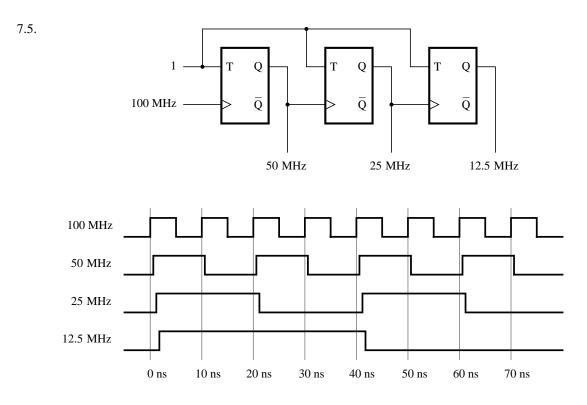
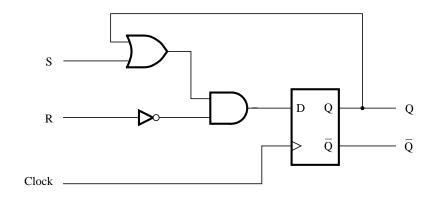
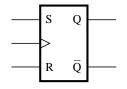
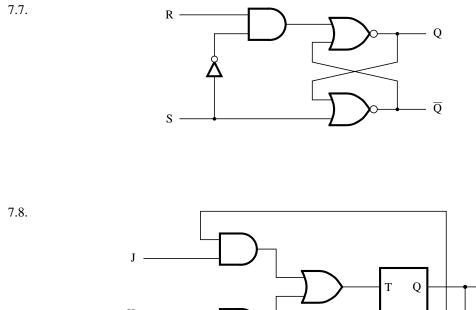

Chapter 7

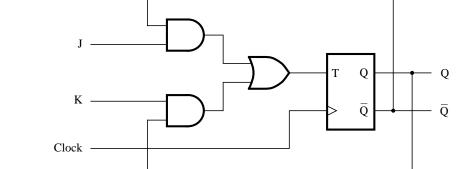

7.1.


- 7.2. The circuit in Figure 7.3 can be modified to implement an SR latch by connecting S to the *Data* input and S + R to the *Load* input. Thus the value of S is loaded into the latch whenever either S or R is asserted. Care must be taken to ensure that the *Data* signal remains stable while the *Load* signal is asserted.
- 7.3. \overline{R} . $\overline{S} = \overline{R}$ $Q_a \quad Q_b$ Q_b 0/1 1/0 (no change) 1 1 1 0 0 1 0 1 0 1 Q_a 0 0 1 1 \overline{S} .

7.4.






7.6.

S	R	Q(t + 1)
0	0	Q(t)
0	1	0
1	0	1
1	1	0

7.9. This circuit acts as a negative-edge-triggered JK flip-flop, in which J = A, K = B, Clock = C, Q = D, and $\overline{Q} = E$. This circuit is found in the standard chip called 74LS107A (plus a *Clear* input, which is not shown).

Chapter 8

8.1. The expressions for the inputs of the flip-flops are

$$D_2 = Y_2 = \overline{w}y_2 + \overline{y}_1\overline{y}_2$$
$$D_1 = Y_1 = w \oplus y_1 \oplus y_2$$

The output equation is

 $z = y_1 y_2$

8.2. The excitation table for JK flip-flops is

Present					
state	w = 0		w = 1		Output
y_2y_1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	z
00	1d	0d	1d	1d	0
01	0d	d0	0d	d1	0
10	d0	1d	d1	0d	0
11	d0	d1	d1	d0	1

The expressions for the inputs of the flip-flops are

$$J_2 = \overline{y}_1$$

$$K_2 = w$$

$$J_1 = \overline{w}y_2 + w\overline{y}_2$$

$$K_1 = J_1$$

The output equation is

$$z = y_1 y_2$$

8.3. A possible state table is

Present	Next	state	Output z	
state	w = 0	w = 1	w = 0	w = 1
А	А	В	0	0
В	Е	С	0	0
С	Е	D	0	0
D	Е	D	0	1
Е	F	В	0	0
F	А	В	0	1