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• Our method performs well on computer generated networks and real-world networks.
• Closed walks of small orders are basic elements in constructing community structure.
• Our method is a better tradeoff of accuracy and runtime.
• Our method is a novel way to solve the double peak structure problem.
• Our work can provide us with a new perspective for understanding community structure in complex networks.
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a b s t r a c t

In this paper, we propose a novel measure that integrates both the concept of closed walks
and clustering coefficients to replace the edge betweenness in the well-known divisive
hierarchical clustering algorithm, the Girvan and Newman method (GN). The edges with
the lowest value are removed iteratively until the network is degenerated into isolated
nodes. The experimental results on computer generatednetworks and real-world networks
showed that our method makes a better tradeoff of accuracy and runtime. Based on the
analysis of the results, we observe that the nontrivial closed walks of order three and four
can be considered as the basic elements in constructing community structures.Meanwhile,
we discover that those nontrivial closed walks outperform trivial closed walks in the task
of analyzing the structure of networks. The double peak structure problem is mentioned
in the last part of the article. We find that our proposed method is a novel way to solve
the double peak structure problem. Our work can provide us with a new perspective for
understanding community structure in complex networks.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, some efforts [1–3] have been made to show that community structures are frequently observed in most
complex systems. The community structure is a set of nodes with more internal links than external. The task of commu-
nity detection is to find these community structures. Community detection is of great importance, because it can help us to
understand the organization and function of the systems, the dynamics and evolution of the network, and so on. Further-
more, the algorithms for community detection arewidely used inmany fields, such as the Internet and theWorldWideWeb
[4–6], epidemiology networks [7–10], biological networks (PPI networks [11], metabolic networks [12,13], ecological webs
[14,15]), social networks(political blogs [16,17], and co-authorship networks [18]).
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Fig. 1. Illustration of community structure by human beings.

Over the years, many algorithms have been proposed based on the analysis of two basic elements of networks: nodes
and edges. For example, Breiger et al. [19] proposed the agglomerative method for community detection based on the
node similarity. By using the dissimilarity index between the nearest-neighboring nodes, a divisive method for community
identification is given by Zhou [20]. Analogously, Wu et al. [21] presented the core attachment method, which considered
the inherent organization within protein complexes [21]. Frey et al. [22] proposed an approach to discover communities
by passing messages between data points [22]. In Ref. [23], the communities were reinvented as groups of links and could
be detected by analyzing the attributes of edges in complex networks. Duch and Arenas proposed a community detection
algorithmby using extremal optimization [24], while R. Guimerà et al. discussed themodularity from fluctuations in random
graphs and complex networks [25]. In addition, some algorithms focused on the analysis of paths to detect communities,
such as the betweenness-based method [1] and the information centrality-based method [3].

We illustrate the community structures of real world networks in Fig. 1. At different levels, human beings can be viewed
as tissues/organs, cells, chemical compounds and chemical elements. Human beings are composed of tissues and organs.
Tissues and organs are constructed from cells. Cells consist of many chemical compounds, while chemical compounds are
composed of numerous chemical elements. Likewise, complex networks can be viewed at different levels as well. Many
algorithms focus on the analysis of the nodes and paths to detect communities in complex networks; however, fewmethods
focus on special subgraphs, such as closed walks, which are another type of element for community formation.

In this paper, we propose a novel measure to detect communities. By repeatedly calculating the number of closed walks
with different orders for edges, then removing the edges with the lowest value, the network will be broken into smaller
groups. According to the experimental results and our analysis, we find that nontrivial closed walks of order 3 and 4 can be
considered as basic elements in constructing community structures. Nontrivial closedwalks outperform trivial closedwalks
for analyzing the structure of networks. Furthermore, our method is a novel way to solve the double peak problem. In short,
our work can provide us with a new perspective for understanding community structure in complex networks.

The rest of this paper is organized as follows. In Section 2,we discuss somebasic concepts and the rationale of ourmethod.
In Section 3, we evaluate ourmethod on an analog network. In Section 4, we test ourmethod on several computer generated
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Fig. 2. Illustration of graphs.

Table 1
The types of walks.

Type Walks

Open walks 4 → 3 → 5

Closed walks Trivial closed walks 1 → 2 → 1 → 2 → 1 3 → 4 → 3 → 5 → 3
Nontrivial closed walks 1 → 2 → 3 → 1 6 → 7 → 8 → 9 → 6

networks. In Section 5, we apply our method on real world networks and analyze the experimental results. The double peak
structure problem is also solved in this part. Finally, we briefly conclude the paper in Section 6.

2. Our method for finding community structures

The network we analyzed can be represented as a connected, simple undirected graph G which contains n nodes and
m edges. A = (aij)n×n is the adjacency matrix of graph G. If two nodes i and j are connected by an edge, then two nodes
are adjacent and aij is equal to 1, otherwise aij is equal to 0. The entry aii on the main diagonal is set to 0. In the following
subsections, we first introduce some definitions and concepts, and then our method.

2.1. Closed walks

A closed walk, which is directly related to the subgraph of the network [26,27], is a kind of walk which starts and ends
at the same node. For instance, in Fig. 2, {1, 2, 3} forms a closed walk: 1 → 2 → 3 → 1, while {4, 3, 5} forms an open
walk: 4 → 3 → 5. As the types of walks illustrated in Table 1, we divide closed walks into two types: trivial and nontrivial
[26,28,29]. If all nodes are distinct in a closedwalk, except for the start node and endnode, then the closedwalk is categorized
as a nontrivial closed walk. Otherwise, it belongs to the trivial closed walks. It is noteworthy that all closed walks of order 3
are nontrivial.

2.2. Edge clustering coefficient

The edge clustering coefficient [2] is similar to the concept of the node clustering coefficient. It equals the number of
cyclic structures to which a given edge belongs, divided by the number of cyclic structures that might potentially include it.
If there is an edge between node i and j, the definition of the edge clustering coefficient is

Ci,j =
z(g)
i,j

min[(ki − 1), (kj − 1)]
(1)

where z(g)
i,j counts the times that the edge belongs to cyclic structures of order g and ki and kj are respectively equal to the

degree of nodes i and j. min[(ki − 1), (kj − 1)] is the maximal possible number of cyclic structures. g , the order of cyclic
structures, is from 3 to infinity.

The purpose of the formula is that the edges that connect communities are likely to join few or no cyclic structures.
Consequently, these edges will have small values of Ci,j. When the number of cyclic structures is zero, Ci,j = 0. To avoid this
problem, B(g)

i,j is equal to z(g)
i,j + 1.

The formula is as follows:

Ci,j =
B(g)
i,j

min[(ki − 1), (kj − 1)]
. (2)

Based on the concept of edge clustering coefficient, Radicchi et al. [2] checked the accuracy of their method by comparing
its performance with the Girvan and Newman method. It turns out that their method’s performance is not always as well
as Girvan and Newman method’s performance in some cases.
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Fig. 3. The proportion of edges in the order 3 and 4 closed walks.

2.3. Modularity

We know that a good division is obtained if most of the edges fall into the same community, with relatively few edges
connecting different communities. In order to evaluate how good a division of G is, a modularity function Q is proposed by
Girvan and Newman [1,30]. To calculate the modularity, a symmetric matrix e is introduced. If we divide the network into
n communities, we can get an n × n symmetric matrix e. The element eij of matrix e is the fraction of the number of edges
over total edges that connect community i and community j [1]. The trace of the matrix Tr e =


i eii shows the number of

edges that fall into the same community. The row sums ai =


j eij represent the number of edges that connect two vertices
in community i. In a network in which edges fall between vertices without regard to the communities they belong to, we
would have eij = aiaj [1]. In this case, themodularity is defined as

Q =


i

(eii − a2i ) = Tr e −
e2 (3)

where
e2 represents the sum of the elements of the matrix e2. This quantity then measures the degree of correlation

between the probability of having an edge joining two sites and the fact that the sites belong to the same community [3].
In the beginning, if we do not divide the single community into subsets, the value of Q equals 0. Afterwards, we repeatedly
remove the edge with the lowest (or highest) score. The value of Q gets higher as we divide the community into several
communities. We will get a strong community structure if the value of Q approaches a peak. Actually, values of Q for
networks typically fall in the range from about 0.05 to 0.7, according to our algorithm. To understand the process, we plot
the Q corresponding to the communities after each removal of edges in Fig. 7. The plot is detailed in Section 4.

2.4. Our method for community detection

In this subsection, we explain why our method takes nontrivial closed walks of order 3 and 4 into account. To evaluate
the edges, it is unreasonable to take only one type of closed walk into consideration. As for Fig. 5, a common structure in
Section 3, we cannot identify the right community structure by using closed walks of order 3 or 4. It has been observed that
closed walks of other types are significant in real networks. Consequently, in order to detect community structure correctly,
we should take into account closed walks of different types together.

Theoretically, the community structure of the whole network is composed of closed walks of different orders. Closed
walks of order 3 and 4 are frequently observed in complex networks. Although the number of closed walks of order 5 is
huge, statistical data shows that almost all these closed walks consist of closed walks of order 3 and 4. As shown in Fig. 3,
the proportion of edges that participated in closed walks of order 3 and 4 reaches 90%, even in sparse networks (power grid,
yeast network). In other networks, the proportion is at least 94.34%. This means that we can utilize closed walks of order 3
and 4 to evaluate almost all the edges. Thuswe only need to consider closedwalks of order 3 and 4. This is in accordancewith
the short circle property (SCP) [31]. In that paper, short circle means a closed walk of small order. Agarwal et al. constructed
a correlated keyword graph and detected emerging topics by using the SCP.

Actually, the reason that we neglect closed walks of order 5 and choose closed walks of order 3 and 4 has sociological
significance. Nicholas A. Christakis [32] wrote that ‘‘we are connected to everyone by 6 degrees and influence those up to
3 degrees’’. Moreover, he further explained the reasons why the influence dissipates after 3 degrees: (1) Intrinsic Decay:
corruption of information. (2) Network Instability: ties become unstable at 4+ degrees of separation. (3) Evolutionary
Purpose: we evolved in small groups where everyone was connected by 3 degrees or less. In other words, in Fig. 4(a), node
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Fig. 4. Closed walks of order 4 and 5.

Fig. 5. An analog network composed of 13 nodes and 14 edges. Apparently, we can divide this network into two communities: {1, 2, 3, 11, 12, 13} and
{4, 5, 6, 7, 8, 9, 10}.

1 can directly influence node 2 and indirectly influence node 2 by the path 1 → 4 → 3 → 2. However, if the order of a
closed walk is larger than 4, for example the pentagon in Fig. 4(b), the indirect influence from node 1 to node 2 decreases
sharply and this closed walk becomes instable. In this case, we merely take into account nontrivial closed walks of order 3
and 4.

In addition, information usually propagates along paths without repeated nodes. For instance, in Fig. 4(a), node 1
propagates information to node 3 by the path 1 → 4 → 3. It is meaningless that node 1 propagates information to node 3
by the path 1 → 4 → 1 → 4 → 3. Thus, nontrivial closed walks without repeated nodes are more useful.

Experimentally, we take closedwalks of different orders (order 3, 4, 5) into consideration.We also take openwalks, trivial
and nontrivial closed walks into account. The formula is as follows (α, β, γ = 0 or 1):

Ci,j = α
z(3)
i,j + 1

min[(ki − 1), (kj − 1)]
+ β

z(4)
i,j + 1

min[(ki − 1), (kj − 1)]
+ γ

z(5)
i,j + 1

min[(ki − 1), (kj − 1)]
. (4)

Thus, we can get several combinations. However, our method takes nontrivial closed walks of order 3 and 4 into
consideration. Thus, α = 1, β = 1, γ = 0, z(3)

i,j and z(4)
i,j are respectively equal to the number of closed walks of order 3

and nontrivial closed walks of order 4 that an edge participated in.
The formula of our method is as follows:

Ci,j =
z(3)
i,j + 1

min[(ki − 1), (kj − 1)]
+

z(4)
i,j + 1

min[(ki − 1), (kj − 1)]
. (5)

We use formula (5) to evaluate the edges and assume that the edges that lie inside the communities have the high-
est values, while the edges that lie between communities are those with the lowest values. Our algorithm for finding
communities is a divisive method, by consistently removing edges with the lowest Ci,j until the network breaks up into
components.
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Table 2
The community structure of the network in Fig. 5 processed by our method, the Girvan and Newman method,
the method based on edge clustering coefficient (order g = 3, g = 4) and the information centrality method.

Method Q Community structure

Girvan and Newman method 0.4260 {1, 2, 3, 11, 12, 13}, {4, 5, 6, 7, 8, 9, 10}
Edge clustering coefficient g = 3 0.3661 {1, 2, 3, 11, 12, 13}, {4}, {5, 6}, {7, 8}, {9, 10}
Edge clustering coefficient g = 4 0.3546 {1, 11}, {2, 12}, {3, 13}, {4, 5, 6, 7, 8, 9, 10}
Edge information centrality 0.4260 {1, 2, 3, 11, 12, 13}, {4, 5, 6, 7, 8, 9, 10}
Our method 0.4260 {1, 2, 3, 11, 12, 13}, {4, 5, 6, 7, 8, 9, 10}

The detail of the algorithm is as follows:

Algorithm 1 Closed walks for community detection algorithm

1: Input: Graph G, edge set E, node set N.
2: Output: Label of community i and the member set Ei.
3: Process:
4: Read the data file of the graph G and initialize the deleted edge set D.
5: while D ≠ E do
6: for each edge ∉ D do
7: Calculate the closed walks of different orders that an edge participated in.
8: Calculate the value for the edges ∉ D.
9: end for
10: Remove the edge(s) with the lowest value and add the edge(s) to set D.
11: Calculate and record the modularity Q of the new network, the label of community i and the member set Ei.
12: end while
13: return label of community i and its member set Ei.

The main step requires a time of the order ofm, which is the total number of edges in the network. As in the Girvan and
Newman algorithm [1], it is important to recalculate the scores every time after an edge has been removed. Furthermore,
this operation has to be repeated for all remaining edges, which does not scale with m. So we can evaluate the total time
as O (am + bm2), while the Girvan and Newman method takes a time O(mn) [1]. The information centrality method takes
a time O(m3n) [3,33]. In conclusion, the Girvan and Newman method runs faster than our method, however our method
outperforms the Girvan and Newman method according to the experimental results.

3. Testing the method on an analog network

In this section, our purpose is to show that order 3 and 4 closed walks are equally important in identifying communities.
Consequently, we constructed an analog network with 13 nodes and 14 edges in Fig. 5. There exists a nontrivial closed walk
of order three {1, 2, 3} and a nontrivial closed walk of order four {4, 5, 7, 9} in the network. Apparently, the network can
be divided into two communities by removing the edge between node 3 and node 4. We apply our algorithm together with
other algorithms to this analog network and use the modularity function to identify what the community structure is. The
results are presented in Table 2.

According to the results in Table 2, the edge clustering coefficient method g = 3 or 4 [2] cannot identify the right com-
munity structure. The edge clustering coefficientmethod (g = 4) splits the network into four communities: {1, 11}, {2, 12},
{3, 13}, {4, 5, 6, 7, 8, 9, 10}. Obviously, the community {1, 2, 3, 11, 12, 13} is wrongly classified. The edge clustering
coefficient method (g = 3) splits the network into five communities: {1, 2, 3, 11, 12, 13}, {4}, {5, 6}, {7, 8}, {9, 10}. Ob-
viously, the community {4, 5, 6, 7, 8, 9, 10} is wrongly classified. Since our method takes closed walks of order 3 and
nontrivial closed walks of order 4 into consideration, we can successfully get a correct split {1, 2, 3, 11, 12, 13}, {4, 5,
6, 7, 8, 9, 10}. The Girvan and Newman method and the information centrality method can also get a correct split.

The structure of this analog network is not a special one, however, it is commonly observed in complex networks. The
leaf nodes in Fig. 5 are not all necessary. If we delete all leaves in Fig. 5 and add an arbitrary number of leaves to node
1 and node 2, the edge clustering coefficient g = 4 method will wrongly detect the community. In addition, if we add an
arbitrary number of leaves to node 5, node 6 and node 7, the edge clustering coefficient g = 3method cannot get the correct
division. The reason that we add leaf nodes 6, 8, 10, 11, 12, 13 is that we try to construct a networkwhere the edge clustering
coefficient method g = 3 and the edge clustering coefficient method g = 4 do not work at the same time. In this case, we
can interpret the difference among several methods in only one figure.

4. Testing the method on computer generated networks

We test our algorithm on computer generated networkswhich arewell defined 128-node randomnetworks. The random
walk networks are generated as follows:we generated a large number of graphswith n = 128 vertices and divided them into
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Fig. 6. The methods applied to 128-node random networks.

four communities of 32 vertices each, which are the groups 1–32, 33–64, 65–96 and 97–128. Edges are placed independently
at random between vertex pairs with probability Pin for an edge to fall between vertices in the same community and Pout to
fall between vertices in different communities. The values of Pin and Pout are chosen to make the expected degree of each
vertex equal to 16. We have on average Zin edges connecting two nodes that are in the same communities and Zout edges
connecting two nodes in different communities. The relationship between Zin and Zout is Zin + Zout = 16.

We apply community detection methods on the 128-node random walk networks. The experimental results are
represented in Fig. 6. Each type of line in the figure depicts the accuracy as a function of the average number Zout of edges
from each vertex to vertices in other communities. In Fig. 6(a), according to the formula (5), the graphic symbol 3_open
means that α = 1, β = 0, γ = 0, and z(3)

i,j is equal to the number of order 3 open walks that an edge participated in. The
graphic symbol 3_4_5_nontrivial in Fig. 6(b)means α = 1, β = 1, γ = 1. z(3)

i,j , z(4)
i,j , z(5)

i,j are respectively equal to the number
of closedwalks of order 3, the number of nontrivial closedwalks of order 4 and the number of closedwalks of order 5 that an
edge participated in. Obviously, according to the results in Fig. 5, we find that the combination (α = 1, β = 1, γ = 0, z(3)

i,j

and z(4)
i,j are respectively equal to the number of order 3 closed walks and nontrivial closed walks of order 4) outperforms

the others. The experimental results agree with our analysis. We analyze artificial networks for various Zout , ranging from 4
to 8, with a step of 1. As many algorithms can always find the correct classes when 0 ≤ Zout ≤ 4, we do not analyze them.
For each value of Zout , 100 samples are produced. We analyze the accuracy of this algorithm by comparing its performance
with the Girvan and Newmanmethod and the edge-clustering coefficient method. The information centrality method is not
considered, as the method takes a time O(m3n). According to the results in Fig. 6, we find that our algorithm and the Girvan
and Newman method perform equally well in the horizontal axis sector [4,5]. Our algorithm leads from the horizontal
axis sector [5,8]. Edge clustering coefficient and our algorithm are equally good in the horizontal axis sector [4,6]. In the
horizontal axis sector [6,8], where community structures are very hard to detect, our algorithm clearly performs better,
while the Girvan and Newman method inevitably starts to fail in detecting communities.
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Fig. 7. Dendrogram of the communities in a 64-node random network. This network has been obtained by dividing the nodes into 4 groups of 16 nodes
each and considering Zin = 7 and Zout = 1. When the modularity reaches its peak, we get a good partition of the network.

To illustrate our purpose clearly, we take a 64-node randomnetworkwith 8 edges per node instead of a 128-node random
network. We show an example in Fig. 7, which is a dendrogram of the communities found by applying our algorithm. Here,
Zin = 7 and Zout = 1, i.e. the network is strongly clustered. We analyze the hierarchical tree to figure out which of the
divisions is a proper split for the 64-node random network by using the measure of the cohesiveness of the communities.
In Fig. 7, the x-coordinate represents the number of steps of the algorithm. As the structure of network changes, the value
of Q (y-coordinate) changes, otherwise it keeps its value. We can see that the modularity has a single clear peak at a point
in the plot, which indicates that the network is divided into four groups.

To analyze the differences among the Girvan and Newman method, the information centrality method and our method,
we show experimental results by drawing four scatter plots in Fig. 8. The scatter plots (a) and (b) respectively show the
correlation between edge information centrality and our method on 128-node random networks (Zout = 4 and Zout = 7).
The scatter plots (c) and (d) respectively show correlation between edge betweenness centrality and our method on
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Fig. 8. Correlation among edge betweenness, edge information centrality and our method. Each point in the scatter plots refers to an edge of an artificially
generated network with 128 nodes Zout = 4 and Zout = 7. The two networks respectively show a case in which the communities are distinctly separated
and a case in which the communities are hard to detect.

Table 3
The ratio of correct classification on the American football teams network.

Method The ratio of correct classification No. of groups

Girvan and Newman method 80.87% (93/115) 9/11
Edge information centrality 79.13% (91/115) 10/11
Our method 89.57% (103/115) 11/11

128-node random networks (Zout = 4 and Zout = 7). The results show that the three methods are related, though there
are some notable differences. The edges with higher information and betweenness are not always the edges with the lower
values processed by our method. For instance, in the case Zout = 4, the edge that will be removed by our algorithm is not
the one with the largest betweenness. According to the distribution of nodes in Fig. 8, we see that plots (a) and (b) scatter
more broadly than plots (c) and (d). It means that the correlation between the Girvan and Newmanmethod and our method
is more interrelated than the correlation between the information centrality and our method.

5. Applications to real networks

After applying our algorithm to artificial networks, we try to prove that our algorithmworkswell for realworld networks.
We present six networks here, although we analyzed more. The networks are American college football teams [18],
dolphins [34–38], co-appearance network of characters in the novel Les Miserables [33], the Western States Power Grid
of the United States [39], the karate club network and the primate network. In the last part of this section, we deduce that
our method can solve the double peak problem. They have been studied by other researchers. In this case, we can easily
understand the similarities and differences between different approaches [28,40–43].

5.1. The network of American college football teams

The network, which represents the schedule of games between American college football teams in a season, is divided
intowell known ‘‘conferences’’. There are 11 conferences plus a few other teamswhich do not belong to any conference. The
team played more games with the teams in the same conference than with the teams in different conferences. Fig. 9 shows
the community structures we have derived with our method. In Table 3, we find that our method can identify 11 groups,
which are in accordance with the 11 conferences, while the Girvan and Newman method and the information centrality
method respectively find 9 and 10 conferences. The teams which are labeled as Sunbelt are not recognized correctly; this
group is misclassified as well in the analysis of the Girvan and Newman method and the information centrality method.
The reason is that the Sunbelt teams played basically the same number of games against Western Athletic teams. All of
the Sunbelt teams are represented as squares in Fig. 9. The teams which are represented as triangles are wrongly labeled
as Sunbelt. However, our method can pick out four correct Sunbelt teams, while the Girvan and Newman method and the
information centralitymethod find less than four correct Sunbelt teams.We compare the ratio of correct classification of our
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Fig. 9. Community structure found by our algorithm in the college football network. The network is divided into eleven main groups.

methodwith othermethods according to the baseline. In Table 3, we can see that the accuracy of ourmethod is 89.57%,while
the accuracy of the other methods is about 80%. The numbers ‘‘93/115’’ in the brackets mean that the method can correctly
identify 93 teams in all 115 teams. The numbers ‘‘9/11’’ mean that the method can identify 9 communities, whereas in fact
there are 11 groups.

5.2. The network of bottlenose dolphins

We present the social network of 62 bottlenose dolphins in Fig. 10. The dolphins lived in Doubtful Sound, New Zealand.
Lusseau [35,36] collected the data of dolphins according to his field studies of dolphins for two years. The ties between
dolphin pairs are established by observation of the statistically significant frequent association. In Fig. 10, the network
is divided into two groups, which correspond to the known division of the dolphin community. The squares and circles
respectively label themembers of the two groups in the figure. Themodularity for the split into two groups isQ = 0.395996.
When Q reaches 0.511953, the network is divided into smaller subgroups. The larger of the two groups is divided into four
subgroups, which are depicted by different colors in Fig. 10.

The split of the network agrees with the fact that the dolphins are separated into two groups along the lines, just because
individuals on the boundary between the groups disappeared. The two subgroups of the network joined together when
the individuals later appeared again. So Lusseau reported that the developments of dolphin networks, like human social
networks, is closely tied to the evolution of the community. The main fact for the dolphins is that the largest subgroup
(circles in Fig. 10) consists of females and the others (squares in Fig. 10) almost entirely of males. This situation matches
with the split processed by our method. The results of our method are in accordance with the results of other methods.

5.3. The co-appearance network of characters in the novel Les Miserables

In Fig. 11, we depict the interactions between major characters in Victor Hugo’s novel Les Miserables [33]. We test our
method on the co-appearance network of characters in the novel Les Miserables.

The vertices in this network represent characters and the edges between two vertices denote co-appearance of the
characters in one or more scenes. We get a good division for this network, with Q = 0.484606, as shown in Fig. 11.

The community structures found by our method clearly reflect the actual structure of characters in the book. Central
characters [44], such as Jean Valjean and Javert, are correctly picked out. The communities clearly reflect the subplot
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Fig. 10. Community structure found by our algorithm in the bottlenose dolphins of Doubtful Sound [29,31]. The squares and circles present the primary
division of the network. Then the circle group is divided into four smaller groups, which are marked by different colors respectively.

Fig. 11. Community structure detected by our algorithm in the co-appearance network of characters in the novel Les Miserables. The communities are
marked by different colors.

structure of the book. Some subplots centered on Marius, Cosette, Fantine and the bishop Myriel are also picked out. The
Girvan andNewmanmethod splitsmany special characters (Perpetue,Marguerite,MmePontmercy,Magnon et al.) into some
communities. Different from the Girvan andNewmanmethod, ourmethod can pick out these characters in the network. Our
method believes that Perpetue, Marguerite, MmePontmercy, Magnon, Gillenormand, BaronessT and LtGillenormand are the
weak ties connecting different communities.

5.4. The Western States Power Grid of the United States

In this part, we apply our method to a network of the Western States Power Grid of the United States [45]. The network
includes 4941 nodes and 6594 edges. In order to verify the community structure processed by our method, we depict the
community size distributions in Fig. 12. From the figure, we can see that the distributions feature a power law behavior
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Fig. 12. Distribution of community size of the power grid network. The behavior is well reproduced by a power law with exponent −2.

P(S) ≈ S−τ with τ ≈ 2. The result we observed coincides with the principle that the community size distributions are
power laws, with exponent −τ [46].

5.5. Double peak structure examples

In this subsection, we apply three community detection methods on two double peak structure networks, i.e., the karate
club network and the primate network. Classification accuracy is used as the evaluation metric in the experiments.

According to the above experimental results and Refs. [1–3], the largest modularity Q always corresponds to a good
community structure. The plot of modularity Q sometimes shows a double peak structure [3], as shown in Figs. 13 and
15(b)(c). However, the smaller modularity Q of the GN method and the information centrality method corresponds to a
good community structure on some double peak structure networks. Thus, when the plot of modularity Q has two or more
peaks, we are not able to figure out which peak corresponds to a good community structure, especially when the network is
huge or the community structure is unknown. People who want to detect communities intend to find the right community
structure with the largest peak (the largest modularity Q ) instead of identifying communities by themselves.

Take the karate club [47] as an example. The karate club analyzed by Zachary consists of 34 persons. If person A is a friend
of person B, there is an edge between A and B. There are 78 edges in this club. The friendship relationships are investigated
over two years. During two years of follow-up, Zachary et al. found that the club split into two clubs, due to a conflict between
an administrator and a coach in the club. The structure of karate club is shown in Fig. 14.

We apply our proposed method, the GNmethod and the information centrality method on the karate club network. The
modularity is used to identify the community structure. Fig. 13 shows the community structure found by our method. As
shown in Fig. 13, the Q -plot represents a double peak structure and the first peak is very minor. The double peak structure
also exists in the GN and the information centrality method. For the karate club, the smaller peak of GN corresponds
to a good community structure. It is the same with the information centrality method, which is also based on ‘‘shortest
path’’. Differently, the larger peak of our method corresponds to a better community structure. While the modularity of
our method is equal to 0.26, we have four components, two small groups and two large groups. When the modularity
reaches its maximum, our method misclassified nodes 3, 4, 8, 13, 20, 25, while the GN method misclassified nodes
3, 5, 6, 7, 10, 11, 17, 25, 28, 29 and the information centrality methodmisclassified nodes 5, 6, 7, 10, 11, 12, 17, 27, 29. In
Table 4, we can see that the accuracy of our method is 82.4%, while the ratios of correct classification for the other methods
are lower than 75%. The numbers ‘‘28/34’’ in the brackets mean that the method can correctly identify 28 members in all
34 members. The numbers ‘‘4/2’’ mean that the method can identify four communities, while in fact there are only two
communities. The reason why our method works is that almost all edges participate in small order closed walks. In this
case, we can evaluate edges by the number of closed walks that they participate in. The edges that participate in a few
closed walks are ‘‘loose’’ edges. Our method focuses on deleting the ‘‘loose’’ edges first, while the GNmethod focuses on the
edges with large betweenness. Nevertheless, the edges with large betweenness can participate in many closed walks and
have significant correlations with the surrounding nodes. This means that the ‘‘loose’’ edges are more likely than the large
betweenness edges to lie between different communities, especially when two communities have overlapping nodes.

Take the primate network [47] as an example. Linda Wolfe [48] collected a data set which recorded three months of
interactions amongst a group of 20 monkeys. The interactions were defined as their joint presence at a river. The data set
labels the sex and age of each monkey. We further apply the methods on the primate network and use modularity Q to
identify the community structures. The plots of modularity of GN and the information centrality method show a double
peak structure in Fig. 15(b)(c). Differently, the plot of modularity of our method shows only one peak in Fig. 15(a). The sole
peak corresponds to a good community structure. In Table 5 we compare the ratio of correct classification of our method
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Fig. 13. Community structure in the karate club network.

Fig. 14. The karate club network.
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Table 4
The ratio of correct classification on the karate club network.

Method The ratio of correct classification No. of groups

Our method 82.4% (28/34) 4/2
Girvan and Newman method 70.6% (24/34) 5/2
Edge information centrality 73.5% (25/34) 7/2

Table 5
The ratio of correct classification on the primate network.

Method The ratio of correct classification No. of groups

Our method 75% (15/20) 7/2
Girvan and Newman method 75% (15/20) 7/2
Edge information centrality 60% (12/20) 11/2

(a) Modularity of our method. (b) Modularity of GN. (c) Modularity of edge information
centrality.

Fig. 15. Plots of modularity on the primate network.

with other methods according to the ‘‘sex’’ baseline. The accuracies of our method and the GN method are both 75%, while
the accuracy of the information centrality method is 60%.

Actually, it is an advantage for community detection that the largest (only) peak corresponds to a good partition. The
reason is as follows: When we detect community structures, we commonly do not know what the network’s community
structure is. Consequently, if the plot of modularity has two or more peaks, people are not able to figure out which peak
corresponds to a better community structure. Our method, which focuses on firstly deleting the ‘‘loose’’ edges, can solve the
problem. It is a rather convenient property that the largest modularity corresponds to a good graph partition.

6. Conclusions and future work

This paper presents a new measure based on the concept of closed walks and edge clustering coefficient. The measure
evaluates edges by counting the number of closed walks that an edge participates in. Edges with the lowest value always
lie between communities. Therefore we remove the edges with the lowest value and recalculate the value of the remaining
edges until all edges are removed. We utilize the modularity Q to discover a good division. The time complexity of our
method is O (am + bm2), where m is the number of edges, and a and b are constants. Our method runs faster than the
information centrality method. Our method also outperforms the GN method when the community structure is hard to
detect. We also tested our method on an analog network, computer generated networks and real world networks. The
results clearly show that our algorithm performs well.

In this paper, we find that small order closedwalks are basic elements in constructing community structures. In addition,
information will generally propagate through paths without repeated nodes. In this case, nontrivial closed walks without
repeated nodes aremore practical and efficient to propagate information than trivial closedwalks. The double peak structure
is mentioned in this paper. We find that our method is a good way to identify communities on the double peak structure
networks.

Actually, closedwalks concentrate on local connectivity. It is quite different from the edge betweenness, which is a global
metric. Thus, our future work is to improve the complexity of our method. Furthermore, we can analyze the characteristics
of complex networks from the perspective of closed walks. For instance, we have found that some robust networks have
more closed walks. Consequently, closed walks can provide us with a novel way to improve the robustness of networks. To
sum up, analyzing small order closed walks in networks gives us a new insight into the structure of networks.
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