3.1 (20points)

 $f = x_1' x_2' x_3 + x_1' x_2 x_3' + x_1 x_2' x_3' + x_1 x_2 x_3$ Truth table:

X ₁	x ₂	X 3	f	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Number of transistors:

Gate	NOT	3-input AND	4-input OR	
Number of Gates	3	4	1	
Number of Transistors	2	8	10	
per Gate		0		

So, the total number of transistors is given as follows:

 $2 \times 3 + 8 \times 4 + 10 \times 1 = 48$

Supplementary problem (20 points):

 $f = x_1 x_4 + x_1 (x_2 x_3)' (x_2 x_3' x_4)' + x_1' x_2' x_3 + x_1' x_2' x_3' x_4'$ Truth table:

Number of transistors:

Gate	NOT	2-input AND	2-input NAND	3-input NAND	3-input AND	4-input AND	4-input OR
Number of Gates	4	1	1	1	2	1	1
Number of Transistors per Gate	2	6	4	6	8	10	10

So, the total number of transistors is given as follows:

 $2 \times 4 + 6 \times 1 + 4 \times 1 + 6 \times 1 + 8 \times 2 + 10 \times 1 + 10 \times 1 = 60$