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ABSTRACT
Attributed network embedding aims to seek low-dimensional
vector representations for nodes in a network, such that orig-
inal network topological structure and node attribute prox-
imity can be preserved in the vectors. These learned rep-
resentations have been demonstrated to be helpful in many
learning tasks such as network clustering and link prediction.
While existing algorithms follow an unsupervised manner,
nodes in many real-world attributed networks are often asso-
ciated with abundant label information, which is potentially
valuable in seeking more effective joint vector representa-
tions. In this paper, we investigate how labels can be mod-
eled and incorporated to improve attributed network embed-
ding. This is a challenging task since label information could
be noisy and incomplete. In addition, labels are completely
distinct with the geometrical structure and node attributes.
The bewildering combination of heterogeneous information
makes the joint vector representation learning more difficult.
To address these issues, we propose a novel Label informed
Attributed Network Embedding (LANE) framework. It can
smoothly incorporate label information into the attributed
network embedding while preserving their correlations. Ex-
periments on real-world datasets demonstrate that the pro-
posed framework achieves significantly better performance
compared with the state-of-the-art embedding algorithms.

1. INTRODUCTION
Attributed networks [18, 28] are ubiquitous in a variety

of real-world information systems, such as academic net-
works and health care systems. Different from plain net-
works in which only node-to-node interactions and depen-
dencies are observed, each node in an attributed network is
often associated with a rich set of features. For instance,
with the popularity of social networking services, people not
only make friends with each other to form online commu-
nities but also actively share opinions and post comments.
In social science, social influence theories [22, 23] have been
studied that attributes of individuals can both reflect and af-
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fect their community structures [46]. In addition, a number
of data mining applications, such as sentiment analysis [12]
and trust prediction [34], have been benefited by exploit-
ing the correlations between geometrical structure and node
attributes. Network embedding [36, 44], as an efficient com-
putational tool for graph mining, aims at mapping the topo-
logical proximities of all nodes in a network into a continuous
low-dimensional matrix representation. The learned embed-
ding representation paves the way for numerous applications
such as node classification [33, 47], link prediction [10, 31],
and network visualization [35]. While this has been exten-
sively studied, research on Attributed Network Embedding
(ANE) [7] is still in its early stage. In contrast to network
embedding that learns from pure networks, ANE targets at
leveraging both network proximity and node attribute affin-
ity. Due to heterogeneity of the two information sources, it
is challenging for existing network embedding algorithms to
be directly applied on ANE.

Abundant labels such as group or community categories
have been collected in various real-world networks. For in-
stance, in many social networks such as Facebook and Flickr,
users are allowed to join some predefined groups. Users in
the same group tend to share posts or photos of similar
themes, and they also frequently interact with each other.
Citation network is another example. Papers published in
the same research community usually share common top-
ics. They also heavily cite others from the same community.
These facts can be explained by the homophily hypothe-
sis [16, 21], i.e., individuals with the same label usually have
similar social relations and similar node attributes. Labels
are strongly influenced by and inherently correlated to both
of the network structure and attribute information. Moti-
vated by the fact that labels are potentially helpful in learn-
ing a better joint embedding representation, while existing
methods focus on the problem in an unsupervised manner,
we propose to study how label information can be leveraged
and incorporated into ANE.

However, it is a nontrivial task to model and take advan-
tage of labels in attributed networks. There are two main
challenges. First, the attributed network and label informa-
tion could be sparse, incomplete and noisy. For instance,
in social networks, the number of single user’s friends is al-
ways exceedingly limited compared with the total number of
users [1]. The proportion of active users who have specified
their labels might also be quite small. Second, it is challeng-
ing to learn a unified representation given the heterogeneity
of an attributed network and its labels. Different from at-
tributes such as comments and posts, labels separate the
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instances into different groups or communities. It is difficult
to explicitly model the correlations among all these mul-
timodal information sources, and jointly embed them into
an informative embedding representation. Therefore, it is
a challenging task to leverage the heterogeneous and noisy
information to compensate each other towards an effective
and robust embedding representation.

In this paper, we investigate the problem of label in-
formed attributed network embedding and propose an ef-
fective framework LANE. Specifically, we aim at answering
the following questions: (1) How to model and incorporate
labels into an ANE framework? (2) What are the potential
impacts of labels on the embedding representation learning?
(3) How much can LANE contribute to other learning tasks
such as node classification by leveraging labels? The main
contributions of this paper are summarized as follows:

• Formally define the problem of label informed attributed
network embedding;

• Propose a novel framework LANE, which can affili-
ate labels with the attributed network and smoothly
embed them into a low-dimensional representation by
modeling their structural proximities and correlations;

• Present an effective alternating algorithm to solve the
optimization problem of LANE; and

• Empirically evaluate and validate the effectiveness of
LANE on real-world attributed networks.

2. PROBLEM STATEMENT
Notations: We use lowercase alphabets (e.g., a) to de-

note scalars, boldface lowercase alphabets (e.g., a) to denote
vectors and boldface uppercase alphabets (e.g., A) to denote
matrices. The ith row of a matrix A is denoted as ai. The
transpose of matrix A is represented as AT . The trace of A
is taken as Tr(A) if A is square. Operation ‖·‖2 denotes the
Euclidean norm of a vector. I denotes the identity matrix.
The main symbols are listed in Table 1.

Let G = {G,A} be an attributed network with n intercon-
nected nodes, where G ∈ Rn×n is the weighted adjacency
matrix. The (i,j)th entry of G represents the link informa-
tion from node i to node j, and it is defined as 0 if there is no
edge. Matrix A ∈ Rn×m collects the attribute information
of all n nodes, and its ith row ai denotes the m-dimensional
attribute vector of node i. Both G and A can be either
binary or take any real value. In addition to the geometrical
structure and node attributes, each node is associated with
label information indicating its affiliation group or groups.
Let Y ∈ Rn×k be a binary matrix that collects the labels
of all n nodes, where k is the number of label categories.
Yij = 1 indicates node i belongs to category j. Each node
can belong to one or several categories.

Based on the terminologies described above, we formally
define the problem of label informed attributed network em-
bedding as follows: Given an attributed network G associ-
ated with label information Y , we aim at representing each
node i as a continuous low-dimensional vector representation
hi ∈ Rd, i.e., learning a mapping f : {G,Y} → H in a way
that agrees with both attributed network and labels as much
as possible, such that better performance can be achieved by
H in terms of advancing other learning tasks.

Notations Definitions

G weighted adjacency matrix
A attribute information matrix
Y label information matrix
H final embedding representation

S(G) network affinity matrix
S(A) node attribute affinity matrix
n number of nodes in the network
d dimension of the embedding representation

Table 1: Main symbols and definitions in the paper.

3. LABEL INFORMED EMBEDDING - LANE
We propose a novel label informed attributed network em-

bedding method - LANE, which can model the node prox-
imities in attributed network space and label information
space, as well as jointly embed them into a unified low-
dimensional representation. Figure 1 illustrates the main
idea of LANE. In the figure, there is an attributed network
with six nodes. Each node is associated with specific labels.
LANE jointly embeds the attributed network and labels via
two modules: attributed network embedding and label in-
formed embedding. First, we map the node proximities in
network structure and attribute information into two latent
representations U(G) and U(A), and then incorporate U(A)

into U(G) by extracting their correlations. Second, we em-
ploy the learned joint proximity to smooth the label infor-
mation and uniformly embed them into another latent rep-
resentation U(Y ), and then project all of the learned latent
representations into a unified embedding representation H.
In this space, nodes 1 and 3 are represented as similar vec-
tors

[
0.54 0.27

]
and

[
0.55 0.28

]
, which means that they

have similar properties in the original space. To approach
the optimal representation efficiently, we also design an effec-
tive alternating optimization algorithm. Next, we introduce
LANE in detail.

3.1 Attributed Network Embedding Module
In this module, our goal is to seek two n × d matrices

to represent nodes in G such that structural information of
network and attributes is well preserved. Specifically, we aim
at allocating similar vector representations for nodes with
similar geometrical or attribute proximities respectively.

We first introduce how to model the network structure.
The key idea is to focus on each pair of nodes i and j. If
they have similar locality properties, then their vector rep-
resentations ui and uj should also be similar in the learned
space. We use distance ‖ui − uj‖22 to measure this. For ex-
ample, in Figure 1, nodes 1 and 3 share similar geometrical
structures since both are connected with nodes 2 and 4, so
u2 and u4 tend to be similar as well. In this paper, we use
cosine measure sij to calculate the similarity of two nodes,
and it is straightforward to extend to other measures. Since
sij would be large if nodes i and j have similar network
structures, and approach small value otherwise, we can use
the following product to measure the degree of disagreement
between sij and {ui,uj}:

sij‖ui − uj‖22. (1)

This loss function should be small if we want the degree of
disagreement to be small. This can be illustrated by the
observations that when nodes i and j are similar, ui and
uj should be close to each other. When they are dissimilar,

732



n1
n2
n3
n4
n5
n6

!(#)

l1 l2 l3

Label Modeling Based on Homophily

Correlation
Projections

Attributed Network G :

II. Label Informed Embedding

!(%)

!(&)

Informed
'

·

·

·

·

· 4

1 2

36

5

·

Corresponding Labels (:

=

0.54 0.27
0.22 0.91
0.55
0.98
0.32
0.26

0.28
0.11
0.87
0.11

n1
n2
n3
n4
n5
n6

I. Attributed Network Embedding

Latent Space

Spectral
Technique

Inform

⟹'

Figure 1: LANE maps the node proximities in attributed network into U(G) and label proximity into U(Y ), as
well as incorporates them into a joint embedding representation H via correlation projections.

another term sij would be small. Therefore, mathemati-
cally we can measure the total degree of disagreement by
summing up the product of pairwise similarity and corre-
sponding vector representations’ distance, which forms as

minimize
U(G)

1

2

n∑
i,j=1

sij‖
ui√
di
− uj√

dj
‖22. (2)

ui and uj are the ith and jth rows of network latent repre-
sentation U(G). We represent the pairwise similarities as a
graph affinity matrix S(G), where sij is its (i,j)th element.
di and dj are the sum of ith and jth rows of S(G). We utilize
them for normalization purpose. Based on the definition of
normalized graph Laplacian [8], we can reformulate Eq. (2)
into a maximization problem, and model the geometrical
proximity via the objective function as follows,

maximize
U(G)

JG = Tr(U(G)TL(G)U(G))

subject to U(G)TU(G) = I.

(3)

Laplacian L(G) = D(G)− 1
2 S(G)D(G)− 1

2 , and degree matrix
D(G) is a diagonal matrix with sum of each row of S(G) on
the diagonal. A constraint is added to avoid being arbitrary.

Similar to the modeling of network structure, we perform
the same procedure on node attribute proximity to obtain
the attribute latent representation U(A). We also use co-
sine similarity to construct the attribute affinity matrix S(A),
and aim at minimizing the degree of disagreement between
U(A) and S(A). We denote the corresponding Laplacian as

L(A) = D(A)− 1
2 S(A)D(A)− 1

2 , where D(A) is the degree ma-
trix of S(A). Then the objective function of node attributes
embedding is defined as

maximize
U(A)

JA = Tr(U(A)TL(A)U(A))

subject to U(A)TU(A) = I.

(4)

To incorporate U(A) into U(G), we project U(A) into the
space of U(G), and employ variance of the projected matrix
as a measurement of the correlations [15], i.e.,

ρ1 = Tr(U(A)TU(G)U(G)TU(A)). (5)

By collectively maximizing JG, JA, and their correlations,
we are able to make U(A) and U(G) compensate each other.

In this module, we perform the ANE based on pairwise
similarities. The proposed solution is in line with spectral
clustering [4, 26], which enjoys several nice properties as

follows. First, the spectral technique does not have strong
assumptions on the inputs, which means that it can be gen-
eralized to many real-world problems. Second, the objective
function can be nicely interpretable with many graph theo-
ries, such as ratio-cut partitioning [3] and random walks [41].
Third, the corresponding optimization can be readily imple-
mented via eigen-decomposition [8].

3.2 Label Informed Embedding Module
Label information plays an essential role in determining

the inscape of each node with strong intrinsic correlations
to network structure and node attributes. Along with these
strong correlations, labels can potentially be incorporated
into the proposed ANE module in Section 3.1. However,
labels are usually noisy and incomplete. Direct exploration
of labels may negatively affect final embedding results. We
propose a principled way to model labels and reinforce the
embedding representation learning in two steps: label infor-
mation modeling and correlation projections.

3.2.1 Label Information Modeling
In this step, we map the node proximities in labels into a

latent representation U(Y ). The basic idea is to employ the
learned attribute network proximity to smooth label infor-
mation modeling. When nodes have the same label, their
geometrical structures, attribute affinity, and final vector
representations tend to be similar [21, 23].

Specifically, we include nodes with the same label into the
same clique, and the corresponding form of presentation is
formulated as YYT . Based on this, we perform the label
proximity modeling. Let S(Y Y ) be the cosine similarity of
YYT . Similar to S(G) and S(A), matrix S(Y Y ) could be
considered as an affinity matrix of label information. We

calculate the Laplacian via L(Y Y ) = D(Y )− 1
2 S(Y Y )D(Y )− 1

2 ,
where D(Y ) is the degree matrix of S(Y Y ).

However, due to the special structure, the rank of matrix
S(Y Y ) is limited by the number of label categories k, which
might be smaller than the embedding dimension d. It leads
to unsatisfactory performance of the eigen-decomposition of
L(Y Y ). To address this issue, we utilize the learned prox-

imity U(G)U(G)T to smooth the modeling, and leverage the
following objective function to drive nodes with same labels
to have similar vector representations,

maximize
U(Y )

JY = Tr
(
U(Y )T (L(Y Y ) + U(G)U(G)T )U(Y )

)
subject to U(Y )TU(Y ) = I.

(6)
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There are several advantages of doing this. First, Hermi-

tian matrix U(G)U(G)T is in a low-rank space where noise
is significantly reduced [41]. Second, the joint proximity is
considered to be informative and in line with node proxim-

ities in labels. The second term Tr(U(Y )TU(G)U(G)TU(Y ))
also measures the correlation between U(G) and U(Y ). It is
beneficial to the label proximity learning since they are con-
sidered to be highly correlated [16]. Third, the noise in the
learned latent representation U(Y ) could also be greatly re-
duced [24] and most information in the original label space
is recoverable [41]. Therefore, although label information
might be incomplete and noisy, we are still able to fully cap-
ture the proximities of nodes in the label space.

3.2.2 Correlation Projections
We have embedded attributed network and labels into la-

tent representations U(A), U(G) and U(Y ). Next, we design
a correlation projection schema to jointly project them into
a unified embedding representation H.

Specifically, since all of the latent representations are con-
strained by corresponding Laplacian, we project all of them
into a new space H to get more degree of freedom and flexi-
bility. To preserve the information in U(G), we leverage the
variance of the projected matrix as a metric of their corre-
lations, which is defined as

ρ2 = Tr(U(G)THHTU(G)). (7)

Similarly, we project U(A) and U(Y ) into the space of H and
measure their correlation as

ρ3 = Tr(U(A)THHTU(A)), and (8)

ρ4 = Tr(U(Y )THHTU(Y )). (9)

The loss function for entire three projections is defined as

maximize
U(·),H

Jcorr = ρ2 + ρ3 + ρ4, (10)

where U(·) denotes all three latent representations. By max-
imizing ρ2, ρ3 and ρ4 simultaneously, we are able to learn the
correlations among U(G), U(A), U(Y ) and H, and drive H
to be jointly advanced by the node proximities in attributed
network and label information.

3.3 Joint Representation Learning via LANE
We have separately implemented and formulated attributed

network embedding and label informed embedding modules.
We define two parameters to weight the importance of dif-
ferent measurements and combine them as

maximize
U(·),H

J = (JG + α1JA + α1ρ1) + α2JY + Jcorr

subject to U(G)TU(G) = I, U(A)TU(A) = I,

U(Y )TU(Y ) = I, HTH = I,
(11)

where α1 is a positive parameter that balances the contri-
bution of attributes in the ANE module. α2 is a positive
parameter that makes a trade-off between the ANE and la-
bel informed embedding. By seeking an optimal value of J ,
we are able to make the embedding representation learning
and correlation projections highly relevant and mutually in-
terrelated. In this way, H is able to capture all of the struc-
tural proximities and their correlations in the label informed
attributed network.

Algorithm 1: Label informed Attributed Network Em-
bedding

Input: d, ε, G, Y.
Output: Embedding representation H.

1 Construct the affinity matrices S(G) and S(A);

2 Compute Laplacian matrices L(G), L(A) and L(Y );

3 Initialize t = 1, U(A) = 0, U(Y ) = 0 and H = 0;
4 repeat
5 Update U(G) by solving Eq. (13);

6 Update U(A) by solving Eq. (14);

7 Update U(Y ) by solving Eq. (15);
8 Update H by solving Eq. (16);
9 t = t+ 1;

10 until Jt − Jt−1 ≤ ε;
11 return H.

3.4 Optimization Algorithm for LANE
We propose an effective algorithm to solve the problem

in Eq. (11). There are four variable matrices, and it is in-
feasible to give closed-form solutions. Motivated by previ-
ous studies [6, 17], we employ an alternating algorithm to
approach the optimal status. The key idea is to update a
local maximum solution for one of the four variable matrices
while fixing others. Eq. (11) would be converted to a con-
vex problem w.r.t. one variable matrix when other three are
constant. We now introduce the updating steps in detail.

The second order derivative of J w.r.t. U(G) is formed as

∇2
U(G)J = L(G) + α1U

(A)TU(A) + α2U
(Y )TU(Y ) + HTH,

(12)
where L(G) is a symmetrical similarity matrix. Since pa-

rameters α1 and α2 are positive, as well as U(Y )TU(Y ),

U(A)TU(A), and HTH are all Hermitian matrices, the sec-
ond order derivative should always be positive semidefinite.
When U(A), U(Y ) and H are fixed, Eq. (11) becomes convex
w.r.t. U(G), and we are able to obtain the optimal solu-
tion via Lagrange multipliers method. Let λi(i = 1, . . . ,4)
denote the Lagrange multipliers of four variable matrices re-
spectively. By setting the derivative of Lagrangian ∇U(G)L
equal to zero, we have

(L(G) + α1U
(A)U(A)T + α2U

(Y )U(Y )T + HHT )U(G) = λ1U
(G),

(13)
and the solution is corresponding to the top d eigenvectors.

Similarly, it is easy to check that the second order deriva-
tives of J w.r.t. U(A), U(Y ) and H are all guaranteed to be
positive semidefinite. Therefore, when only one of the matri-
ces U(A), U(Y ) and H is variable, maximizing J would result
in finding the top d eigenvectors of the following problems,

(α1L(A) + α1U
(G)U(G)T + HHT )U(A) = λ2U

(A), (14)

(α2L(Y Y ) + α2U
(G)U(G)T + HHT )U(Y ) = λ3U

(Y ), (15)

(U(G)U(G)T + U(A)U(A)T + U(Y )U(Y )T )H = λ4H. (16)

In summary, the alternating algorithm for optimizing the
function in Eq. (11) is presented in Algorithm 1. Since each
updating step is to solve a convex problem, it is guaran-
teed to converge to a local optimal point [6]. We start the
updating from the main information source representation
U(G) in order to have an appropriate initialization. Four
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variable matrices are updated according to the local eigen-
decomposition equations until the increase of objective func-
tion J falls below the convergence threshold ε.

3.5 Complexity Analysis
The proposed framework LANE needs a small number of

iterations before it converges. In each iteration, LANE con-
ducts four eigen-decompositions. To calculate the leading
d eigenvectors of an n × n matrix, the time complexity of
standard iterative eigensolvers such as Lanczos method [39]
is O(dn2) in the worst case. Let Ta stands for the number
of operations required to obtain all of the affinity matrices,
then the total time complexity of LANE is O(Ta + dn2),
which is the same as the complexity of spectral embed-
ding [4]. Since d� n, the time complexity of LANE should
be O(n2 + nT ), where T denotes the total number of non-
zeros in matrices G and A. It is also easy to check that the
space complexity of LANE is O(n2).

3.6 Extensions
Attributes and labels might be unavailable in some net-

works. For instance, when mobile communication compa-
nies want to analyze their customers’ network in order to
provide better service, they may only be able to collect the
contact network and partial label information. Attributes
like call contents or personal preferences might not be avail-
able. LANE can also handle these cases, where either or
both attribute and label information is missing.

We use the case when labels are missing as an illustrated
example. In this case, two terms in J would become un-
available. The first one is “JY ”, which is used to perform
label information modeling. The second one is “ρ4”, which
is used to model the correlations between label proximities
and final embedding representation. Hence, we remove them
from J , and rewrite the objective function as

maximize
U(G),U(A),H

JG + β1JA + β2ρ1 + ρ2 + ρ3

subject to U(G)TU(G) = I, U(A)TU(A) = I,

HTH = I.

(17)

Two positive parameters β1 and β2 are introduced to deter-
mine the contributions of attributes and correlations. We
denote this variation as LANE w/o Label. The optimal so-
lution can be obtained via a similar alternating algorithm
as Algorithm 1, so we omit the details. It is straightforward
to extend LANE to the case that attributes are missing.

4. EXPERIMENTS
In this section, we conduct experiments to validate the ef-

fectiveness and efficiency of LANE on real-world attributed
networks. In particular, we want to answer questions as
follow. (1) How effective is the embedding representation
learned by LANE compared with representations learned by
the state-of-the-art methods in other learning tasks such as
node classification? (2) What are the impacts of labels for
the ANE? (3) How efficient is the proposed framework com-
pared with other ANE methods?

4.1 Datasets
We first introduce the applied datasets. Two real-world

social media datasets BlogCatalog and Flickr are used in
our study. The detailed information is shown in Table 2.

# Nodes # Edges # Attributes # Labels
BlogCatalog 5,196 171,743 8,189 6

Flickr 7,575 239,738 12,047 9

Table 2: Detailed information of the datasets.

Both datasets are publicly available and have been used in
previous work [19]. Descriptions are presented as follows.

BlogCatalog is an online community that people can
post blogs. Bloggers follow each other and form a network.
We use the keywords in bloggers’ blog descriptions as the
attribute information. The labels are selected from some
predefined categories, which indicate bloggers’ interests.

Flickr is an image and video hosting website, where users
interact with each other via photo sharing. We use the fol-
lowing relationships among users to form a network. Each
user can specify a list of tags of interest, which are consid-
ered as his/her attribute information. We set the groups
that users joined as labels.

4.2 Baselines
LANE is measured against several state-of-the-art em-

bedding algorithms and two variations. They can be sep-
arated into four categories. First, to investigate the im-
pact of low-dimensional representation learning, we com-
pare LANE with Original Features. Second, to evaluate
the contribution of attributes, three network embedding al-
gorithms are considered, including DeepWalk, LINE, and
LANE on Net. Third, to understand the impact of label
informed embedding, two ANE methods are included, i.e.,
LCMF and LANE w/o Label. Fourth, to analyze the effec-
tiveness of LANE, we compare it with one straightforward
method SpecComb, and one multi-view learning method
MultiView. The detailed descriptions are listed as follows.

• Original Features: It combines original features of net-
work structure and node attributes by concatenating
them together. The concatenating original feature space
is used for both training and test group.

• DeepWalk [27]: It employs truncated random walks on
the plain graph and involves language modeling tech-
niques, i.e., word2vec, to analyze the walking tracks.

• LINE [36]: It is one of the state-of-the-art embedding
algorithms for large-scale networks. It preserves both
first and second-order proximities between the nodes.

• LCMF [47]: It conducts a joint matrix factorization on
the linkage and attribute information, and maps them
into a shared subspace. It uses this subspace as the
learned representation.

• SpecComb: It concatenates the attributed network G
and labels Y into one matrix, and performs normalized
spectral embedding [41] on this combined matrix. The
corresponding top d eigenvectors are collected as the
embedding representation.

• MultiView [17]: It considers the network, attributes,
and labels as three views, and applies co-regularized
spectral clustering on them collectively.

• LANE on Net and LANE w/o Label: They are two vari-
ations of LANE, which have been described in Sec-
tion 3.6. The former one is for a plain network. The
latter one only leverages the attributed network, with-
out the help of label informed embedding.
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BlogCatalog Flickr
1/16 1/8 1/4 1/2 1 1/16 1/8 1/4 1/2 1

DeepWalk 0.5488 0.7000 0.7824 0.7937 0.8100 0.3438 0.4597 0.5818 0.6819 0.7382
LINE 0.6663 0.7255 0.7332 0.6959 0.6931 0.3587 0.4920 0.5733 0.6500 0.6413

LANE on Net 0.6553 0.6985 0.7590 0.8046 0.8126 0.4298 0.5063 0.5698 0.6300 0.7319
LCMF 0.7119 0.7920 0.8366 0.8646 0.8401 0.3531 0.5065 0.5884 0.7026 0.7381

LANE w/o Label 0.7638 0.7977 0.8361 0.8513 0.8685 0.5426 0.6046 0.6578 0.6809 0.8300
SpecComb 0.6138 0.6027 0.6360 0.6965 0.5895 0.4618 0.4943 0.5800 0.7054 0.7816
MultiView 0.6478 0.7046 0.8207 0.8078 0.7903 0.4942 0.4856 0.5843 0.5870 0.8061
LANE 0.8065 0.8523 0.8856 0.8964 0.9008 0.6658 0.7645 0.8267 0.8276 0.9054

Table 3: Classification performance (F1 score) of different methods on different datasets with d = 100.

4.3 Experimental Settings
Following a commonly adopted way [27, 36], we validate

the effectiveness of different learned representations on node
classification task [33, 47]. This task is to predict which
category or categories a new node belongs to based on the
model learned from training data. We follow the suggestions
of original papers to set the parameters of baseline methods.
Our proposed method is flexible in choosing the weight pa-
rameters α1 and α2. We will further discuss the impact of
these parameters in Section 4.6.

We employ 5-fold cross-validation in the following experi-
ments. Specifically, we randomly separate all of the n nodes
into training group (Gtrain, Atrain, Ytrain) and test group
(Gtest, Atest, Ytest). Gtrain is a square matrix since the
information of test group is unavailable when training the
model. Gtest contains the link information from test group
to all other nodes. The goal is to predict the label or la-
bels of each instance k in the test group, while only given
its network feature gk (i.e., kth row of Gtest) and attributes
ak (i.e., kth row of Atest). To evaluate the performance of
a method, we first apply it on training group to obtain the
embedding representation Vtrain. Then we build a Support
Vector Machine (SVM) classifier with Vtrain and the corre-
sponding labels Ytrain. To obtain the embedding represen-
tation of test group while eliminating the dependence among
test nodes, we first construct two linear mapping functions
B(G) and B(A), which enable us to map G and A into the
embedding space V. Mathematically, it forms as

G = V ·B(G), and A = V ·B(A). (18)

We use this linear mapping for the sake of simplicity, but
it can be easily extended to other nonlinear mapping func-
tions. Functions B(G) and B(A) can be learned based on
the training group. Then for the kth node in test group, we
can calculate its embedding vector representation vk via the
following formulation

vk = gk · (B(G))† + δak · (B(A))†, (19)

where δ is a positive weight, and it could be tuned to bal-
ance the contributions of G and A. Function (·)† is the
pseudoinverse. At last, we perform the prediction based on
the test group embedding representation Vtest and learned
SVM classifier.

In the experimental settings, all methods have the access
to all three types of information sources, such that we are
able to focus on investigating the impact of embedding. We
report the node classification performance in terms of F1

score [27, 36]. The representation dimension d is set to be
100 for all methods. Further experiments have been done to
investigate the impact of d in Section 4.6. All experimental
results are arithmetic average of 10 trials.
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Figure 2: Classification performance of Original Fea-
tures, LANE and its variations on Flickr dataset.

4.4 Performance Evaluation
To answer the first question proposed in the beginning of

Section 4, we evaluate the performance of LANE by com-
paring it with all baseline methods on the node classification
task. Next, we introduce the experimental results in detail.

4.4.1 Impact of Embedding Representation Learning
To investigate the effectiveness of low-dimensional embed-

ding representation learning, we compare LANE and its vari-
ations with Original Features on both datasets. The dimen-
sions of original feature space on BlogCatalog and Flickr
datasets are 12,346 and 18,107 respectively. In the experi-
ments, we vary the embedding representation dimension d
from 5 to 100. The classification performance of different
methods w.r.t. d on Flickr is presented in Figure 2. We
omit the result on BlogCatalog since it is similar.

Experimental results in Figure 2 show that LANE w/o Label
could achieve similar classification accuracy as Original Fea-
tures when d is quite small (d ≥ 60). LANE achieves higher
F1 score than Original Features when d ≥ 35. This is much
lower than the dimension of original feature space 18,107. In
addition, LANE on Net performs 10.17% worse than Origi-
nal Features since it only embeds network structure. There-
fore, by taking advantage of embedding representation learn-
ing, the proposed method LANE achieves better perfor-
mance than Original Features.

4.4.2 Effectiveness of LANE
To study the effectiveness of LANE, we compare its per-

formance with all baseline methods. We fix d = 100 and vary
the number of instances used for embedding as { 1

16
, 1
8
, 1
4
, 1
2
,1}

of entire training group. The comparison results are pre-
sented in Table 3. From the Table, we observe that LANE
always outperforms all baselines among all range of train-
ing percentages on both datasets. For instance, on Flickr
dataset, by taking advantage of embedding attributes and
labels, LANE outperforms LINE at least 41.18%. With the
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Figure 3: Performance of LANE on Flickr with dif-
ferent parameters α1 and α2.

help of label informed embedding, LANE also consistently
achieves higher F1 score than the state-of-the-art ANE method
LCMF at least 17.79%, and MultiView at least 12.32%.
Meanwhile, when training percentage increases from 1

16
to

1, the performance of LANE keeps increasing, but growths
become smaller. The improvements from the incorporations
of ANE and label embedding also become smaller when the
training percentage approaching 100%.

We also perform one-tailed t-test between LANE and these
baseline methods. Results show that LINAE is significantly
better (with a 0.01 significance level). The p-value on Blog-
Catalog is smaller than 5.27 × 10−16, and the p-value on
Flickr is smaller than 1.61× 10−14.

4.5 Impact of Label Informed Embedding
In this subsection, we answer the second question that

what is the impact of label information on the embedding
representation learning. We analyze it from three aspects.

First, we compare LANE with its own variations. Method
LANE w/o Label can capture the node proximities in net-
work structure and attributes as well as their correlations.
Results in Table 3 show that it obtains better performance
than all network embedding methods, including DeepWalk,
LINE, and LANE on Net. For example, on Flickr, it achieves
12.44% improvement than DeepWalk. By taking advan-
tage of label informed embedding, LANE further outper-
forms LANE w/o Label significantly. As shown in Table 3,
LANE advances the performance greatly by 9.08%. This
demonstrates the advantage of incorporating labels into the
embedding representation learning.

Second, we compare LANE with the ANE method LCMF.
In Table 3, we observe that, by affiliating labels with the at-
tributed network, LANE achieves better classification per-
formance than LCMF. For instance, on BlogCatalog, it con-
sistently achieves at least 3.68% improvement than LCMF.
This verifies the effectiveness of LANE in incorporating la-
bels into the learned embedding representation.

Third, we compare LANE with SpecComb and Multi-
View, where SpecComb is a straightforward method. Ta-
ble 3 shows that SpecComb and MultiView are always infe-
rior to LANE, and sometimes even perform worse than pure
network embedding methods such as DeepWalk. The reason
is that SpecComb does not explicitly consider the inherent
correlations, and concatenation is not an appropriate way
of combining heterogeneous information. MultiView consid-
ers network structure, node attributes, and labels equally,
without capturing their distinct characteristics. Therefore,
LANE is an appropriate method for the label incorporation.

20 60 100 140 180
0

0.2

0.4

0.6

0.8

Embedding Representation Dimension d

F
1

s
c
o
r
e

DeepWalk

LINE

LCMF

SpecComb

MultiView

LANE

Figure 4: Node classification performance of differ-
ent methods w.r.t. d on Flickr dataset.

All these observations demonstrate the existence of strong
correlations between the attributed network and labels. The
exploitation of embedding labels indeed could help us ob-
tain a better latent representation, however, an appropriate
method is required for the incorporation. LANE successfully
achieves this improvement by performing the label informed
embedding, and consistently outperforms all baseline meth-
ods. We want to emphasize that in the node classification
task, all methods have access to the labels of training group
and utilize them in different ways. Only LANE, SpecComb,
and MultiView can incorporate these labels into embedding
representation learning. Therefore, the superiority of LANE
is not a result of owning extra information source, but per-
forming label informed embedding.

4.6 Parameter Analysis
In this subsection, we investigate the effects of parame-

ters α1, α2 and d. The two weights α1 and α2 balances
the contributions of attributes and labels respectively. We
vary them from 0.01 to 100 simultaneously, and the result on
Flickr is presented in Figure 3. A similar result is observed
on BlogCatalog, so we omit it. From the figure, we ob-
serve that LANE achieves relatively high performance when
both attributes and labels have sufficient contributions, i.e.,
α1 > 1 and α2 > 10. When α1 is small, the highest per-
formance is achieved when α2 is in the middle, i.e., α2 ≈ 1.
A similar observation is made when α2 is small. When α1

is fixed to 100, as α2 increases from 0.01 to 100, there is a
significant 42.70% improvement in the performance. When
α2 = 100, only 16.07% improvement is observed as α1 in-
creased. This demonstrates that labels have a larger impact
than attributes on LANE. As a conclusion, LANE could
achieve relatively high performance by setting reasonable
parameters. Significant and positive impacts are observed
from α2, which verify that label informed embedding plays
an essential role in the proposed framework.

To study how d affect the node classification performance,
we also vary it from 20 to 180. The F1 score of different
methods w.r.t. d is shown in Figures 4. We omit the result
on BlogCatalog since it is similar. As we can see, all of
the observations mentioned above hold undeviatingly when
d > 20. For example, LANE consistently achieves higher
accuracy than all baseline methods when d varies widely. In
addition, we observe that, by increasing d, the classification
performance of LANE first increases and then keeps stable.
This is consistent on both BlogCatalog and Flickr. It is
appealing in real-world applications since practitioners can
safely tune these parameters in a wide range.
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LANE w.r.t. the number of input nodes on Flickr.

4.7 Efficiency Evaluation
To answer the last question asked in the beginning of Sec-

tion 4, we compare the running time of LANE and two state-
of-the-art ANE methods, i.e., LCMF and MultiView. The
computation time in logarithmic scale w.r.t. the number of
input nodes on Flickr is presented in Figure 5. A similar re-
sult is obtained on BlogCatalog. From the results, we can see
that LANE takes less running time than all others. This can
be explained by the fact that LCMF employs gradient de-
scent in the optimization, which often has slow convergence
rate. MultiView has the same time complexity as LANE,
but empirical results show that LANE could converge in a
few iterations on both datasets. Therefore, Figure 5 demon-
strates the efficiency of the proposed method.

5. RELATED WORK
Network embedding enjoys increasing popularity in recent

years. Its pioneer work can be traced back to the graph em-
bedding problem, which was introduced by Filotti et al. [9]
as a graph genus determining problem in 1979. A family
of more general graph embedding approaches [26, 38] were
developed around the 2000s. They target at generating low-
dimensional manifolds which can model the nonlinear geom-
etry of data, including Isomap [38], Laplacian Eigenmaps [4]
and spectral techniques [3, 8]. Up till now, due to the per-
vasiveness of networked data, a variety of network embed-
ding algorithms [30, 36, 44] have been implemented. Iwata
et al. [13] applied probabilistic latent semantic analysis to
embed document networks. Tang et al. [37] investigated the
advantage of employing temporal information to analyze dy-
namic multi-mode networks. Shaw and Jebara [30] exploited
a semidefinite program to learn a low-dimensional represen-
tation that well preserves the global topological structure.
Mei et al. [25] designed a harmonic regularization based
embedding framework to tackle the problem of topic mod-
eling with network structure. Ahmed et al. [2] proposed
an asynchronous distributed matrix factorization algorithm
for large-scale graphs. Bourigault et al. [5] projected the
observed temporal dynamic into a latent space to better
model the information diffusion in networks. Grover and
Leskovec [11] further advanced the random walk based em-
bedding algorithms by adding flexibility in exploiting neigh-
borhoods. To embed heterogeneous networks, Jacob et al. [14]
extended the transductive models and deep learning tech-
niques into the problem. Yang et al. [45] exploited a prob-
abilistic model to conduct network embedding in a semi-
supervised manner. Most recently, several deep learning
based embedding algorithms [27, 42, 43] were proposed to
further enhance the performance of learned representations.

Attributed network analysis is put forward due to the fact
that numerous networks are often associated with abundant
content describing attributes of each node. In these net-
works, it has been widely accepted that there exist correla-
tions among geometrical structure and node attributes [22,
46]. Therefore, algorithms [10, 12, 34] exploiting them to-
gether could improve the overall learning performance. For
instance, Tsur and Rappoport [40] advanced the prediction
of spread of ideas by analyzing both social graph topology
and content. In order to tackle the complex data structures,
several efforts [28, 47] have been devoted to jointly embed-
ding the two information sources into a unified space. Qi
et al. [28] explored an effective algorithm that jointly em-
beds context and content in social media by constructing
a latent space of semantic concepts. Le and Lauw [18] ad-
vocated a holistic framework for handling both document
linkage and textual information and finding a unified low-
dimensional representation. They achieved this via a joint
probabilistic model. Li et al. [19] exploited the possibility
of jointly learning latent factors in high-dimensional content
data and link information via a streaming feature selection
framework. Chang et al. [7] transformed content into an-
other network and exploited a nonlinear multi-layered em-
bedding model to learn the complex interactions between
the constructed content network and original network.

In many applications, data exhibits multiple facets of pre-
sentations, and these data are referred as multi-view data.
Multi-view learning [17, 20] aims at learning a statistical
model from multiple information sources. A number of algo-
rithms have been proposed in the literature. Qian et al. [29]
investigated a reconstruction error based framework for han-
dling multi-label and multi-view learning, which can explic-
itly quantify the performance of multiple labels or views
merging. Lou et al. [20] applied a two-side multimodal neu-
ral network to embed words based on multiple data sources.
A more detailed review of multi-view learning can be re-
ferred to [32]. The main differences between our work and
multi-view learning are the facts that an attributed network
can be seen as one specially constructed data source, and
ANE itself is a challenging problem. Labels are also a spe-
cial category of source with particular modality.

6. CONCLUSIONS AND FUTURE WORK
Label data is a distinct and essential information source

observed in a variety of attributed networks, which is ben-
eficial to ANE. Incorporating labels into embedding repre-
sentation learning is promising but challenging. To this end,
we propose a novel framework LANE, which jointly projects
an attributed network and labels into a unified embedding
space by extracting their correlations. Specifically, we first
uniformly model the structural proximities in the attributed
network and labels based on pairwise similarities, and then
jointly map them into an identical embedding space via three
relevant correlation projections. Extensive experiments on
BlogCatalog and Flickr datasets demonstrate that LANE
consistently performs the most effective embedding repre-
sentation. Our results lead to the following open questions
that we plan to study in future work: (1) Some label in-
formed networks are evolving, so how can we extend the
proposed method to embed this type of networks dynami-
cally? (2) Sometimes we may only be able to collect partial
node attributes or label data. How can we design robust
models to tackle these situations?
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