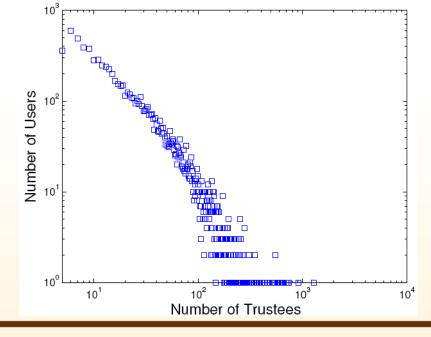


Exploiting Homophily Effect for Trust Prediction

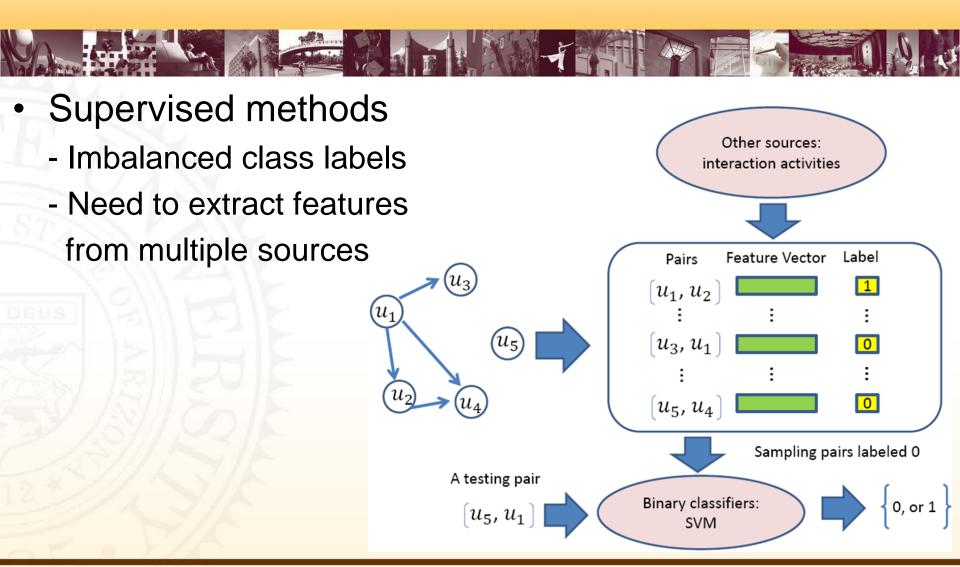
Jiliang Tang, Huiji Gao, Xia Hu, and Huan Liu Computer Science and Engineering Arizona State University

February 4-8, 2013 WSDM2013

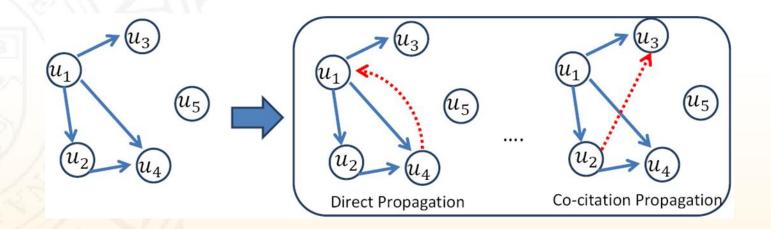

Online Trust

 Trust plays an important role in helping online users collect reliable information for decision making

The available explicit trust relations are extremely


sparse

Existing Trust Predictors (Supervised)



Existing Trust Predictors (Unsupervised)

- Unsupervised methods
 - Trust propagation is a key technique
 - But it requires sufficient connections for each user

Social Theories Can Help

- Homophily is one of the important theories that explain why users are connected
 - Similar users are likely to establish trust relations
- Exploiting homophily effect provides a fresh perspective for a novel trust predictor
- We first question if we can observe homophily in trust relations

Data Sets

- Two product review data sets

- Ciao

	Epinions	Ciao
# of Users	8,527	6,262
# of items	$26,\!552$	$20,\!416$
# of Ratings	$225,\!579$	167,320
# of Trust Relations	$302,\!177$	109,524
Max # of Trustors	$1,\!285$	100
Max # of Trustees	$1,\!805$	797
Trust Network Density	0.0042	0.0028
Clustering Coefficient	0.2242	0.2254

Assessing Existence of Homophily

 Are users with trust relations more similar in terms of their ratings than those without?

 Are users with higher similarity more likely to establish trust relations than those with lower similarity?

Findings for the First Question

- For each trust relation, we calculate two similarities
 - Similarity1: trustor and trustee
 - Similarity2: trustor and a random user

Trustee

Trustor

Random

- We define two vectors s = { similarity1} and t = {similarity2}
- We conduct a one-tail t-test on s and t

$$H_0$$
: $s = t$;

$$H_1: s > t$$

The null hypothesis is rejected at significance level 0.01 with p-value of 5.12e-18 and 3.76e-21 in Epinions and Ciao, respectively

Before we applying Homophily ...

- We review properties associated with trust
 - Correlation with user preference
 - Transitivity, composability, and asymmetry
 - Multiple facets (mTrust, WSDM2012)
 - Evolution (eTrust, KDD2012)
- Next we propose a new model of trust

Modeling Trust

• Given that u_i is a k dimensional preference vector of u_i , the trust relation from u_i to u_j is modeled as the correlation of user preferences,

$$G_{ij} \approx \mathbf{u}_i^T \mathbf{H} \mathbf{u}_j$$

This model can capture the following properties of trust,

- Correlation with user preference
- Transitivity, composability, and asymmetry
- Multiple facets

A Computational Interpretation of Homophily

- We need a bridge between homophily theory and our computational model.
- We define $\zeta(i,j)$ as homophily coefficient between u_i and u_i
 - $\zeta(i,j) \in [0,1], \ \zeta(i,j) = \zeta(j,i)$
- The larger value $\zeta(i,j)$ is, the more likely a trust relation is established between u_i and u_j

Model Homophily

 We define homophily regularization to exploit homophily effect as

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \zeta(i,j) ||\mathbf{u}_{i} - \mathbf{u}_{j}||_{2}^{2}$$

A large homophily coefficient indicates that they are more likely to establish trust relations thus their preferences should be similar

Significance of Homophily Regularization

- Incorporating side information via homophily coefficient
 - User profile (gender, location, age, education)
 - Rating information (in our paper)
- Applying to cold-start users
- For users with few or no trust relations, we still can get an approximate estimate of their preference via homophily regularization $\sum_{i=1}^{n} |\zeta(i,j)| \|\mathbf{u}_{i} \mathbf{u}_{j}\|_{2}^{2}$

Our Framework - hTrust

hTrust is to solve the following problem

$$\min_{\mathbf{U},H} \|\mathbf{G} - \mathbf{U}^{\mathsf{T}} \mathbf{H} \mathbf{U}\|_{F}^{2} + \alpha \|\mathbf{U}\|_{F}^{2} + \beta \|\mathbf{H}\|_{F}^{2} + \lambda \sum_{i=1}^{n} \sum_{j=1}^{n} \zeta(i,j) \|\mathbf{u}_{i} - \mathbf{u}_{j}\|_{2}^{2}$$
s.t. $\mathbf{U} \ge \mathbf{0}, \ \mathbf{H} \ge \mathbf{0}$

The first term captures the properties of trust
The fourth term is used to exploit homophily effect

After learning **U** and **H**, the likelihood of the *i*-th user trusts *j*-th user will be given by

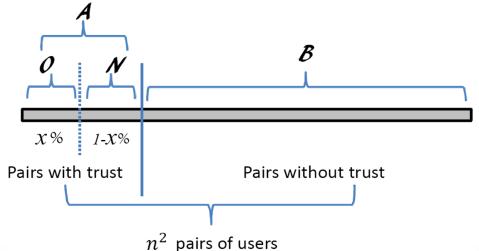
$$\widetilde{\mathbf{G}}_{ij} = \mathbf{u}_i^T \mathbf{H} \mathbf{u}_j$$

How to Evaluate hTrust

Is exploiting homophily effect helpful for trust prediction?

 How does homophily regularization affect hTrust?

 How does homophily coefficient affect hTrust?



Experiment Setup

- Splitting data
 - x% as old trust relations
 - 1 x% as new trust relations

- Evaluating steps
 - Ranking pairs of users in N and B
 - Choosing top-|N| ranked pairs as C
 - Calculating accuracy as

$$PA = \frac{|N \cap C|}{|N|}$$

Evaluating hTrust

- Is homophily effect helpful for trust prediction?
 - Comparing hTrust with the representative trust predictors
- How does homophily regularization affect hTrust?
- How does homophily coefficient affect hTrust?

Comparison of Different Trust Predictors

		1/2					
2000	ST TO THE			一十十			
	4						
	50%	55%	60%	65%	70%	80%	90%
TP	0.1852	0.1897	0.1897	0.1845	0.1790	0.1663	0.1558
RS	0.1319	0.1230	0.1110	0.1029	0.0869	0.0813	0.0598
PCC	0.1160	0.1019	0.0884	0.0811	0.0614	0.0610	0.0469
JC	0.0940	0.0858	0.0725	0.0637	0.0480	0.0336	0.0279
simTP	0.2076	0.2105	0.2057	0.2011	0.1982	0.1857	0.1702
MF	0.2145	0.2121	0.2102	0.2057	0.1944	0.1837	0.1688
triNMF	0.2142	0.2129	0.2134	0.2064	0.1958	0.1875	0.1692
hTrust	0.2569	0.2517	0.2434	0.2326	0.2268	0.2072	0.1900
Randor	m 0.0027	0.0026	0.0025	0.0024	0.0017	0.0015	0.0016

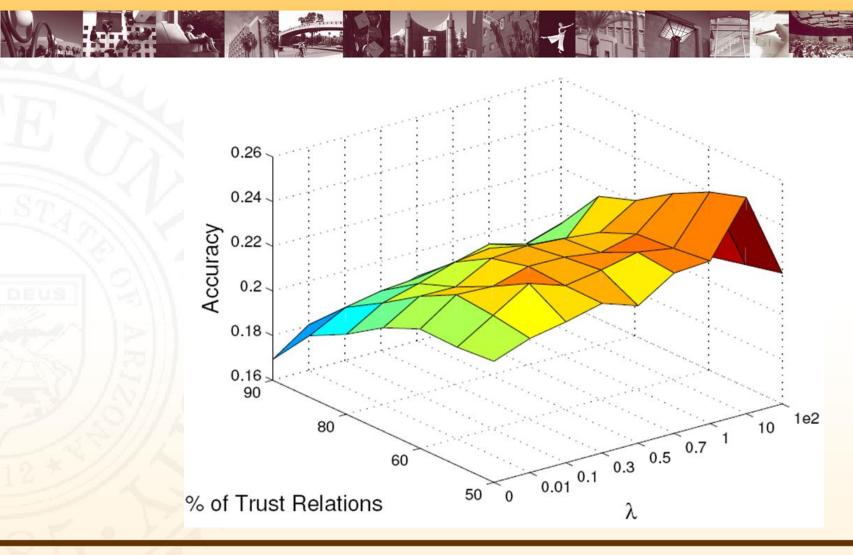
Comparison of Different Trust Predictors

W-0 -		M. 12					
To see		ISE V		7			
							!
	534	/	70.4	/	700/	201	222/
	50%	55%	60%	65%	70%	80%	90%
TP	0.1852	0.1897	0.1897	0.1845	0.1790	0.1663	0.1558
RS	0.1319	0.1230	0.1110	0.1029	0.0869	0.0813	0.0598
PCC	0.1160	0.1019	0.0884	0.0811	0.0614	0.0610	0.0469
JC	0.0940	0.0858	0.0725	0.0637	0.0480	0.0336	0.0279
simTP	0.2076	0.2105	0.2057	0.2011	0.1982	0.1857	0.1702
MF	0.2145	0.2121	0.2102	0.2057	0.1944	0.1837	0.1688
iriNMF	0.2142	0.2129	0.2134	0.2064	0.1958	0.1875	0.1692
hTrust	0.2569	0.2517	0.2434	0.2326	0.2268	0.2072	0.1900
Randon	m 0.0027	0.0026	0.0025	0.0024	0.0017	0.0015	0.0016

Comparison of Different Trust Predictors

Marie To				1			
						The way and the same of the sa	
	50%	55%	60%	65%	70%	80%	90%
TP	0.1852	0.1897	0.1897	0.1845	0.1790	0.1663	0.1558
RS	0.1319	0.1230	0.1110	0.1029	0.0869	0.0813	0.0598
PCC	0.1160	0.1019	0.0884	0.0811	0.0614	0.0610	0.0469
JC	0.0940	0.0858	0.0725	0.0637	0.0480	0.0336	0.0279
simTP	0.2076	0.2105	0.2057	0.2011	0.1982	0.1857	0.1702
MF	0.2145	0.2121	0.2102	0.2057	0.1944	0.1837	0.1688
triNMF	0.2142	0.2129	0.2134	0.2064	0.1958	0.1875	0.1692
hTrust	0.2569	0.2517	0.2434	0.2326	0.2268	0.2072	0.1900
Random	0.0027	0.0026	0.0025	0.0024	0.0017	0.0015	0.0016

Questions



- Is exploiting homophily effect helpful for trust prediction?
- How does homophily regularization affect hTrust?
- $-\lambda$ controls the contribution from homophily regularization thus we investigate the impact of λ on hTrust.
- How does homophily coefficient affect hTrust?

Impact of Homophily Regularization

Questions

 Is exploiting homophily effect helpful for trust prediction?

How does homophily regularization affect hTrust?

- How does homophily coefficient affect hTrust?
 - Investigate different ways to obtain homophily coefficient.

Impact of Homophily Coefficient

Table 3: Different Measures of Homophily Coefficient. Note that $\zeta(i,j) = random$ means we randomly assign homophily coefficients, while $\zeta(i,j) = 1$ indicates that homophily coefficients for all pairs of users are set to 1

Datase	ets	$\zeta(i,j) = JC(i,j)$	$\zeta(i,j) = PCC(i,j)$	$\zeta(i,j) = RS(i,j)$	$\zeta(i,j) = random$	$\zeta(i,j) = 1$
	50%	0.2382	0.2415	0.2569	0.2172	0.2192
	55%	0.2301	0.2354	0.2517	0.2153	0.2208
	60%	0.2227	0.2285	0.2434	0.2027	0.2071
Epinions	65%	0.2131	0.2196	0.2326	0.1907	0.1966
	70%	0.2019	0.2073	0.2268	0.1799	0.1856
	80%	0.1871	0.1937	0.2072	0.1558	0.1697
	90%	0.1732	0.1753	0.1900	0.1433	0.1498
	50%	0.1967	0.2098	0.2220	0.1630	0.1742
	55%	0.1941	0.2041	0.2193	0.1728	0.1721
	60%	0.1865	0.2069	0.2158	0.1585	0.1627
Ciao	65%	0.1780	0.1958	0.2082	0.1591	0.1613
	70%	0.1639	0.1820	0.1966	0.1479	0.1491
	80%	0.1441	0.1618	0.1749	0.1242	0.1304
	90%	0.1319	0.1502	0.1650	0.1214	0.1268

Impact of Homophily Coefficient

Table 3: Different Measures of Homophily Coefficient. Note that $\zeta(i,j) = random$ means we randomly assign homophily coefficients ,while $\zeta(i,j) = 1$ indicates that homophily coefficients for all pairs of users are set to 1

Datase	ets	$\zeta(i,j) = JC(i,j)$	$\zeta(i,j) = PCC(i,j)$	$\zeta(i,j) = RS(i,j)$	$\zeta(i,j) = random$	$\zeta(i,j) = 1$
	50%	0.2382	0.2415	0.2569	0.2172	0.2192
	55%	0.2301	0.2354	0.2517	0.2153	0.2208
	60%	0.2227	0.2285	0.2434	0.2027	0.2071
Epinions	65%	0.2131	0.2196	0.2326	0.1907	0.1966
	70%	0.2019	0.2073	0.2268	0.1799	0.1856
	80%	0.1871	0.1937	0.2072	0.1558	0.1697
	90%	0.1732	0.1753	0.1900	0.1433	0.1498
	50%	0.1967	0.2098	0.2220	0.1630	0.1742
	55%	0.1941	0.2041	0.2193	0.1728	0.1721
	60%	0.1865	0.2069	0.2158	0.1585	0.1627
Ciao	65%	0.1780	0.1958	0.2082	0.1591	0.1613
	70%	0.1639	0.1820	0.1966	0.1479	0.1491
	80%	0.1441	0.1618	0.1749	0.1242	0.1304
	90%	0.1319	0.1502	0.1650	0.1214	0.1268

Our Contributions

Verifying the existence of homophily in trust relations

- Providing a principled way to incorporate homophily effect into a computational model and proposing hTrust
- Evaluating hTrust to understanding the work of hTrust

Future Work

- Applying homophily regularization to supervised trust predictors
- Exploiting homophily effect for other kinds of relations
 - Following relations in Twitter
 - Friendship in Facebook
- Investigating the dynamics of user preferences
 - Temporal information

Questions

Acknowledgments: This work is, in part, sponsored by ARO (#025071) and NSF (#IIS-1217466). Comments and suggestions from DMML members and reviewers are greatly appreciated.

