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ABSTRACT
Inferring diffusion networks from traces of cascades has been
extensively studied to better understand information diffu-
sion in many domains. A widely used assumption in previous
work is that the diffusion network is homogenous and diffu-
sion processes of cascades follow the same pattern. However,
in social media, users may have various interests and the con-
nections among them are usually multi-faceted. In addition,
different cascades normally diffuse at different speeds and
spread to diverse scales, and hence show various diffusion
patterns. It is challenging for traditional models to capture
the heterogeneous user interactions and diverse patterns of
cascades in social media. In this paper, we investigate a
novel problem of inferring multi-aspect diffusion networks
with multi-pattern cascades. In particular, we study the ef-
fects of various diffusion patterns on the information diffu-
sion process by analyzing users’ retweeting behavior on a
microblogging dataset. By incorporating aspect-level user
interactions and various diffusion patterns, a new model
for inferring Multi-aspect transmission Rates between users
using Multi-pattern cascades (MMRate) is proposed. We
also provide an Expectation Maximization algorithm to ef-
fectively estimate the parameters. Experimental results on
both synthetic and microblogging datasets demonstrate the
superior performance of our approach over the state-of-the-
art methods in inferring multi-aspect diffusion networks.
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1. INTRODUCTION
The increasing popularity of social networking websites,

such as Twitter and Sina Weibo, has greatly promoted the
research on social network analysis due to the massive real
data available. A ubiquitous problem of social network anal-
ysis is how the information, idea, and innovation diffuse in
the networks. Studying the process of information dissemi-
nation, cascading behavior and influence spreading in social
networks is fundamental in many applications, such as tech-
nological innovations spreading [12], word of mouse effects
in viral marketing [2, 13] and personalized recommendation
in E-commerce websites [17].

As a fundamental research issue in information diffusion,
inferring the network structure from a collection of diffusion
cascades has been studied in many domains, such as the
hyperlink network of on-line news articles [6, 7, 8] and the
collaboration network of scientists [18]. Existing models can
be roughly divided into inferring the network connectivity,
such as NetInfer [7] and MulTree [9], and inferring not only
the network structure but also the transmission rates over
the edges, like NETRATE [6] and InfoPath [8]. These meth-
ods normally use a continuous time distribution to model the
cascade diffusion process, and try to find the optimal homo-
geneous network which can maximize the likelihood of all
the observed cascades.

Existing studies assume the network connections are ho-
mogeneous and have only one aspect [6, 8, 18]. This assump-
tion does not hold in social media. The interactions on social
networks are usually heterogeneous and have many aspects.
For example, the research on social trust showed that the
trust relationship between online users has many facets [22].
One user tends to trust different users in terms of different
facets. Similarly, social theories [11, 15] demonstrated that
the effect of social influence from different angles such as
topics may vary significantly. Users tend to interact with
different friends in terms of different angles in society. Peo-
ple’s multi-aspect interests and influence of different types
suggest people may adopt different types of information from
different people in social networks.

Figure 1 shows a toy example of a network with two as-
pects: research and sports. The entire network can be de-
composed into two subgraphs. Each subgraph is associated
with one aspect. The width of the edges represents the rela-
tionship strength. For different aspects, the corresponding
relationship strength is different. For example, user 1 and 2
are researchers working on data mining related topics. They
might interact with each other intensively on data mining
related cascades, but they do not necessarily share similar
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Figure 1: Example of a 2-Aspect Diffusion Network

interests on sports. It is challenging to infer the multi-aspect
diffusion network due to the fact that the aspects are usu-
ally not explicitly observed. Though the toy example sug-
gests we can consider each topic as an aspect, it is hard to
verify whether different topics can be integrated as one as-
pect due to similar diffusion cascades. Moreover, the topics
in different social network websites may differ significantly.
For example, topics a user discusses on Twitter could be
different from the topics he/she discusses on Epinions. To
address this challenge, we need a general model to automat-
ically distinguish the aspects of the cascades and infer the
aspect-sensitive diffusion networks.

Meanwhile, the underlying reasons driving a piece of in-
formation spreading from node to node is more complex in
social networks than those in traditional networks. Social
theories showed that information and influence can be trans-
mitted by various mechanisms, such as conformity, social
learning, and social contagion [19]. In medical science, it is
also well-established that more infectious disease, compared
against less infectious ones, can spread to a wider scale in a
short period of time [14]. In social networks, cascades usu-
ally spread at different speeds and to diverse scales, and thus
present various diffusion patterns. Inspired by the sociologi-
cal and epidemiologic theories, we are particularly interested
in investigating the following question: do various diffusion
patterns of the cascades reflect users’ retweeting behavior in
social networks? Distinguishing diverse diffusion patterns of
the cascades in social networks may potentially help us bet-
ter understanding information diffusion and more accurately
inferring the diffusion networks.

In this paper, we propose a new model to infer the multi-
aspect diffusion networks by taking advantage of both aspect-
sensitive user interactions and various diffusion patterns.
In particular, we investigate 1) whether different cascades
present distinct diffusion patterns in social networks, and 2)
how their diffusion patterns reflect users’ behavior in infor-
mation diffusion. Then we discuss how to incorporate the
aspect-sensitive transmission rates and diffusion patterns of
cascades into a new model to more effectively infer the multi-
aspect diffusion networks. Finally, we conduct extensive ex-
periments to evaluate the proposed model. The main con-
tributions of this paper can be summarized as follows:

• We formally define the problem of inferring the multi-
aspect diffusion networks to enable the utilization of
multi-aspect user interactions and the various diffusion
patterns of cascades in social networks;

• By analyzing 300,000 retweeting cascades in Sina Weibo,
we study 1) the existence of various diffusion patterns
of the microblogs; and 2) users’ retweeting behaviors
when encountering the cascades with remarkably dif-
ferent diffusion patterns;

• By incorporating the aspect-sensitive diffusion cascades
and various diffusion patterns, we present a new model
MMRate. Moreover, to effectively estimate the param-
eters, an Expectation Maximization algorithm is given;

• We empirically evaluate MMRate on both synthetic
and real-world microblogging datasets and study the
application of MMRate to help other data mining tasks,
such as aspect-sensitive influential mining.

The remainder of the paper is organized as follows: in
Section 2, we formally define the studied problem. Section
3 describes the dataset and analyzes how the diffusion pat-
terns reflect users’ retweeting behavior. Section 4 introduces
the proposed model MMRate and gives an EM-algorithm to
effectively infer the parameters. In Section 5, we evaluate
our approach and report the results. We discuss related
work in Section 6, and conclude this paper in Section 7.

2. PROBLEM FORMULATION
In this section, we will first introduce some notations, and

then we will give a formal definition of the studied problem.
Cascade: A cascade tc can be denoted as aN -dimensional

vector tc = (tc1, ..., t
c
N )T , where N is the number of nodes.

The ith dimension of tc records the time stamp when infor-
mation c infects node i, and tci ∈ [0, T c]∪ {∞}. The symbol
∞ labels nodes that are not infected during the observation
window [0, T c]. The time stamp is set to 0 at the start of
each cascade.

A cascades dataset C consists of a collection of cascades,
i.e. C = {t1, ..., tM}, where M is the number of cascades.
To simplify the problem formulation, we make the following
two assumptions. First, within a cascade tc, a node i with
a time stamp tci can only be infected by the node j with an
earlier time stamp, i.e. tcj < tci . In a cascade tc, if tcj > tci , we
refer node j as one of node i’s child node and node i as one
of node j’s parent node, though there may not exist an edge
between them on the true network. Second, similar to the
Independent Cascade model [5], we assume the child node is
infected once its first parent succeeds in infecting it, and it
can not be infected again. All the parents try to infect their
child nodes independently.

Aspect distribution: Assuming there are K aspects
in C, the aspect distribution of C can be represented as
Π = {π1, ..., πK}, and

∑K
i=1 πi = 1, where πk is the proba-

bility of the kth aspect. Each cascade ci is associated with a
K-dimensional vector zi = (zi1, ..., ziK) and

∑K
k=1 zik = 1,

with the kth element zik denoting the probability of the cas-
cade tci belonging to the kth aspect.

Diffusion patterns: Each cascade tc presents a unique
diffusion pattern which is independent of the network struc-
ture. To model the diffusion pattern of tc, we use a function
g(∆t; δc) to represent the probability distribution of the de-
caying time ∆t between two successively infected node (tci ,
tcj) in cascade tc, where δc is the distribution parameter. The
parameter δc determines the spreading speed of the cascade.
We will describe the function g(∆t; δc) in detail later.

Aspect-sensitive information diffusion graph: An
information diffusion graph G = (N,E) can be decomposed
as K aspect-sensitive subgraphs G = ∪k=1:KGk with Gk =
(N,Ek). N is the node set, E is the edge set, and Ek is
the edge set associated with aspect k. Ek can be further
denoted as Ek = ∪i,j=1:N{αkij}, where αkij is the k-aspect
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Figure 2: An Illustration of the Studied Problem

transmission rate from node i to j. In most cases, the
aspect-sensitive pairwise transmission probability is asym-
metric, i.e., αkij 6= αkji.

We provide an illustration of the studied problem in Fig-
ure 2. The upper left part of Figure 2 shows a 2-aspect
network, the upper right part presents various diffusion pat-
terns of the cascades, and the lower part is the collection of
cascades C. In the network, the green and red bars denotes
the two aspects with probabilities π1 = 0.7 and π2 = 0.3,
respectively. Each connected pair of users have two trans-
mission rates α1

ij and α2
ij with each one associated with an

aspect. The diffusion pattern of cascade tc is modeled by
the distribution function g(∆t, δc) shown in the upper right
part. The x-axis is the decaying time of the cascades during
spreading, and the y-axis is the probability. Each cascade
tc in C is composed by the tuples (useri : tic), where useri
is the node and tic is the time when useri is infected by the
cascade tc. Given the multi-aspect network G with hetero-
geneous relationships between users, the aspect distribution
Π and the diffusion patterns δC, a set of corresponding cas-
cades C can be generated. Conversely, given the cascades
data C, the task here is inferring the aspects distribution
Π, the diffusion patterns δC and the multi-aspect diffusion
network G.

Based on the above definitions, we define the task of infer-
ring the multi-aspect diffusion networks with multi-pattern
cascades as follow.

Problem 1. Given 1) a network G = {N,E} with hidden
edges, where N represents nodes in the graph and E are the
edges which are unknown, and 2) a collection of observed
cascades C = {t1, ..., tM} spreading with various diffusion
patterns, our goal is to accurately 1) infer the edges E of G,
and 2) estimate the aspect-sensitive information transmis-
sion rates (α1

ij , ..., α
K
ij )

T over each edge eij.

3. DATASET AND DATA ANALYSIS
In this section we will first introduce the dataset studied in

this paper. Then we will study the difference of the diffusion

Table 1: Statistics of the Datasets
DPU DUNF

# of nodes 1,038 750
# of edges 11,385 2,974
#of cascades 5,124 4,206
average # of cascades per edge 1.9 6.8

patterns and investigate the effect of different patterns on
information diffusion via real data.

3.1 Datasets
We study the large microblogging network dataset crawled

from Sina Weibo1 [25]. This dataset is crawled to study
the retweeting behaviors in the microblogging network. It
contains 1,776,950 users, 308,489,739 following relationships,
300,000 original microblogs, and 23,755,810 retweets. On
average, each microblog has been retweeted for about 80
times in the dataset. For the purpose of this study, we build
the following two datasets from the initial dataset.

The first dataset is built as follows. As more popular Sina
Weibo users can transmit information to a wider scale, we
first select the users with over 1,500 followers as nodes and
extract corresponding relationships among them as edges.
In this way, we obtain a network with 1,624 nodes and
23,097 corresponding directed connections. Then for each
microblog, we extract its diffusion path in the extracted net-
work. As a result, 5,124 microblogs are extracted as diffusion
cascades. Some nodes or edges have not participated in any
of the selected diffusion cascades are then eliminated. Fi-
nally, we obtain the first diffusion network with 1,038 users
and 11,385 following relationships. For simplicity, we name
this dataset DPU (Dataset of Popular Users).

For the second dataset, we select the users with a large
number of friends as the nodes, because such users can usu-
ally receive more posts and hence have more chances to par-
ticipate in more cascades. Similarly, we extract correspond-
ing relationships among them and obtain a network with
1,345 nodes and 5,874 edges. In the similar way as DPU, we
extract 4,206 cascades, After eliminating some isolate nodes
and edges, we obtain the second dataset with 750 nodes and
2,974 edges. We name this dataset DUNF (Dataset of Users
with Numerous Friends). The statistics of the two datasets
are given in Table 1.

3.2 Study the Diffusion Patterns in Microblog-
ging Network

In this subsection, we will study the diffusion patterns of
the cascades and investigate how these patterns reflect users’
retweeting behavior in microblogging network. More specif-
ically, we want to answer the following two questions: Are
the diffusion patterns of some cascades significantly different
from others in microblogging networks? How does the vari-
ous diffusion patterns of the cascades reflect users’ retweet-
ing behavior during information diffusion? To answer the
two questions, we conduct the following two groups of t-
tests.

To answer the first question, we conduct a group of two-
sample t-tests to verify whether more popular posts spread
faster than ordinary ones. We first rank the microblogs ac-
cording to their numbers of retweets, then we select the top

1http://arnetminer.org/Influencelocality.
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k% microblogs from the ranking results as the first group
of samples. The entire dataset are considered as the sec-
ond group of samples. From each group, we randomly select
1000 posts composing two test samples S1 and S2. Then we
compute the average spreading speed sct, scr of S1 and S2,
respectively. sct can be computed by sct = 1

1000

∑1000
i=1

ni
ti

,

where ni denotes the repost number of the post pi and ti is
the time span of pi. scr can be computed in the similar way.
The null hypothesis is that there is no significant difference
between the two spreading speeds, H0 : sct = scr; while the
alternative hypothesis is the average spreading speed of S1 is
faster than that of S2, H1 : sct > scr. The null hypothesis is
rejected at the significant level α = 0.01. The p-values of the
t-test with various k are shown in Table 2. The star next to
the p-value means that there is statistical evidence to reject
the null hypothesis. One can see that the null hypothesis
can be rejected when k is 5, 10 and 20. In others words,
the top 5%, 10% and 20% popular posts spread significantly
faster than the random selected posts.

Table 2: Hypothesis Testing Results (P-Values) to
Verify More Popular Posts Spread Faster.

p (k=5) p (k=10) p (k=20) p (k=40)
3.1259e-10∗ 1.9653e-4∗ 6.8347e-4∗ 1.39e-2

To answer the second question, we conduct the second
groups of two-sample t−tests to investigate 1) whether the
spreading of popular posts counts on the closeness of the
senders and recipients, and 2) whether the user’s retweet-
ing behavior is related to the diffusion patterns of the posts.
Before describing the detail of the t-test, we first give a def-
inition as follow.

Definition 1. Closeness: the closeness from useri to userj
is defined as closenessij =

tj
tall

, where tj denotes the num-

ber of posts useri retweeting from userj , and tall denotes
the total number of retweeted posts by useri.

To obtain enough data for the t-test, we tend to choose
the users with larger number of friends and posts. Hence we
first randomly select 100 users who posted more than 1000
microblogs and have more than 200 friends. Then for each
selected user useri, we rank all his/her friends according
to the closeness to them. We select top k% friends from
the ranking as the first group of samples S1, and bottom
k% friends as the second group of samples S2. Then we
compute the average number of retweet spt, spl of the posts
useri retweeted from the friends in S1 and S2, respectively.
The null hypothesis is that there is no significant difference
between spt and spl, H0 : spt = spl; while the alternative
hypothesis is spt is significantly smaller than spl, H1 : spt <
spl. The null hypothesis is rejected at the significant level
α = 0.01. The p-values of the t-test with various k are shown
Table 3. The t-test result reveals that there is statistical
evidence to reject the null hypothesis when k is 2, 5 and
8. That is, the average popularity of posts retweeted from
the top 2%, 5% and 8% close friends is significantly smaller
than that from those less close friends. Note that the t-test
result does not mean popular tweets spread mostly through
less close friends. It just means that if a user retweets a post

Table 3: Hypothesis Testing Results (P-Values) to
Verify Diffusion Patterns Reflect Users Behavior

p (k=2) p (k=5) p (k=8) p (k = 50)
8.2723e-8∗ 2.9124e-8∗ 7.4367e-6∗ 3.65e-2

from a less close friend, the retweeted post is more likely to
be popular.

In summary, the evidence from the two groups of t-test re-
sults suggests the following answers to the questions: 1) The
more popular microblogs are more likely to spread faster, and
this infers that different cascades may present significantly
different diffusion patterns. 2) Users’ retweeting behavior is
related to the diffusion patterns of the posts. With a higher
probability, a post spreading through two users who are not
closed is more popular than a post spreading through two
very close users. Based on these findings, we next will in-
troduce how to exploit the diffusion patterns of cascades to
help us better infer diffusion networks.

4. MMRATE: INFERRING MULTI-ASPECT
DIFFUSION NETWORKS

In this section, we will start by briefly describing some pre-
liminaries. Then we will give the multi-aspect information
diffusion model and present how to compute the likelihood
of a collection of cascades using the proposed model. To es-
timate the parameters, we next will give a EM-algorithm to
effectively infer both the aspect-sensitive diffusion networks
and the aspect of each cascade belonging to.

We first revisit some basic concepts and introduce some
standard notations. We define a nonnegative random vari-
able T to be the time when an event happens, such as useri
adopting a piece of information. Let f(t) be the probability
density function of T , then the cumulative density function
can be denoted as F (t) = P (T ≤ t) =

∫ t
0
f(x)dx.

Survival function. The survival function S(t) is the
probability that an event does not happen to a node by
time t:

S(t) = P (T ≥ t) = 1− F (t) =

∫ ∞
t

f(x)dx.

Hazard function. Given functions f(t) and S(t), we can
further define the hazard function H(t), which means the
instantaneous rate that an event will happen to a particular
node within a small interval just after time t if it has not
happened to the node yet by time t.

H(t) = lim
∆t→0

p(t ≤ T ≤ t+ ∆t|T ≥ t)
∆t

=
f(t)

S(t)
.

4.1 Incorporating Patterns and Aspects
In this subsection, we will introduce the proposed model

MMRate. For each cascade, we use the decaying time distri-
bution function to model its diffusion pattern. We consider
that each cascade is also associated with a hidden aspect.
By a liner combination of the diffusion pattern and aspect,
the MMRate is proposed.

To model information diffusion, first we need to consider
how to compute the diffusion probability between two nodes
in a specific cascade. In our model, the pairwise diffusion
probability is aspect-sensitive and related to the diffusion
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Table 4: Notations
SYMBOL DESCRIPTION
N the number of nodes in the network
M the number of cascades
K the number of aspects

tc a cascade, tc = (tc1, ..., t
c
N )T

C the collection of cascades, C = {t1, ..., tM}
G the hidden multi-aspects diffusion network
Π the aspects distribution, Π = {π1, ...πK}
Z the aspect matrix of the cascades, Z = (zi, ..., zM )
Θ the variable set, Θ = {G,Z}
Gk the diffusion network associated with aspect k

αkij the transmission rate from node i to j in aspect k

zi the aspects distribution of cascade ci
zik if ci belongs to aspect k, zik = 1; otherwise, zik =

0
πk the probability of the kth aspect

δC the diffusion pattern parameters, δC = {δ1, ...δM}

patterns. Hence we decompose the probability of one node
i activating one of its neighbors j in the cascade tc into
two parts: the aspect-sensitive transmission rate αkij , and
the probability that cascade tc with a pattern parameter
δc takes time ∆tcij to infect a new node. Before describing
MMRate in detail, we first give some notations in Table 4.

Probability of node i infecting node j. The proba-
bility of node i infecting node j in the cascade tc with aspect
k and pattern δc can be represented as :

f(∆tcij ; k, δ
c) = g1(∆tcij ; g2(αkij , δ

c)). (1)

Here, g1(·) is the distribution to model the conditional like-
lihood of node i infecting j given the aspect-sensitive trans-
mission rate αkij , diffusion pattern parameter δc and the time

gap ∆tcij . g2(·) is a mapping function. Given αkij and δc,
g2(·) combines the two values. Here we simply sum the two
values, i.e. g2(αkij , δ

c) = αkij + δc.
In this paper, we apply the following three distributions to

model the diffusion probability function g1(·): exponential,
power-law and Rayleigh. The exponential and power-law
distributions are widely used to model information diffu-
sion in social networks [7, 18]. Rayleigh distribution is a
non-monotonic parametric model used in epidemiology [24].
Recently the Rayleigh model is also adopted to model in-
formation diffusion [6, 8]. For simplicity, we assume the
diffusion pattern function g2(·) of the cascade tc also follows
one of the three distributions with a distribution parameter
δc, and the maximum likelihood estimation (MLE) of δc can
be derived from the distribution function. The mathemat-
ical expressions of the three models and the corresponding
MLE of δc are given in Table 5.

Further explanation of MMRate. Intuitively, the
probability that node i transmits the information c to node j
depends on both their aspect-sensitive transmission rate αkij
and the diffusion pattern with the parameter δc. As we stud-
ied previously, the diffusion patterns of cascades can reflect
users’ retweeting behavior. The propagation of microblogs
are also related to their diffusion patterns, and those popu-
lar ones can spread between two users independent of their
closeness. Figure 3 gives an example to show how differ-
ent diffusion patterns reflect information propagation. The
upper two figures show the diffusion patterns of the two
hashtags in Twitter: “#Chicago Storm” and “#Haiti Earth-
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Figure 3: An Illustration to Show How the Diffusion
Patterns Reflect Information Propagation

quake”, and the lower two figures show the corresponding
diffusion paths. The dashed black lines in the lower two fig-
ures represent the underlying possible diffusion paths, and
the red solid ones are the real diffusion paths. The trans-
mission rate from i to m is larger than that from j to m
(αkim > αkjm), but the time interval between j and m is

smaller than that between i and m (∆tAim > ∆tBjm). One
can see that the diffusion paths of the two hashtags are dif-
ferent. For the hashtag “#Chicago Storm”, the transmission
rate contributes more to its diffusion, but for the spreading
of “#Haiti Earthquake”, time plays a more important role.

Likelihood of node i infecting j in cascade tc. In a
cascade, we assume 1) one node gets infected once the first
parent infects it, and 2) all the parents infect their child
nodes independently. Based on the two assumptions, the
likelihood of the parent node i infecting the child node j in
the cascade tc with aspect k and pattern δc can be computed
by

f(∆tcij ;α
k
ij , δ

c, Gk)×
∏

i6=u,tcu<tcj

S(∆tcuj ;α
k
uj , δ

c, Gk). (2)

In the cascade tc, the node j could possibly infected by any
one of its parent nodes. Hence the likelihood of j getting
infected in the cascade tc can be calculated by summing
over the likelihoods of each potential parent being the first
one to infect it.

Γ+
j (tc; k,G, δc) =

∑
i:tci<t

c
j

f(∆tcij ;α
k
ij , δ

c, Gk)× (3)

∏
i6=k,tcu<tcj

S(∆tcuj ;α
k
uj , δ

c, Gk).

Likelihood of node survived from the cascade tc. If
node j is survived from all the parents by the time T c, we say
the node is survived from the cascade tc. The likelihood that
node j is survived from the cascade tc can be represented
by the following product of survival function

Γ−j (tc; k,G, δc) =
∏
tci<T

c

S(T c − tcj ;αkij , δc, Gk). (4)
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Table 5: Three Distributions to Model the Edge Transmission Likelihoods
Model Propagation likelihood Log survival function Hazard function MLE of δc

f(∆tcij ; k, δ
c,G) logSij(∆t

c
ij ; k, δ

c,G) Hij(∆t
c
ij ; k, δ

c,G) δ̂c

EXP

{
(αkij + δc) · e−(αk

ij+δc)∆tcij if ti < tj

0 otherwise
−(αkij + δc) ·∆tcij αkij + δc 1

∆t

POW

{
(αk

ij+δc)

σ
· (

∆tcij
σ

)−1−(αk
ij+δc) if ti + σ < tj

0 otherwise
−(αkij + δc) · log(

∆tcij
σ

) (αkij + δc) · 1
∆tcij

1 + n[
n∑
i=1

ln
∆ti

σ
]−1

RAY

{
(αkij + δc) ·∆tcij · e

− 1
2

(αk
ij+δc)(∆tcij)2 if ti < tj

0 otherwise
−(αkij + δc) ·

∆t2ij
2

(αkij + δc) ·∆tcij ∆t
√

2
π

Likelihood of the cascade tc. Given a cascade tc :=
(tc1, ..., t

c
N ), its likelihood can be computed by multiplying

the likelihoods of all the infected and survived nodes in the
cascade. By Eq. (3) and Eq. (4), the likelihood can be
represented as

f(tc; k,G, δc) =
∏
tcj<T

c

Γ+
j (tc)×

∏
tcj<T

c

Γ−j (tc)

=
∏
tcj<T

c

∏
tcm>T

c

S(T c − tcj ;αkjm, δc, Gk)×

∏
u:tcu<t

c
j

S(∆tcuj ;α
k
uj , δ

c, Gk)
∑

i:tci<t
c
j

H(∆tcij ;α
k
ij , δ

c, Gk). (5)

Assuming the cascades spread independently in the net-
work, the likelihood of a set of cascades C = {t1, ..., tM} is
the product of the likelihoods of all the individual cascades.

∏
tc∈C

f(tc;Z, δc,G). (6)

Inferring the network. Given a set of cascades C =
{t1, ..., tM} with estimated diffusion patterns δC, our goal
here is to find the aspect matrix of the cascades Z = (z1, ..., zM )
and the graph G to maximize the likelihood of generating
the cascades collection C. This problem can be reduced to
solve the following convex optimization problem

minG,Z −
∑
c∈C

logf(tc;Z, δc,G) (7)

s. t. αkij ≥ 0, zik ∈ {0, 1} and
∑
k=1:K

zik = 1

i, j = 1, ..., N, i 6= j; k = 1, ...,K

where αkij is the aspect-sensitive transmission rate variable in
the multi-aspect graph G; Z = {zik|i, k = 1, ..., N} is the ma-
trix of the aspect variables. The edges of the k-aspect net-
work are those pairs of nodes with transmission rate αkij > 0.

4.2 Parameter Estimation
To solve Eq. (7), we have to infer the aspect matrix Z and

the graph G. In this subsection, we propose an Expectation
Maximization method to infer the two groups of parameters.

Similar to the Gaussian mixture model, we first consider
the aspect matrix Z = (z1, ..., zM ) as hidden variables, where
zi denotes the aspect vector of cascade ci. If cascade ci
belongs to the kth aspect, only the kth element zik of zi is 1
and all the other elements zim (m 6= k) are 0. In addition,
we use πk to denote the probability of the kth aspect in C.

The complete likelihood of all the cascades can be repre-
sented as

logL(G,Π|C,Z, δC)

=logp(C,Z|G,Π, δC)

=log

M∏
i=1

p(tci , zi|G,Π, δci) (8)

=

M∑
i=1

log

K∑
k=1

p(tci |zik = 1, Gk, δci) · p(zik = 1|G)

=

M∑
i=1

log

K∑
k=1

p(tci |zik = 1, Gk, δci) · πk

The E-Step: For simplicity, we user Θ to denote the
variables G and Z. That is, Θ = {G,Z}. Then the E-step
can be formulated as

Q(Θ,Θ(t−1))

=Q[(G;Z), (G;Z)(t−1)]

=Ef(Z)|C,Θ(t−1) [L(G,Π|C,Z, δC)|C,Θ(t−1)]

=

∫
z

log[L(G, π|C, z)]p(z|C,Θ(t−1), δC)dz

=

∫
z

M∑
i=1

log[p(ci|zik = 1, δci) · πk]

N∏
j=1

p(zjk = 1|cj ,Θ(t−1))dz

=

K∑
k=1

M∑
i=1

log[p(ci|Gk, δci) · πk]p(zik = 1|ci,Θ(t−1)) (9)

=

K∑
k=1

M∑
i=1

log(πk) · p(zik = 1|ci,Θ(t−1))+

K∑
k=1

M∑
i=1

log[p(ci|Gk, δci)] · p(zik = 1|ci,Θ(t−1)).

Using Bayes’s rule, we can compute

p(zik = 1|ci,Θ(t−1)) =
π

(t−1)
k p(ci|G(t−1)

k , δci)∑K
m=1 π

(t−1)
m p(ci|G(t−1)

m , δci)
(10)

and

p(Z|C,Θ(t−1)) =

M∏
i=1

p(zi|ci,Θ(t−1)). (11)

In order to get the estimation for πk, we need to maximize
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Q(Θ,Θ(t−1)). Introducing Lagrange multiplier λ, we get:

∂

∂πk
[Q(Θ,Θ(t−1)) + λ(

K∑
k=1

πk − 1)] = 0. (12)

That is

M∑
i=1

1

πk
p(zik = 1|ci,Θ(t−1)) + λ = 0. (13)

Thus, combing Equ. (10) and (13). We get the new estima-

tion for πk given previous Θ(t−1)

πk =

∑M
i=1 π

(t−1)
k p(ci|G(t−1)

k , δci)∑M
i=1

∑K
m=1 π

(t−1)
k p(ci|G(t−1)

m , δci)
. (14)

M-Step: In the M-Step, we maximize the expectation of
the parameter Θ

maximize Q(Θ,Θ(t−1)). (15)

5. EXPERIMENTAL RESULTS
In this section, we will conduct extensive experiments to

evaluate the proposed model MMRate. More specifically,
we want to evaluate: 1) the effectiveness of MMRate in re-
covering multi-aspect network structure; 2) the effectiveness
of MMRate in estimating the aspect-sensitive transmission
rates between each pair of connected nodes; and 3) the ap-
plication of MMRate to other data mining tasks.

We begin with introducing the experimental setup, and
then compare the performance of MMRate against baselines
on both synthetic and real-world datasets. Finally, we give
a case study to show how MMRate can be applied to help
us rank aspect-sensitive influential user in microblogging.

5.1 Experimental Setup
Dataset. Besides the real social network datasets de-

scribed in Section 3, we also use various synthetic datasets
to evaluate our approach. We use the popular Kronecker
Graph model [16] to generate the following three types of
graphs with different topological structures: random graph,
hierarchical graph, and core-periphery graph. For each type
of graph, we first set the aspect size K. For each aspect
k, we generate an aspect-sensitive graph Gk by drawing
the pairwise transmission rate αkij for edge eij from a uni-
form distribution. In this way, we obtain a K-aspect graph
G. Next, over each aspect-sensitive graph Gk we generate
cascades over it. We first generate the aspect distribution
Π = {π1, ..., πK}. Each time we randomly draw an aspect
k from the distribution, and then over the corresponding
graph Gk, we generate a cascade. Root nodes of cascades
are chosen uniformly at random. Once a node is infected,
the propagation probabilities of outgoing edges of the node
determine the infection of its neighbors. The diffusion pro-
cess continues until some terminating conditions are satis-
fied, such as reaching the maximum time window T or no
more nodes getting infected.

Baselines. As MMRate infers both the connectivity of
the network and the transmission rates over each edge, we
compare MMRate with the following two state-of-the-art
baselines which also infer both the network structure and
pairwise transmission rates between nodes.

• NETRATE2 [6]. This is an effective and representa-
tive model for inferring the hidden diffusion networks.

• InfoPath3 [8]. InfoPath is an approach proposed re-
cently to infer the dynamic diffusion networks. It can
also work on static networks as long as the networks
at each time step are the same.

• Multi-aspect Model This method is included to ex-
amine whether incorporating the diffusion patterns can
improve the performance. Multi-aspect model only in-
corporates the multi-aspects, but ignores the diffusion
patterns. That is, the parameter δc is set to 0.

Evaluation Metrics.We evaluate the performance via
the following two metrics,

• F1-measure. F1-measure is defined as F1-measure
= 2·precision·recall

precision+recall
, where precision is the fraction of

edges in the inferred network Ĝ present in the true
network G, and recall is the fraction of edges of the
true network G present in the inferred network Ĝ;

• Mean Absolute Error. To access the accuracy of
the estimated transmission rates αij , we compute the

mean absolute error as follows: MAE = E(
|αij−α̂ij |

αij
),

where αij =
∑K
k=1 α

k
ij is the true transmission rate and

α̂ij =
∑K
k=1 α̂

k
ij is the estimated transmission rate.
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Figure 4: Convergence Curves

Convergence analysis. Before evaluation, we first ex-
amine the convergence of MMRate. Figure 4 shows the
convergence curves of MMRate on the datasets DPU and
DUNF. One can see that the F1-measure on both datasets
first keeps increasing, and then stabilizes after 5 or 6 it-
erations, which means MMRate can effectively converge.
Through the iterations, the F1-measure improvement for
DPU is about 0.08 (from 0.44 to 0.52), and about 0.12 (from
0.52 to 0.64) for DUNF.

5.2 Performance Evaluation on Synthetic Data
To evaluate the effectiveness of MMRate on recovering

the network structure as well as estimating the transmission
rates of each aspect, we compare it with NETRATE and
InfoPath on various synthetic data. Since the latent net-
work and corresponding transmission rates for generating

2http://people.tuebingen.mpg.de/manuelgr/netrate/
3http://snap.stanford.edu/infopath/index.html
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Figure 5: F1-measure of the Three Methods on 3-Aspect Networks with 512 Nodes and 1024 Edges
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Figure 7: Visualization of the True Transmission Rates (Red Lines) vs the Estimated Transmission Rates
(Blue Lines) Over a 2-Aspect Diffusion Network

cascades are known in advance, we can perform quantitive
comparisons with the two baselines.

Figure 5 shows the F1-measure of the three methods over
the three types of generated networks with 512 nodes and
1024 edges. We can observe that MMRate performs inferior
to the baselines when the number of cascade is less than
3,000, but with the increase of the number of cascades, MM-
Rate outperforms NETRATE and InfoPath by up to 8%.
This is because our model aims to infer the multi-aspect net-
work, and hence each aspect of the network needs enough
data to be inferred. One can also see that the F1-measure
steadily increases as we increase the number of cascades, and
stabilizes with around 6,000 cascades.

Figure 6 shows the mean absolute error (MAE) between
the estimated networks and the true networks with 5,000
cascades. One can see that in almost all the cases (with
only one exception), the MAE of MMRate is smaller that
the two baselines. It means that our method can not only
more accurately infer the network structure, but also more
precisely estimate the transmission rates over the edges.

To further test the effectiveness of MMRate on estimat-
ing the transmission rates of each aspect on the multi-aspect
diffusion networks, we visualize the estimated and the true
transmission rates over the edges of a 2-aspect network in
Figure 7. We can observe that MMRate first recovers most
edges for each aspect network. MMRate only fails to in-
fer the edges whose estimated transmission rates are zero.

Second, the transmission rates of each aspect estimated by
MMRate seem good. The mean absolute error of estimated
aspect-sensitive transmission rates are mostly less than 0.3.
It indicates that MMRate can effectively estimate the trans-
mission rates over the edges for each aspect network.

5.3 Performance Evaluation on Real Data
To evaluate the performance of MMRate on real data, we

compare the F1-measure achieved by MMRate and three
baselines on DPU and DUNF datasets.
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Figure 8: Comparison of F1-measure on two Datasets

Figure 8 shows the best experimental results of the three
diffusion models on the two datasets. For the dataset DPU,
the exponential model achieves the best result, and for the
dataset DUNF, the best result is achieved by the Rayleigh
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Table 6: Aspect-Sensitive Top-5 Users of the 3-Aspect DPU Dataset
aspect User ID # of followers # of posts description (occupation or tags)

k=1

1830438495 529,837 10,551 Occupation: a famous writer
1496850204 3,647,584 13,307 Occupation: the chief editor of New Weekly
1733596871 198,192 6,381 Occupation: a famous columnist
1737694433 828,899 10,529 Occupation: a columnist of The Wall Street Journal (Chinese version)
1641428154 175,533 10,698 Occupation: a famous columnist

k=2

1266321801 29,382,466 7,043 Occupation: a famous actress
1656809190 27,000,777 2,911 Occupation: a famous actress
1704116960 24,796,098 1,069 Occupation: a famous TV show host
1645826702 1323179 7,985 Occupation: writer, screenwriter and director
1282005885 25,020,327 1,650 Tags: entertainment, art, literature and media

k=3

1813080181 11,709,072 85,012 Tags: mobile internet, Start Your Business (SYB)
1558226504 1,819,724 8,877 Tags: CEO, design, Start Your Business (SYB)
1737694433 828,899 10,529 Occupation: a columnist of The Wall Street Journal (Chinese version)
1653689003 8,350,338 17,520 Occupation: New Weekly (the microblog site of the New Weekly journal)
1641983193 204,420 11,095 Tags: Internet, E-Commerce and social media

model. The first observation from Figure 8 is that with
the increase of cascade number, the F1-measure achieved
by MMRate first increases, and then gradually decreases.
The best performance is achieved with around 3 or 4 as-
pects. More aspects make the performance worse due to
over-fitting. Second, by differentiating the cascades into a
small number of aspect groups, MMRate can significantly
outperform the baselines. For DPU, MMRate outperforms
baselines by 15% with K equals to 3; for DUNF, the im-
provement can be up to 20%. Moreover, the performance of
MMRate is always better than the multi-aspect model. It
indicates that considering the diffusion patterns of the cas-
cades can better capture the information diffusion process
in social networks; and therefore, help us more accurately
recover the diffusion networks.

5.4 Application of MMRate: A Case Study
MMRate can also be applied to help other data mining

tasks, such as aspect-sensitive influential mining and aspect-
level influence maximization. Here we give a case study to
show how MMRate can be used to help us mining aspect-
sensitive influential users in social networks.

Given a diffusion graphGk with the aspect k, the influence
of its users can be ranked by a weighted PageRank algorithm
as follows

Rk = (1− d) · E

Nk
+ d ·Ak ·Rk (16)

where the vector Rk denotes the authorities of the nodes, E
is a column vector containing only ones, Ak is the weighted
adjacency matrix with each entry Akij = αkij , d is the damp-

ing factor, and Nk is the number of nodes.
Due to space limitation, we only report the ranking result

of the dataset DPU. Table 6 lists the top-5 users of each
aspect in the 3-aspect network of DPU. For each user, we
show the user ID, the number of followers, the number of
posts and the descriptions for this user. We use the tags
or occupations of the users to describe them. As not all
the users make their occupations public available, for such
users we give their tags. We can see that the ranking result
seems reasonable. First, most of the top ranked users have a
large number of followers, which implies they are very pop-
ular. Some top uses in aspect 2 even have tens of millions
followers. Second, most of these users have published more
than 6,000 posts. This means these users are also very ac-

tive and have more chances to interact with their friends or
followers. Therefore, we can infer more connections to these
users and rank them high. Moreover, top users in different
aspects are mostly different. The top-5 users of aspect-1 are
famous writers, columnists, or editors; the users of aspect-
2 are mostly famous actors, TV show hosts, or directors;
and users of aspect-3 are mostly interested in commerce, In-
ternet, or new media. Some users are famous in multiple
aspects. For example, the user with ID 1737694433 ranks in
the top-5 of both aspect-1 and aspect-2. For most top rank-
ing users, however, they are only very influential in just one
aspect. It implies that MMRate can effectively categorize
different types of users into different diffusion networks.

6. RELATED WORK
The problem of inferring the diffusion networks and esti-

mating the diffusion probabilities has been intensively stud-
ied in social network analysis [6, 7, 8, 9, 10, 20, 21]. Earlier
work in [10, 20, 21] considers the network structure is known
and as an input to estimate the diffusion probabilities on the
edges through the spreading events. Kazumi et al. proposed
a likelihood maximization approach for the learning of the
information diffusion probabilities for the Independent Cas-
cade Model [21]. To estimate the diffusion probabilities for a
continuous time delay independent cascade (CTIC) model,
Saito el. al also proposed an approach to maximize the like-
lihood of the observed diffusion cascades [20].

Recently, some work has focused on inferring the diffusion
networks with hidden structures from the time logs of a col-
lection of cascades [6, 7, 8, 9, 18]. These work can be roughly
divided into inferring the network connectivity [7, 9] and
inferring both the network structure and the transmission
rates between nodes [6, 8, 18]. The representative work on
inferring the network structure is NetInfer [7], which formu-
lates this problem as a submodular function maximization
problem. A variant of NetInfer to tradeoff between accuracy
and scalability is MulTree [9]. NETRATE is a representative
approach to infer not only the connectivity of the network,
but also to estimate the transmission rates of infections be-
tween two connected nodes [6]. This method tries to find
the optimal network that maximizes the likelihood of the
observed cascades by using convex optimization. A further
work based on NETRATE is InfoPath [8], which aims to
infer the dynamic diffusion networks.
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It has long been studied both in social theories [11, 15]
and computer society [1, 22, 23] that influence diffusion and
information propagation are related to the types of relation-
ships between users. Tang et al. [22] discerned multi-faceted
trust on social media, and proposed a model mTrust to es-
timate the trust strengths of different facets. To differen-
tiate the social influences from different topics, Tang et al
[23] proposed Topic Affinity Propagation (TAP) to model
the topic-level social influence on large networks. However,
distinguishing different types of cascades for inferring dif-
fusion networks with multiple aspects is less studied. An
effort devoted to differentiate cascades with different topics
recently is TopicCascade [3]. However, TopicCascade uses
topic model to find the topics each cascade related to in-
stead of inferring them from the diffusion data.

7. CONCLUSIONS AND FUTURE WORK
Different from tradition network data which are mostly

homogeneous, the user interactions on social networks are
usually multi-aspected and the cascades show various diffu-
sion patterns, which present challenges to infer the heteroge-
neous diffusion networks in social media. In this paper, we
proposed a novel model MMRate to handle multi-aspect and
multi-pattern cascades for inferring multi-aspect diffusion
networks. In particular, we studied the existence of various
diffusion patterns of cascades and the effects of the different
patterns on information diffusion. By incorporating the as-
pects and patterns of the cascades, the fine-grained model
MMRate was proposed. To effectively estimate the param-
eters, an EM-algorithm was also provided. Experimental
results on both synthetic and real social network datasets
showed the effectiveness of MMRate compared against state-
of-the-art approaches.

For future work it would be interesting to study whether
MMRate can be applied to other domains, such as the virus
propagation networks. Similar to information diffusion in so-
cial networks, the virus propagation networks are also multi-
aspected due to the facts that people’s immunity differs for
different viruses [4]. Different viruses may tend to propagate
among different groups of people. We are also interested in
applying our model to help other social media applications,
such as predicting trending topics with different aspects in
social media. In the future, we will investigate whether the
aspect-level transmission rates between users estimated by
MMRate can help us more accurately predict the future pop-
ularity of the topics with different aspects.
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