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Abstract 
Neighbourhood-based collaborative filtering is one of the 
most popular recommendation techniques, and has been 
applied successfully in various fields. User ratings are 
often used by neighbourhood-based collaborative filtering 
to compute the similarity between two users or items, but, 
user ratings may not always be representatives of their true 
preferences, resulting in unreliable similarity information 
and poor recommendation. To solve these problems, this 
paper proposes to use latent preferences for 
neighbourhood-based collaborative filtering instead of 
user ratings. Latent preferences are based on user latent 
interest estimated from ratings through a psychometric 
model. Experimental results show that latent preferences 
can improve the recommendation accuracy and coverage 
while lessening the prediction time of 
neighbourhood-based collaborative filtering by finding out 
reliable and effective neighbours; and latent preferences 
are better than user ratings for representing user 
preferences. 
Keywords:  User Rating, True Preference, Rating Residual, 
Latent Preference, Psychometric Model, Collaborative 
Filtering. 

1 Introduction 
Collaborative Filtering (CF) is a popular technique used to 
help recommendation system users find out the most 
valuable information based on their past preferences. 
These preferences can be explicitly obtained by recording 
the ratings that users have awarded on items, such as 
albums, movies, and books. CF algorithms can be mainly 
divided into three categories: model-based, 
neighbourhood-based and hybrid ones (Adomavicius and 
Tuzhilin 2005). Model-based approaches first learn a 
model from history dataset. The model is then used for 
recommending. A lot of machine learning algorithms and 
statistical techniques have been used to learn the model, 
such as probabilistic latent semantic analysis (Hofmann 
2003), latent dirichlet allocation (Marlin 2003), matrix 
factorization (Ma, Yang, Lyu, and King 2008, 
Salakhutdinov and Mnih 2008), and clustering (Xue, Lin, 

 

Yang, Xi, Zeng, Yu, and Chen 2005). Although many 
model-based algorithms have been proposed, it seems that 
in real applications, neighbourhood-based algorithms are 
more popular used (Koren 2008),  such as Amazon 
(Linden, Smith and York 2003) and TiVo (Ali and Van 
Stam 2004). These algorithms look into the similarity 
between users or items, and then use these relationships to 
make recommendations (Konstan, Miller, Maltz, 
Herlocker, Gordon, and Riedl 1997, Sarwar, Karypis, 
Konstan, and Riedl 2001, Linden, Smith and York 2003). 
However, user ratings may be deviated from true 
preferences by reasons such as wrong usage of a rating 
scale or type errors, resulting in unreliable similarity 
information and further causing poor prediction. 

To overcome these drawbacks, the paper proposes to 
substitute latent preferences for user ratings to make 
recommendations. Latent preferences are computed based 
on user latent interest, which is estimated from user ratings 
through a psychometric model. 

The rest of the paper is organized as follows: Section 2 
provides a brief review of neighbourhood-based 
collaborative filtering. Section 3 analyses how user ratings 
may cause poor recommendation. The proposed 
preference representation is presented in Section 4. 
Experimental results are reported in Section 5 and 
discussed is Section 6. Finally, we conclude the paper and 
give future work. 

2 Neighbourhood-based Collaborative 
Filtering 

Neighbourhood-based CF algorithms can be further 
divided into two categories: user-based CF and item-based 
CF. The two often contain the following three steps: 

Similarity weighting: For user-based CF, the 
similarity between two users is often computed based on 
the items co-rated by the two (co-rated items), and Pearson 
correlation coefficient is widely used. For item-based CF, 
the similarity between two items is usually evaluated 
based on the users who have co-rated the two (co-rate 
users), and adjusted cosine similarity is found best to 
compute the similarity (compared with cosine similarity 
and Pearson correlation coefficient (Sarwar, Karypis, 
Konstan, and Riedl 2001)). 

Neighbour selection: This step requires that a number 
of neighbours of the active user (for user-based CF) or the 
target item (for item-based CF) be selected (the active user 
is the user whom the recommendations are for, and the 
target item is the unrated item for which a rating need to be 
predicted). These selected neighbours have the highest 
similarity weights. Noteworthy, not all neighbours chosen 
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are effective neighbours (they are the neighbours actually 
used in the following prediction step). For example, in 
Formula (1), user neighbour nu  is effective only when 
his/her rating for target item i ,nu ir  is not missing. 

Prediction: Predictions are often given as the weighted 
combination of neighbour ratings. For example, for 
user-based CF, the prediction is usually computed as 
Formula (1), where ,a ip  is the predicted rating for the 

active user a on the target item i, ar  active user a’s 

average rating； ,nu ir  the rating awarded to item i by active 

user a’s neighbour nu ; ( , )nsim a u  the similarity between 
active user a and his/her neighbour nu ; and k the number of 
neighbours. 
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3 User Rating and Rating Residual 
User ratings are often used by neighbourhood-based CF, 
but those ratings may not always be representatives of user 
true preferences. Users may award random ratings to the 
items they don’t care about, they may make type errors, 
and they may wrongly apply the rating scale used by a 
system. All these and other possible disturbances may 
deviate user ratings from user true preferences, causing 
rating residual (the difference between user ratings and 
their true preferences). 

3.1 Assumptions 
Ratings with residual can influence the 
neighbourhood-based CF. For ease of analysis, the 
following assumptions are first made. These assumptions 
are validated in the experiments in subsection 6.1. 

1. Assumption 1. Two users who have co-rated 
more items tend to be more similar.  

2. Assumption 2. It is likely that two items co-rated 
by more users are more similar. 

Based on the assumptions, the following inferences can 
be drawn. 

1. Inference 1. Less similar users are prone to 
co-rate fewer items. 

2. Inference 2. Probably, less similar items are 
co-rated by fewer users. 

3.2 Effects of Ratings with Residual 

3.2.1 Effects on Similarity Weighting 
Ratings with residual have two following negative effects 
on similarity weighting: 

1. Negative effect 1. Ratings with residual can make 
less similar users/items become more similar. 

2. Negative effect 2. Ratings with residual can make 
more similar users/items become less similar. 

For example, as Table 1 shows, for a rating scale of 1-5, 
user 1u  is an ideal scorer and her rating 

1ur  represents her 

true preference 
1ut , while 2u  is a more severe rater whose 

ratings are all chosen from the wrong rating scale 1-3. If 

2u  has used the rating scale 1-5 correctly, then his true 
preferences may be the ratings given in the fourth row of 
Table 1. When using true preferences, the two users are 
more similar (the Pearson coefficient is 0.4), but when 
ratings are utilized, the two users are less similar (the 
Pearson coefficient is 0.2), that is, because of ratings with 
residual, more similar users 1u  and 2u have become less 
similar. Similarly, user 3u ’s true preferences are given in 
the last row of Table 1, but when 3u  is rating, 3u  has a 
rating residual of 1 or -1, then 3u ’s observed ratings are 
presented in the fifth row of Table 1. When using true 
preferences, 1u  and 3u  are less similar (the Pearson 
coefficient is -0.1) , but when observed ratings are used, 
the two become more similar (the coefficient is 0.1). 

3.2.2 Effects on Neighbour Selection 
In the neighbour selection step, the two negative effects on 
similarity weighting work together to promote 
neighbourhood-based CF algorithms to use unreliable 
neighbours (actually less similar users/items). Considering 
the Inference 1 or 2, chances that these unreliable 
neighbours are not effective. For example: as Table 2 
shows, because of ratings with residual, less similar user 

2u  is selected as a neighbour of user 1u , and now 
user-based CF algorithm needs to predict the rating that 
user 1u  will award to item 4i . Because 1u  and 2u are less 
similar, according to Inference 1, it is likely that 2u hasn’t 
rated 4i  too, that is, 2u  is an invalid neighbour. 

 
1i  2i  3i  4i  5i  

1 1
/u ur t  1 5 3 4 2 

2ur  2 3 1 2 3 

2ut  3 5 2 3 4 

3ur  1 2 4 2 3 

3ut  2 3 5 1 4 

Table 1: User u’s rating (r) and true preference (t) for 
item i. 

 
1i  2i  3i  4i  5i  6i  7i  

1u  null * * ? * null * 

2u  * * null null null * null 

Table 2: 2u is an unreliable neighbour of 1u , chances 
that 2u  is also an invalid neighbour. * is a rating, and 

null denotes a missing rating. 

3.2.3 Effects on Prediction 
Unreliable neighbours used would result in poor 
recommendation accuracy. Ineffective neighbours used 
would cause low recommendation coverage, and force 
neighbourhood-based CF algorithms to choose more 
neighbours for predicting, leading to increased prediction 
time (the computation time of Equation (1)).  

In summary, the analysis above is illustrated in Figure 
1. 



 

Figure 1: The negative effects of ratings with residual 
on neighbourhood-based collaborative filtering. 

4 Latent Preference Representation Based on 
Psychometric Models 

The analysis in previous section shows that user ratings are 
prone to have rating residual, and ratings with residual 
have negative effects on recommendation accuracy, 
coverage and prediction time. Naturally, we want to find a 
better representation of user preferences. We propose to 
substitute latent preferences for user ratings. This section 
first introduces psychometric models and their application 
in recommendation systems, and then parameter 
estimation methods for these models are sketched. Finally, 
latent preference is defined. 

4.1 Psychometric Models 
In psychometrics, latent trait models also known as item 
response theory models, are a series of mathematical 
models applied to data from tests or questionnaires for 
measuring latent traits, such as abilities, interests or 
attitudes. For ease of understanding, first consider the 
Rasch model (Rasch 1960), which can be expressed as 
Formula (2) or (3), 

 , ,log( ( 1) / ( 0))u i u i u ip r p r bθ= = = −  (2) 
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Rasch model was originally used in educational tests. In 
this typical application, ,( 1)u ip r =  is the probability that 
student u will succeed on question i; uθ  parameters are a 
linear continuous measure of student ability; and ib  
parameters are a linear continuous measure of question 
difficulty. Bigger uθ  values identify more able students, 
and bigger ib  values identify more difficult items. When a 
student u’s ability uθ  is equal to the difficulty ib  of a 
question i, the student has a probability of 0.5 to answer 
the question correctly, considering the error in the 
response process. The more the student’s ability is larger 
than the difficulty of the question, the more probable that 
he/she will succeed on the question. 

Psychologists have extended the Rasch model because 
it can only handle binary scores (e.g. right or wrong, 
usually coded 1 or 0). A typical extended model, rating 
scale model (Andrich 1978), can be expressed as Formula 
(4) or (5), 

 , ,log( ( ) 1))/ (u i u i u i xp x x br p r θ τ= = − = − −  (4) 
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where x is a rating taken from successive rating categories 
set {0, 1, 2,…, m}; ,( )u ip xr =  is the probability of 
observing rating x for person u encountering item i; xτ the 
ordered thresholds denoting the difficulty of being 
observed in rating x relative to rating x-1; and 

0 0κ = ,
1

x
x k k

κ τ
=

= −∑ , x = 1, 2, …, m-1, 0mκ =  the 
category coefficients expressed in terms of the ordered 
thresholds 1τ , 2τ , …, mτ . 

Since proposed, these psychometric models have been 
applied successfully in the analysis of educational tests, 
attitude surveys and other rated assessments. 

4.2 Psychometric Models and Collaborative 
Filtering 

In previous work (Hu, Li, and Wang 2010), psychometric 
models have been used successfully to solve the sparsity 
problem of traditional neighbourhood-based CF 
algorithms. This paper differentiates from the previous 
work in that it focuses on presenting a better representation 
of user preferences, and further discusses the benefits of 
the representation for existing CF algorithms. While better 
CF algorithms are needed, the quality of user preferences 
is also important and needs to be researched, because only 
when accurate user preference information can be obtained, 
can CF algorithms make precise recommendations. 

In recommendation system application, the parameters 
in Rasch model have a different meaning and reading. 
According to the correspondence made by Battisti, 
Nicolini, and Salini (2005), who apply Rasch model to 
measure service quality, we have made a similar 
correspondence as shown in Figure 2. The factor related to 
the students that in educational test was the ability ( uθ ) 
becomes now the interest. The factor related to the 
questions that was the difficulty ( ib ), in recommendation 
system application becomes the agreeability. Bigger uθ  
values identify more interested users. Noteworthy, larger 

ib  values identify less agreeable items. Take movie 
recommendation as an example, intuitively, it is probable 
that only people who are very interested in movie will 
show positive response for a film with little agreeability, 
on the contrary, it is unlikely that people who are not 
interested in movie will like an agreeable film. 



 

Figure 2: Correspondence between educational test 
and recommendation system application of Rasch 

model. 

4.3 Parameter Estimation 
Basic techniques for estimating these psychometric 
models include joint maximum likelihood, conditional 
maximum likelihood, marginal maximum likelihood, and 
Bayesian estimation with Markov chain Monte Carlo 
(Johnson 2007). In this paper, we have used the Winsteps 
Rasch measurement computer program for parameter 
estimation (Linacre 2007). In Winsteps, initially, the user 
interest uθ , item agreeability ib , and threshold xτ  are all 
estimated to be 0, and then the PROX (normal 
approximation) estimation algorithm is used for the first 
phase of estimation. This produces revised estimates 
derived by Linacre (1995): 

 21 / 2.9 log( /( ))u u u u u uR N Rθ µ σ= + + −  (6) 

where uθ is the revised interest estimate for user u; uµ  the 
mean agreeability of the items rated by user u; uσ the 
standard variance of those item agreeability; uR the total 
rating of user u (sum across all items rated by user u); and 

uN the maximum possible total rating on those same items 
(the maximum rating category m * the number of items 
rated by user u). Similarly, for the item agreeability 
parameters, 

 21 / 2.9 log( /( ))i i i i i ib R N Rµ σ= − + −  (7) 

where ib  is the revised agreeability estimate for item i; iµ  
the mean interest of the users who have rated item i; iσ the 
standard variance of those user interest; iR the total rating 
of item i (sum across all users who have rated item i); and 

iN the maximum possible total rating by those same users 
(the maximum rating category m * the number of users 
who have rated item i). Winsteps iterates on the user 
ratings and updates these PROX estimates until the 
increment of user interest or item agreeability is small or 
maximum PROX iterations are reached. Initial estimates 
of the threshold between rating category x and x-1 are:  

 1log( / )x x xN Nτ −=  (8) 

where 1xN − is the number of rating x-1 in the data. 
Winsteps takes the PROX estimates and uses JMLE (Joint 
Maximum Likelihood Estimation) for the second phrase of 
estimation. First, the expected total ratings for users and 
items are computed and compared with those observed 

raw total ratings, and then estimates are revised. For 
example, if a user’s expected total rating is less than that 
user’s observed raw total rating, then the ability estimate 
raised. Concrete estimation equations for JMLE are 
derived by Wright and Masters (1982). 

4.4 Latent Preference 
Just like students’ scores are decided by their ability (but 
may be distorted by reasons such as raters with different 
severity), user preferences are decided by the latent 
interest of users, therefore, obtaining the user latent 
interest is the key to a better representation of user 
preferences. In this paper, we first infer user latent interest 
through psychometric models, and then compute user u’s 
preference for item i based on user u’s latent interest, we 
name the new preference information ,u ilp  as latent 
preference, and define it as Formula (9). Compared with 
user ratings ,u ir , latent preferences are decided by latent 
interest and free from rating residual, thus, latent 
preferences may be better to represent user preferences. 

 , ,1
( ( ))

=
= =∑m

u i u ix
lp x p r x  (9) 

5 Experiments 

5.1 MovieLens Dataset 
The MovieLens dataset provided by the GroupLens 
Research Project1 is used in the experiments. The dataset 
contains 100,000 ratings of approximately 1,682 movies 
made by 943 users. Ratings are discrete values from 1 to 5 
(a rating scale of 1-5). Each user has at least 20 ratings. 
The sparsity level of the dataset is 0.9369. As the paper 
(Sarwar, Karypis, Konstan, and Riedl 2001) does, 80% of 
the dataset was randomly selected into a training set and 
the remaining into a test set. 

5.2 Metrics 
The following two recommendation quality metrics are 
reported in this paper. 

Mean Absolute Error (MAE). It corresponds to the 
average absolute deviation of predictions to the actual 
ratings in the test set, as shown in Equation (10), where 

,u ip  is the predicted rating for user u on item i; and ,u ir  the 
tested rating. A smaller MAE value indicates a better 
accuracy. MAE is one of the most often used metrics, 
because most research has focused on improving the 
accuracy of recommendations (Herlocker, Konstan, 
Terveen, and Riedl 2004). 

 , ,| |u i u iMAE avg p r= −  (10) 

Coverage. Recommendation coverage is less 
investigated than accuracy; however, it is an important 
metric, because systems with lower coverage may be less 
valuable to users (Herlocker, Konstan, Terveen, and Riedl 
2004). As Equation (11) shows, the coverage is the ratio of 
predicted ratings to all the ratings in the test set. 

 ,cov _ _ _ /u ierge the number of p N=  (11) 

                                                        
1 http://www.grouplens.org 
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Figure 3.a: Using latent preferences and user ratings 
respectively, the recommendation accuracy of the 
user-based collaborative filtering algorithm with 

different neighbour numbers. 
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Figure 3.b: Using latent preferences and user ratings 
respectively, the recommendation coverage of the 
user-based collaborative filtering algorithm with 

different neighbour numbers. 
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Figure 4.a: Using latent preferences and user ratings 
respectively, the recommendation accuracy of the 
item-based collaborative filtering algorithm with 

different neighbour numbers. 
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Figure 4.b: Using latent preferences and user ratings 
respectively, the recommendation coverage of the 
item-based collaborative filtering algorithm with 

different neighbour numbers. 

5.3 Procedures 
First, user latent interest was estimated from the training 
set through the rating scale model (ref. subsection 4.3). 
Next, for each rating in the training set, corresponding 
latent preference was computed (ref. subsection 4.4). Then, 
based on the new training set formed by latent preferences, 
the user-based CF and item-based CF algorithms were 
used respectively to make predictions for the test ratings. 
Finally, the prediction results were compared with that 
obtained using the original training set composed of user 
ratings. 

5.4 Results 

5.4.1 Recommendation Accuracy and Coverage 
Using latent preferences and user ratings respectively, the 
recommendation accuracy and coverage of the user-based 
CF algorithm are reported in Figure 3.a and Figure 3.b, 
from which we can see that, latent preferences can 
improve the recommendation accuracy and coverage of 
the user-based CF algorithm. The accuracy ascends by 
23.4% when k is set 5 (MAE decreases from 0.947 to 
0.725); and the coverage increases by 209% when k set 10 
(coverage increases from 0.25 to 0.772). 

Using latent preferences and user ratings respectively, 
the recommendation accuracy and coverage of the 
item-based CF algorithm are reported in Figure 4.a and 
Figure 4.b, which show that, latent preferences can 
improve the recommendation accuracy and coverage of 
the item-based CF algorithm. The accuracy increases by 

31% when k is set 20 (MAE decreases from 1.064 to 
0.734); and the coverage ascends by 335% when k set 15 
(coverage increases from 0.184 to 0.8). 

5.4.2 Neighbour Number and Prediction Time 
Neighbour number and accuracy: As Figures 3.a and 4.a 
show, compared with using user ratings, when latent 
preferences are employed, the two neighbourhood-based 
CF algorithms can get much better recommendation 
accuracy with only 5 neighbours.  

Neighbour number and coverage: As can be seen from 
Figure 3.b, using latent preferences and 5 neighbours, the 
recommendation coverage of the user-based CF algorithm 
(0.646) is even higher than that obtained using 60 
neighbours and user ratings (0.639). As Figure 4.b shows, 
using latent preferences and 5 neighbours, the item-based 
CF algorithm receives significantly better 
recommendation coverage (0.628) than that got using 60 
neighbours and user ratings (0.38).  

These results above show that latent preferences enable 
neighbourhood-based CF algorithms to get a better 
recommendation quality with fewer neighbours, so latent 
preferences can reduce the prediction time of these 
algorithms. 

5.4.3 The Change Trend of Accuracy 
As Figure 3.a and Figure 4.a show, when using latent 
preferences, the recommendation accuracy of the 
user-based and item-based CF algorithms drops slightly 
with the increasing of the neighbour number k; while using 
user ratings, the recommendation accuracy ascends 
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Figure 5.a: Using user ratings, when c > 55, the more 
items two users have co-rated, the more similar the 

two users tend to be. 
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Figure 5.b: Using user ratings, when c > 35, it is likely 

that two items co-rated by more users are more 
similar. 
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Figure 6.a: Using latent preferences, the more items 
two users have co-rated, the more similar the two 

users tend to be. 
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Figure 6.b: Using latent preferences, when c > 15, it is 
likely that two items co-rated by more users are more 

similar. 

 Accuracy 
Increases 

Coverage 
Increases 

Time 
reduced 

k increases 

User 
-based 

23.4% 209% 

Item 
-based 

31% 335% 

Better quality 
with only 5 
neighbours 

Accuracy 
slightly 

decreases 

Table 3: The benefits of using latent preferences for 
neighbourhood-based collaborative filtering, and the 

influence of the neighbour number k. 

(user-based) or nearly ascends (item-based) with k 
increases.  

In summary, the experimental results reported above 
are summarized in Table 3. 

6 Discussion of Experiments 

6.1 Neighbour Reliability and 
Recommendation Accuracy 

Recommendation accuracy is mainly related to the 
reliability of neighbours (whether those neighbours used 
are really similar); therefore, we can speculate that latent 
preferences enable neighbourhood-based CF algorithms 
to find out more reliable neighbours. To validate this, the 
average similarity values for neighbours based on 
different numbers of co-rated items for user-based CF or 
co-rate users for item-based CF (c > x, x was set 5, 10, 
15,…, 105 respectively) are computed and reported in 
Figures 5.a, 5.b, 6.a, and 6.b. Those neighbours with 
similarity values smaller than 0 are omitted, because 
usually these neighbours are not used (rank behind in a 
neighbour list). These figures show the followings: 

Assumptions verification: Using user ratings 
(Figures 5.a and 5.b), more reliable similarity values 
based on c > 55 for user-based CF and c > 35 for 

item-based CF confirm the Assumptions 1 and 2 
respectively. The more items two users have co-rated, the 
more similar the two users tend to be (Assumption 1). It is 
likely that two items co-rated by more users are more 
similar (Assumption 2). 

Latent preferences vs. user ratings: When using 
latent preferences (Figures 6.a and 6.b), the average 
similarity values computed by user-based CF conform to 
Assumption 1 exactly, and those by item-based CF almost 
comply with Assumption (2). For item-based CF, when c 
≤ 15 (Figure 6.b), it is likely that those unreliable 
similarity values arise from the data sparsity problem, 
because for one reason, data sparsity can also cause 
unreliable similarity information (Bobadilla and 
Serradilla 2009), and for another, the data set used in the 
experiments is more sparse for item-based CF than for 
user-based CF. There are at least 20 ratings for each user, 
but there is no such a restriction for each item. When 
using user ratings, the problems are the followings. 
Problem 1: Less similar users/items have become more 
similar. For example, for user-based CF, when x 
decreases from 55 to 5, using latent preferences (Figure 
6.a), those related users become less and less similar; but 
when user ratings are used ((Figure 5.a), these users 
become more and more similar. Problem 2: More similar 
users/items have become less similar. For example, for 
item-based CF, when x increases from 15 to 35, using 
latent preferences (Figure 6.b), those related items 
become more and more similar; but when user ratings are 
used ((Figure 5.b), these items become less and less 
similar. The two problems are exactly the negative effects 
of ratings with residual on similarity weighting analysed 
in subsection 3.2.1 (Figure 1: A->B). These problems will 
promote neighbourhood-based CF algorithms to choose 
unreliable neighbours (Figure 1: B->C). For example, for 



user-based CF, using user ratings (Figure 5.a), when x = 
105, although those related neighbours are more reliable, 
their average similarity value is smaller than that of those 
less reliable neighbours with 15 or fewer co-rated items (c 
≤ 15), so these less reliable neighbours will first be chosen 
from by user-based CF, causing low recommendation 
accuracy (Figure 1: C->D). From the analysis above, we 
conclude that, compared with user ratings, latent 
preferences can make the relationships between two 
users/items become more clear and reliable. 

Latent preferences enable more reliable neighbours. 
This can also be drawn from the change trend of the 
recommendation accuracy. When using latent preferences, 
the recommendation accuracy drops slightly with the 
increasing of the neighbour number (Figures 3.a and 4.a). 
This is an intuitive result. First, as the neighbour number 
increases, more less similar neighbours will be used, so 
the recommendation accuracy drops. Second, when 
reliable neighbours are used, the number of neighbours 
will not make much difference in the recommendation 
accuracy. For example, user 1u  has two neighbours 2u  
and 3u , and the two neighbours all like item 1i . No matter 
one neighbour or two neighbours are used, the prediction 
result of user-based CF for user 1u  on item 1i  is the same, 
that is, user 1u  will like item 1i . When using user ratings, 
the recommendation accuracy increases or nearly 
increases as the neighbour number ascends (Figures 3.a 
and 4.a). This is counter-intuitive. More less similar 
neighbours are used, but the recommendation accuracy 
increases. We think that this phenomenon happens 
because that, as the neighbour number increases, more 
reliable neighbours will balance the negative effects of 
less reliable neighbours. For example, for item-based CF 
(Figure 5.b), first, those less reliable neighbours with 
average similarity value 0.274 (x = 5) will be used, as the 
neighbour number increases, more reliable neighbours 
with average similarity value 0.248 (x = 105) will be 
chosen. In this process, the negative effects of those less 
reliable neighbours may be balanced.  

From the analysis above, we conclude that: latent 
preferences are better representatives of user preferences 
than user ratings, and they enable neighbourhood-based 
collaborative filtering algorithms to find out more reliable 
neighbours, thus can improve the recommendation 
accuracy of these algorithms. 

6.2 Neighbour Effectiveness and Coverage and 
Prediction Time 

In previous subsection, it is concluded that using latent 
preferences, more reliable neighbours can be found. 
Chances that these more reliable neighbours are more 
effective, thus they can improve the recommendation 
coverage and lessen the prediction time (it can be 
analysed similarly as done in subsections 3.2.2 and 3.2.3). 
For further validation, the average effective ratios of 
those neighbours for predicting all the test ratings are 
computed and reported in Table 4. For predicting a 
specific test rating, the effective ratio is computed as: (the 
number of effective neighbours / k). The results change 
only a little when we vary the neighbour number k from 5 
to 30, so only the results with k set 5 are reported. As can 

be seen from Table 4, the average effective ratios of more 
reliable neighbours found by using latent preferences are 
much higher than those of less reliable neighbours found 
by using user ratings. When using latent preferences, for 
the first 5 neighbours used, averagely, one neighbour is 
effective for user-based or item-based CF algorithm; but 
when user ratings are used, the first 5 neighbours are 
nearly invalid (this shows the negative effects ratings with 
residual on neighbour selection (Figure 1: C->E), and this 
will further cause low recommendation coverage and 
long prediction time (Figure 1: A->B->C->E->F and 
A->B->C->E->G->H)). 
 

Latent preferences User ratings 
User-based 

CF 
Item-based 

CF 
User-based 

CF 
Item-based 

CF 
0.25 0.24 0.04 0.02 

Table 4: The average effective ratios of neighbours 
found by using latent preferences and user ratings 

when the neighbour number k is set 5.  

From the analysis above, we conclude that: by finding 
out more effective neighbours, latent preferences can 
improve the recommendation coverage of 
neighbourhood-based collaborative filtering algorithms. 
This can further reduce the prediction time of these 
algorithms because fewer neighbours are needed. 

7 Conclusions 
The contributions of the paper include the followings. 
First, a theoretical analysis of the negative effects of using 
user ratings on the neighbourhood-based collaborative 
filtering is presented. Second, a new preference 
representation method, latent preference, is proposed. 
Third, experimental results have shown that latent 
preferences can improve the recommendation accuracy 
and coverage while lessening the prediction time of 
neighbourhood-based collaborative filtering algorithms 
by finding out reliable and effective neighbours. Fourth, 
experimental results have manifested the negative effects 
of using user ratings presented in the theoretical analysis. 
In conclusion, theoretical and experimental analysis has 
shown that latent preferences are better representatives of 
user preferences than user ratings. 

In future work, we will further investigate whether 
latent preferences can improve the recommendation 
quality of model-based collaborative filtering algorithms.  
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