0
    Bn     Bn-1  …   B1  B0
--------------------------------

Cn   Sn   Sn-1   ...  S1  S0

+

Fig. 4-2: Addition of a pair of two’s complement numbers

4.3 Prelab

Complete Designs 1-3, answer the questions, and follow the prelab report format carefully.

4.3.1 Design 1: Negation (Two’s Complement)

We mentioned that one can obtain the negative of any number using only inverters and an
adder. The function that performs this conversion is



ELEN 248 Laboratory Manual, Lab 4

25

1+=− pp                                                                                                                         (2)

where p  is called the One’s Complement of P and is obtained by inverting each bit of P
number and –P is two’s complement of P number. Design and Test a 4-bit block that
gives the negative of any 4-bit input applied to it. Create a symbol for your block.

4.3.2 Design 2: Signed Integer Adder

Design and Test a 4-bit Two’s Complement Adder (i.e. one that adds two 4-bit numbers in Two’s
Complement form), and create a symbol for your block.

4.3.3 Design 3: Signed Integer Subtracter

Design and Test a 4-bit Two’s Complement Subtracter (i.e. one that subtracts one 4-bit number in
Two’s Complement form from another 4-bit number in Two’s Complement form), and create a
symbol for your block.

4.3.4 Questions

1- Demonstrate that equation (1) is valid, either by deriving it or proving it.

2- Demonstrate that equation (2) is valid, either by deriving it, proving it, or using some
sample numbers.

4.4 Lab Procedure

Complete Experiments 1-3.

4.4.1 Experiment 1

Implement and test your Two’s Complement Negation design using the MAX+plus II software.
When it is working, demonstrate it to your TA.

4.4.2 Experiment 2

Implement and test your 4-bit Two’s Complement Adder design using the MAX+plus II
software. When it is working, demonstrate it to your TA.

4.4.3 Experiment 3

Implement and test your 4-bit Two’s Complement Subtracter design using the MAX+plus II
software. When it is working, demonstrate it to your TA.

4.5 Postlab

None.
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Lab 5: 8-bit Counter with Debounced and
Non-debounced Clock

5.1 Introduction

The purpose of this experiment is to introduce the student to the to the 8-bit counter and to the
concept of debounced and non-debounced clock signals. Specifically, you will use an 8-bit
counter with both a non-debounced and debounced clock circuit to measure the number of
bounces in the clock input signal. In addition, you will learn how to write your results as a
hexadecimal number to the 7-segment display.

5.2 Background

5.2.1 The 8count 8-bit counter

A counter is a circuit that uses sequential logic to count clock pulses (either rising clock edges,
, or falling edges, ). The counter can count up or down, depending on the logic level of the

control inputs. You will use an 8-bit binary counter called 8count that is included with the
Max+II software. Figure 5.1 is the Max+II module for the counter and Table 5.1 describes its
input/output behavior. Note that 8count is a rising edge counter, i.e. it will only count when the
inputs are set correctly and there is a rising edge in the clock input signal.

Tab. 5.1: 8count input/output behavior

As mentioned, the 8count counter is able to count up or down. This is controlled by the DNUP
input. In this lab, we will be counting the number of pushbutton bounces; for this reason, we need
the counter to count up. To do this, DNUP must be set L.
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Fig. 5.1: 8Count Max+II module

Note that QH is the highest-order bit (most significant bit, or MSB), and QA is the lowest-order
bit (least significant bit, or LSB). Here is a brief description of the function of the 8count inputs.
See Table 5.1 for details. 

• CLK: clock input; device requires a rising edge for all functions except asynchronous
clear and asynchronous set.

• CLRN: asynchronous clear; when CLRN is L, this will clear all outputs to logic L (for
the clear function, the other inputs are don’t-care inputs; this is denoted on Table 5.1 by
the don’t-care value, ‘X’, on inputs CLK, SETN, LDN, DNUP, and GN).

• SETN: asynchronous load; when CLRN is H and SETN is L, this will set outputs QA-
QH to the values on A-H regardless of the logic values on the other inputs (CLK, LDN,
DNUP, GN are all X)

• LDN: synchronous load; when CLRN is H, SETN is H, LDN is L and there is a rising
clock edge, this will load values on inputs A-H to outputs QA-QH regardless of the logic
values on the other inputs (DNUP, GN are all X)

• DNUP: determines direction of count; if DNUP is L, 8count counts up; if DNUP is 1,
8count counts down

• GN: hold count; if GN is H, the counter outputs will not change, even if there is a rising
clock edge; if GN is L, the counter counts normally
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In addition to the count output, QH...QA, there is also a carry-out signal, COUT, that is set to 1
on counter overflow (e.g. when QH...QA = “11111111”, and the counter counts up once).

Note: it is necessary to “buffer” (i.e. add a redundant gate, such as an AND gate with both inputs
tied together) the input signals to the 8count. See the note in Section 5.4.2.

5.2.2 Clock bounce

Each pushbutton (pins 55 and 54) is active-low, which means that it produces a logic low “pulse”
when pushed and is logic high otherwise. For this reason, you will want to invert your clock
signal. When you push the button, it will not instantly give a 0 (or a 1 when inverted); instead, the
voltage will fluctuate in a middle region at first. Voltages in the middle region are still interpreted
(quantized) as 1’s and 0’s, so the output will “bounce” between 0 and 1 until the value settles.
Hence, a pushbutton is a non-debounced clock signal.

Often you will want to have access to a clock signal that does not bounce. You can create a very
simple sequential circuit (see next Section) to accomplish this. This circuit should use both of
your board’s pushbuttons; one of the buttons should cause your clock signal to go high, and the
other should cause it to go low. This is called a “debouncing” circuit; it removes any bounce from
the clock signal, so that the signal stays at the correct level.

5.2.3 The SR latch

In order to create a debounced clock signal you will use a very simple sequential circuit called the
S-R (set-reset) latch. Sequential circuits are characterized by the fact that their outputs depend not
only on the current inputs, but on past inputs. This is different from combinational circuits whose
outputs depend only on the current inputs. You will study sequential circuits in detail later in the
semester, but for the purposes of this and future labs, you need to understand the function of the
S-R latch. The S-R latch has two inputs and two outputs. One output is the complement of the
other. The S input “sets” the output (to logic H) while the R “resets” the output to logic L. Note
that this is the kind of behavior we require for a debounced clock signal. If both S and R are
asserted, the latch tries to force QQ = ; obviously, this state should be avoided. See Figure 5.2
for a schematic and truth table for the S-R latch. Assume positive logic unless noted. When using
this latch as a debounced clock signal, note that the pushbuttons are high when they are not being
pushed. To avoid this condition, you will need to use inverters between the pushbuttons and the
latch inputs.

Fig. 5.2: SR Latch
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5.2.4 The seven segment display

Also in this lab, you will be converting the binary output of the counter to a hexadecimal number
in order to show the number on the Altera board’s 7-segment display. We will use the digits A - F
to represent the numbers 10 - 15 in hex format. The hex digits A - F are represented in uppercase,
with the exception of B and D, which are represented in lowercase to avoid confusion with 8 and
0. Your Altera board wiring diagram has the pin numbers for the individual segments of the
display.

5.3 Prelab

Complete Designs 1-3, answer the questions, and follow the prelab report format carefully.

5.3.1 Design 1

The output of 8count is an 8-bit binary number (QH...QA). Create functions and schematics to
map this output to the 7-segment display in the form of hexadecimal numbers. For example, if the
number of bounces was, in binary, 00011011, then the hex display should read 1b (not 1B
because of possible confusion between 8 and B). Note that you can create a single module that
maps 4 bits to a 1 digit hexadecimal number and use this module once to map the 4 most
significant bits to the hex most significant digit and again to map the 4 least significant bits to the
hex least significant digit. Hence there are 7 functions to create, not 14 (see Figure 5.3).
Remember that these segments are also active-low, so that you will want to use inverters or
otherwise alter your design to take this into account. Use Karnaugh maps or other techniques to
minimize your expressions. Be sure to include truth tables, functions, schematics, and all your
minimization work for each segment in your report. 

Fig. 5.3: 7-segment display
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Fig. 5.4: All 7-segment digits

Tab. 5.2: 7-segment display “truth table”

5.3.2 Design 2

Use the 7-segment display module you created in Design 1 with the 8count counter to create a
circuit that will count the number of bounces when a pushbutton is depressed. Remember to
include input pins as needed for the control signals; however, do not include unnecessary input
pins; some of the control signals of the 8count can be held at a certain logic level, and so you can
connect them directly to ground or VCC. Be sure to connect the outputs of the 8count counter to
your display modules in the correct manner (remember which is the most significant bit).

5.3.3 Design 3

Repeat Design 2, but use your debounced clock circuit instead of the non-debounced clock.
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5.3.4 Questions

1. What is the highest possible number that can be generated by the 8count counter (in
binary, decimal, and hex)?

2. Discuss the similarities and differences between the functions of the SETN and LDN
inputs for the 8count device.

3. How would you wire up an 8count 8-bit counter such that it functions as a 7-bit counter
that counts backwards.

5.4 Lab Procedure

5.4.1 Experiment 1

Create a simulation file to implement Design 2. First you should create 7 separate modules for the
display segments and test each one of them individually. Then create a module containing these 7
small modules. Finally, you will use two of these large modules in your circuit, one for each hex
digit. The instructions for creating modules (symbols) are found in Lab 3. The 7-segment displays
are hardwired to certain output pins of the Altera board. These pins are enumerated in the Altera
board wiring diagram that you saw in lab 3.

Once you have compiled and programmed your circuit, you should reset your counter so that you
can start from zero. Then use the pushbutton to clock the counter. The count shown on the display
should increase by more than one; record the number of bounces, which is the number the counter
increased minus one. You should take at least fifteen to twenty trials to get an accurate result for
your board’s pushbutton. Then determine the average number of bounces. Once you have
determined this average, demonstrate the circuit and show your results to the TA.

5.4.2 Experiment 2

Repeat Experiment 1, but use your debounced clock circuit. The clock bounce you saw in
Experiment 1 should disappear, and your counter should increment by exactly 1 each time you
cycle your debounced clock. Demonstrate this circuit to your TA.

NOTE: When you are compiling, MAX+plus II may give you an error stating “Project doesn’t
fit”, along with an error saying “Illegal Assignment-global clock “clock” on pin 34”, where the
name “clock” and the pin number are whatever you have assigned them to be. If this happens, a
simple solution is to fool the compiler into thinking that your pin is not a global clock. To do this,
you must buffer by signal simply by ANDing it (that is, feed it through an AND2 module) with
VCC (or with itself). This operation will always have the same result as the value of the input pin.

5.5 Postlab

None.
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Lab 6: 4-bit Shift Adder

6.1 Introduction

In this lab you will extend your work from Lab 3 to create a 4-bit shift adder using your full adder
and shift registers.

6.2 Background

6.2.1 The 74179 shift register

A register is a device that stores its input(s) when it sees either a rising or a falling clock edge
(hence, its outputs do not change unless the input is changed and there is a clock pulse). A shift
register is a device that can shift values among the storage elements, one bit at a time, when it
sees either a rising or falling clock.

In this lab, you will be working primarily with the 74179 “4-bit shift register with clear”. This
register has nine inputs and five outputs, which are shown in the Figure 6.1 and Table 6.1. The
74179 shift register can load, shift, and hold values, depending on the value of its control input
signals LD and ST. The inputs A - D are used for loading, and the value of SER is shifted into
QA, the most significant bit, when the register is shifting. CLRN and CLK are the clear and clock
inputs, respectively. Note that CLRN is an asynchronous input. This means that an assertion of
CLRN (a logic L since it is active-low) will set all outputs to zero regardless of the state of the
CLK signal.

Two or more of these registers can be cascaded to create an 8-bit (or longer) register. This is done
by connecting QD (the least significant bit) of the first register to the SER input of the next
register.

For more information about the 74179 shift register, go to the Help menu, select 74- series
macrofunctions, and choose the 74179 shift register. Be sure you understand the operation of
this register as we will be using it in the next several labs.

6.2.2 Binary addition via shifting

In this lab you will use a single full adder with shift registers to create a 4-bit binary adder. 4-bit
binary addition is done in the same way as decimal addition as you can see from Figure 6.2. Since
you are restricted to using a single full adder, your implementation will require shifting of the
binary numbers A and B such that the correct bits of A and B are placed at the inputs of the full
adder at the correct time. For example, you want to add a0 + b0, a1 + b1 + c0, a2 + b2 + c1, etc. Both
A and B should be shifted at the same rate, so that the correct bits are added.
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Fig. 6.1: 74179 4-bit shift register

Tab. 6.1: 74179 shift register function table

In Figure 6.2, c2, c1, and c0 are the carry bits. You must account for these carry bits in the design
of your 4-bit adder by feeding the carry bit from the previous addition back into the carryin of our
full adder. However, you will want to put the carryout of the adder through a D flip-flop before
feeding it to the carryin. This will provide a one-clock- cycle delay so that the carry bits are added
to the correct bits of A and B. The D flip-flop (DFF) is shown in Figure 6.3 and its operation is
specified in Table 6.2.

Fig. 6.2: 4-bit addition
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Fig. 6.3: D flip-flop

Tab. 6.2: DFF D flip-flop function table

6.3 Prelab

Complete Designs 1 and 2, answer the questions, and follow the prelab report format carefully.

6.3.1 Design 1

Design a 4-bit shift adder using 74179 shift registers and one full adder using the information
given above and in Labs 3 and 5. Be sure to connect something to LD, ST, and SER so that you
can control the shifting of the 74179 register. You should use a debounced clock signal. Draw a
complete schematic for your design. Connect the output number to your seven segment display
modules. Keep in mind that the output number is only 5 bits, so the most significant digit of the
display will be either 1 or 0.

6.3.2 Design 2

The shift adder you created in Design 1 will probably require 5 clock cycles to complete the
addition/shifting process. When you demonstrate Design 1 you will simply clock the circuit



ELEN 248 Laboratory Manual, Lab 6

35

manually 5 times and stop. If you clock more than 5 times, you will probably destroy your
answer. For Design 2, modify Design 1 such that the circuit will not allow you to clock the circuit
more than the number of times that is required to arrive at the answer. You will probably want to
use a counter to count the number of times you use the clock. The counter outputs (via some
simple combinational logic) can then be used as a control signal to enable/disable the clock. The
clock can be disabled by ANDing the output of your debouncing circuit with the proper control
signal.

6.3.3 Questions

1. Why do you need a D flip-flop between the carryout and carryin of the full adder?

2. How would you modify the clock before it is input into the flip-flop, and why?

3. Normally, this lab requires three 74179 shift registers: two for the addends and one for
the sum. Do you see a way to implement this lab using only two registers? If so, what is
it? If not, why not?

6.4 Lab Procedure

6.4.1 Experiment 1

Create a simulation file to implement Design 1. Use your 7-segment display modules to represent
the output number. Demonstrate the working circuit to your TA.

6.4.2 Experiment 2

Create a simulation file to implement Design 2 and demonstrate it to your TA.

6.5 Postlab

None.
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Lab 7: 4-bit Shift Multiplier

7.1 Introduction

In this lab you will combine designs from several previous labs to build a 4-bit shift
multiplier. In addition, you will begin to learn how to use the Altera board’s internal clock to run
your circuits at any speed you like.

7.2 Background

You may wish to review the background material from previous labs, especially shift registers,
full adders, and counters.

7.2.1 The Altera internal clock and the clock divider circuit

The Altera University Program board contains a 25.175-MHz clock, which can be used to
automatically clock your circuit’s components. This clock is accessed internally by the board and
the EPM7128 chip through pin 83. Once you include the clock pin in your circuit, you can
connect it to the CLK inputs for all registers and flip-flops in your circuit.

The inherent problem with using the Altera board’s internal clock is that it is too fast for results to
be viewed as they occur. To solve this problem, we use a divider circuit to slow the clock pulse
down. A divider circuit is basically a counter, whose output increments by 1 every time the CLK
input sees either a rising or falling clock edge. Each of the binary outputs of the counter divides
the clock signal by a factor of 2. For example, the least significant bit of the clock output changes
at half the rate of the input signal, and the next bit of the output changes at one quarter the rate of
the input clock signal. Each bit of the clock output is available, so that the clock frequency can be
divided by any power of 2 that you wish. More than one counter may be used; wiring the most
significant bit of the first counter to the CLK input of the second one (via an inverter) connects
the counters. In this lab, you should use the 16cudslr 16-bit counter to construct your divider
circuit. The 16cudslr is shown in Figure 7.1. The function of the inputs is very similar to that of
the 8count 8-bit counter you have used previously.

7.2.2 4-bit shift multiplication

The circuit you will build in this lab is a 4-bit (shift) multiplier; that is, it takes two 4-bit inputs
and multiplies them together. Referring to Figure 7.2, we see that binary multiplication is done in
the same way as decimal multiplication:

• the terms aibj , 3 ≥ i, j≥ 0 represent ai AND-ed with bj
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Fig. 7.1: 16cudslr 16-bit counter

• the 0’s are placeholders. As in regular decimal multiplication, placeholders are necessary 

because multiplying by different bits of B means multiplying by a different power of 2

Shifting is required for multiplication. Each bit of B {b3b2b1b0} must be multiplied by all four
bits of A {a3a2a1a0}, as well as by some zeroes. For example:

•  at step 0, b0 is multiplied with the four bits of A to produce the products {a3b0,
a2b0, a1b0, a0b0}. This is shown on line 3 of Figure 7.2.

• at step 1, b1 is multiplied with the four bits of A to produce the products {a3b1,
a2b1, a1b1, a0b1}. This is shown on line 4 of Figure 7.2.

• ... and so on for all bits of B ...

7.2.3 How to do it

Figure 7.2 shows how to generate a series of “partial products” (i.e. lines 3 to 6 of Figure 7.2), but
how do we obtain the final result of the multiplication of A and B?

First, we consider the partial products found on line 3 of Figure 7.2. Table 7.1 illustrates how
these partial products are added with zero’s to produce five Sum bits. The LSB of the sum, S0,0
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forms the 20 bit of the final result.

Fig. 7.2: 4-bit multiplication

Tab. 7.1: Operands and Result of First Addition. S0,0 forms the 20 bit out the result

Next, we consider the partial products found on line 4 of Figure 7.2, and the Sum generated in the
previous step. Table 7.2 illustrates how the these partial products are added with the previous
Sum to produce five Sum bits. The LSB of the new sum, S1,0  forms the 21 bit of the final result.

Tab. 7.2: Operands and Result of Second Addition. S1,0 forms the 21 bit out the result 

Next, we consider the partial products found on line 5 of Figure 7.2, and the Sum generated in the
previous step. Table 7.3 illustrates how these partial products are added with the previous Sum to
produce five Sum bits. The LSB of the new sum, S2,0 forms the 22 bit of the final result.

Tab. 7.3: Operands and Result of Third Addition. S2,0 forms the 22 bit out the result
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Next, we consider the partial products found on line 6 of Figure 7.2, and the Sum generated in the
previous step. Table 7.4 illustrates how these partial products are added with the previous Sum to
produce five Sum bits. The LSB of the new sum, S3,0 forms the 23 bit of the final result.

The bits {C3, S3,3, S3,2, S3,1} from the previous addition form the 27, 26, 25, 24 bits of the final
result, respectively. Table 7.5 illustrates how the previous Sum is added with zeros to reproduce
the Sum.

Tab. 7.4: Operands and Result of Fourth Addition. S3,0 forms the 23 bit out the result

Tab. 7.5: Operands and Result of Fifth Addition which produces the upper four bits of the
final result.

Hence, the final result of multiplying a3a2a1a0 × b3b2b1b0 is {C3 S3,3 S3,2 S3,1 S3,0 S2,0 S1,0 S0,0}.

7.3 Prelab

Complete Designs 1 and 2, answer the questions, and follow the prelab report format carefully.

7.3.1 Design 1

Design the clock divider circuit discussed in the background section of this lab. Your final clock
output should have a frequency that is as close as possible to 1 Hz. 

7.3.2 Design 2

Design your shift multiplier using your 4-bit ripple carry adder, several 74179 shift registers, your
clock divider, and your 7-segment display modules. Your result should appear as a hexadecimal
number. You should note that this lab is very open-ended; that is, a lot of the decisions in
programming this multiplier are left to you.

NOTE: Remember to incorporate clock stopping logic (i.e. the counter-based circuit from Lab 6
that was used to suspend the clock after a certain number of clock cycles).
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7.3.3 Questions

1. Since each output from the 16cudslr counter has a frequency that is half that of the
previous output, how many of these counters should you use if you want your final clock
output to pulse as close to once a second as possible? Which output (1-16) of your final
counter do you want to use as your final clock output?

2. What is the effect of placing an inverter between Q16 of the first counter and the CLK
input of the second counter? Under what circumstances do you need the inverter? Is it
important for this lab?

3. How many bits are necessary for the output of your 4-bit multiplier? What is the largest
product you can obtain (in hex and decimal)?

7.4 Lab Procedure

Complete Experiments 1 and 2.

7.4.1 Experiment 1

Create a simulation file for your clock divider circuit and demonstrate it to your TA. Create a
module for this circuit as you will be using it in next experiment. Be sure and make the 8 most
significant output bits of the last counter available as you may need different clock frequencies in
your multiplier design.

7.4.2 Experiment 2

Create a simulation file for your shift multiplier. Test it by inputting several sets of multiplicands
and multipliers, and computing the result. Demonstrate your working circuit to the TA.

NOTE: To easily identify and debug problems, first test your circuit with a manual clock
generator (i.e. two push buttons and an SR latch).

7.5 Postlab

None.
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Lab 8: The Priority Encoder

8.1 Introduction

The purpose of this experiment is to provide the student with experience in sequential circuit
design. Specifically, you will build a priority encoder that will examine 8 interrupt bits and
determine the order of the highest active interrupt.

8.2 Background

No further background material is necessary for this lab; though, you may wish to review the
function of the 74179 shift register and the 8count counter shown in Fig. 8.1. You will use both of
these in your design.

Fig. 8.1: 74179 4-bit shift register and 8count Max+II modules

8.3 Prelab

Complete Designs 1 and 2 and follow the prelab report format carefully.

8.3.1 Design 1

You are to design what is called an 8-bit priority encoder. A priority encoder is used to determine
the relative importance of interrupt requests in a computer, so that the computer will know which
request should be given top priority. The circuit will have one 8-bit input (switches) and will use
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one digit of the 7-segment display for the output. The function of the circuit will be to display the
order of the highest order input bit that is a logic 1. If, for example, your input is 00101011, the
display should read 5 because 5 is the order of the highest-order bit equal to 1 (00101011). In our
notation, the least significant bit has order zero and the most significant bit has order 7. If your
input byte does not contain a 1, then the output digit should display a dash, i.e. only the center
segment should be turned on. Once the output has been determined, the clock should be disabled
so that you cannot destroy your answer with additional clock pulses.

You will use two cascaded 74179 shift registers for your input byte. The inputs of these registers
should be connected to switches (8 of them). You will also likely use a counter in your design.
You will also need to use a debounced clock circuit to connect to the clock inputs of the shift
registers and the counter.

Most designs will have each of the components listed above, but the specifics of the design are up
to you. One way to complete the design is to first load the input byte in “backwards” so that the
first bit shifted out of the register will be the most significant bit (MSB) of the input byte.
Simultaneously load the counter with 7 and set it to count down. After the load operations, (and
before the first shift) you should check to see if the value of the bit to be shifted out (the MSB of
the input byte) is high. If so, the answer is 7 and you are done. If not, shift once, decrement the
counter, and check bit 6. Proceed in this fashion until you find the first bit that is high. Since we
are shifting “backwards”, the first bit that is a 1 is the highest order bit of the input byte that is 1.
Draw a comprehensive schematic integrating all of the above pieces of your design.

8.3.2 Design 2
  
During the testing phase in Max+II, your clock signal should be the debounced clock you
implemented in a previous lab. When your circuit is working correctly, replace this clock signal
with your automatic signal from your clock divider circuit. Your final circuit should function
correctly with a total of 9 switches, eight for the input bytes and one for clear/reset. This means
you will have to devise a way for the circuit to automatically switch the shift registers (counters)
from load operation to shift (count) operation after the first clock cycle. Draw a comprehensive
schematic integrating all of the above pieces of your design.

8.4 Lab Procedure

Complete Experiments 1 and 2.

8.4.1 Experiment 1

Create a simulation file to implement your prelab design with the debounced clock for testing
purposes. 

8.4.2 Experiment 2

Add the automatic clock to your last design and demonstrate the working circuit to your TA.

8.5 Postlab

None.
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Lab 9: T-Bird Taillights

9.1 Introduction

In this lab you will learn about state machines. You will use state machines to design a circuit
that will cause two sets of 3 LED’s to light up and blink in a manner that mimics the taillight
behavior of an old Ford Thunderbird automobile. 

The lab is a one-week lab; however, an optional extra credit portion can be turned in during the
(optional) second week.

9.2 Background

9.2.1 State Machines

A state machine is a type of sequential circuit structure which can allow you to create more
elaborate types of digital systems. 

A state machine consists of:

• memory elements (e.g. D flip-flops) to store the current state

• combinational logic to compute the next state

• combinational logic to compute the output

There are two classes of state machines: Mealy and Moore.

• a Mealy machine uses both the current state and the current inputs to form the output

• a Moore machine only uses the current state to form the output

Fig. 9.1 illustrates this difference. The figure shows the basic elements of a state machine:

• the inputs (e.g. switches)

• the memory elements (“D flip-flops”) that store the current state

• the combinational logic (“Next State Logic”) that computes the next state

• the combinational logic (“Output Logic”) that computes the output

With a Mealy machine, a connection exists between the “Inputs” and both the “Next State Logic”
and the “Output Logic”. With a Moore machine, a connection only exists between the “Inputs”
and the “Next State Logic”. (The dashed line from the “Inputs” to the “Output Logic” represents 
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Fig. 9.1: State machine as implemented in Max+II

the sole difference between Mealy and Moore machines.)

In order to design a state machine, you must:

• determine the “states” of the machine (if there are n states, then you will need log2(n)

memory elements)

• design the “Next State Logic” block

• design the “Output Logic” block

To design this, you must use state diagrams, state tables, and the combinational logic design
techniques that you’ve already used in the previous labs. For more information about state
machines, see your text.
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9.2.2 T-bird Taillights

The T-bird taillights were distinctive in the way they lit up. There were three lights on each side
of the car. When one of the turn signals came on, the innermost light would come on, then the
next light, and finally the outermost light. Then all the lights would go off, and the sequence
would repeat. Figure 9.2 shows the sequence of lights for a left turn. 

Fig. 9.2: LED sequence for a left turn

A circuit to control T-bird taillights must support:

• left turns

• right turns

• hazard lights

• braking (i.e. the application of the brake)

What states are needed? You will need:

• a state where all six lights are off

• a state where all six lights are on

• three states to represent the LED sequence for a left turn

• three states to represent the LED sequence for a right turn

Note: the “hazard” condition does not need any additional states. It can be implemented by
bouncing back and forth between the “all on” and “all off” states.
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What inputs are needed? You will need three inputs:

• “LT” for left turns

• “RT” for right turns

• “BRK” for the brake

Note: when “LT” and “RT” are both on, the “hazard” condition should be activated.

9.3 Prelab

The prelab for Designs 1, 2 and 3 must be turned in at the beginning of the lab session. Design 4
is for extra-credit.

9.3.1 Design 1

Enumerate the states for a state machine, which will run the basic functions of the T-bird
taillights (left and right-turn signals, brake lights, and hazard lights). Assuming you will build a
Moore machine, draw a state diagram showing all of the inputs and outputs you are using. For
this design, you do not need to worry about the brightness of the lights; you may simply turn the
lights on and off.

9.3.2 Design 2

Now assume you will build a Mealy machine. Draw the state diagram for your machine, correctly
indicating all the inputs and outputs you are using. Again, do not worry about dimming the lights
yet.

9.3.3 Design 3

Choose a machine type (Moore or Mealy) and complete the design process. You should end up
with a gate level schematic. You will want to use your clock divider from the previous labs as
your clock signal.

9.3.4 Design 4

Once you have developed the basic circuit, you will want to add extra features. The only required
feature is that you dim the brake lights so that you can see a (brighter) turn signal on top of the
brake lights. You may add other features for extra credit. Examples include: 

• Headlights: these can be implemented in various ways and often they have some effect on
the brightness of the LEDs.

• Use the 7 segment display modules as a speedometer that increases whenever the brake is
not applied (or when some other criteria is satisfied).

• Use the 7 segment display modules as a gas gauge that decreases whenever the brake is
not applied.

• Use the LEDs to simulate the arrows that appear in the side mirrors of some new cars
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when the turn signal is activated.

9.3.5 Questions

1. Suppose a state machine has k states. Find an exact expression for the number of D flip-
flops (memory elements) required to hold the state.

2. Which of your first two designs (Mealy and Moore) do you think is more realistic for an
actual car? Why?

9.4 Lab Procedure

Create a simulation file, using the design you chose in Question 1, and demonstrate the basic
functions of the T-Bird taillights to your TA. Once you have finished that portion of the lab,
implement your own improvements and demonstrate them to the TA.

9.5 Postlab

None.
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Lab 10: LED Pong

10.1 Introduction

This is a two-week lab in which you will combine all the information you have learned this
semester to develop a game of LED Pong. Once the basic game has been designed and tested you
will add more innovations to your game as time allows.

10.2 Background

There is no new material for this lab.

10.3 Prelab

This lab is intended to be more open-ended than the previous labs have been. There is more than
one correct way to implement this lab. You may turn in the prelab in two parts. During the first
week you should turn in everything except for Designs 2-4. During the second week you may
turn in an addendum containing Designs 2,3,4. Since each design will be unique, it is especially
important for this lab that you include a detailed written description of how your design is to
work. Read the game instructions carefully before you start. Circuits that do not work
within the rules specified will not receive full credit.

10.3.1 Design 1

Design a circuit that will play LED Pong in the following fashion. Two players are assigned
pushbuttons. Two columns of LED’s on the Altera board will be the game board. A lit LED
represents the “ball”; as the “ball” is traveling, one LED will deactivate and another will activate.
Only one light is lit at any given time. One of the players hits his/her pushbutton to “serve” the
ball and begin the game. The ball travels up one column and down the other as in Figure 10.1.

The second player must hit his/her pushbutton to return it but can only do so when the ball is in
the lowest position of the column. If the player hits the pushbutton at the correct time, the ball
returns up the column and back toward the first player; however, if the returning player hits the
button either after or anytime before the last LED is lit, the game resets and the winning player
serves. Note that if a server tries to re-serve before the ball reaches the other player, it should
have no effect on the circuit. 

To do this, you may use either a shift register, a counter, a state machine, or some combination of
these. You will also need your clock divider module to set the game speed.

If you decide to use a state machine, keep in mind that a state machine requires that inputs, once 
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Fig. 10.1: LED sequence when the left player has served

they are asserted, must remain asserted until the next rising clock edge (until the next state
transition). Since pushbuttons do not work in this fashion, you will have to use a self-resetting
latch to hold the pushbutton value until the next rising clock edge. You can use an SR latch and a
D-flip-flop in the following manner: attach the Q latch output to the flip-flop input and attach the
flip-flop output to the Reset latch input. The clock signal for this flip-flop should be the same one
used for the game itself.

10.3.2 Design 2

Once the original LED Pong game works, add two 4-bit counters and your hexadecimal display
modules from Lab 4, so that a one-digit score may be displayed for each player. Be sure when
you are adding this portion that the clock signals of these counters have no bounce, so that the
scores only increase by 1 at a time.

10.3.3 Design 3

Next, you can make the game more difficult by adding acceleration to the “ball”. This
acceleration will depend on the length of time a player waits to hit the ball while it is in the last
position. If the ball is hit when it first arrives, the return will be slowest; if it is hit just before it
goes out of play, the return will be fastest. Your design will use lower-order clock bits to
determine at what fraction of the time period the ball was hit. However, there will be several
different speeds at which the ball may be traveling; therefore, you must use a decoder
(demultiplexer) to determine which clock bits you use to determine the speed of the return.

10.3.4 Design 4

You are welcome to design your own innovations for LED Pong. Each extra innovation will
result in a higher lab score.

10.4 Lab Procedure

Create a simulation file for your circuit in Design 1 and demonstrate it to the TA. Once the TA
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has approved your design, add as many of the improvements listed in Designs 2 through 4 as
possible before the end of the lab period.

10.5 Postlab

None.
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