

Memory-based Cross-talk Canceling CODECs for On-chip Buses

Chunjie Duan*, Kanupriya Gulati†, Sunil P Khatri†

† (kgulati, sunil)@ece.tamu.edu

*duan@merl.com

† Department of Electrical and Computer Engineering
Texas A&M University
College Station, TX 77843

* Mitsubishi Electric Research Laboratory
Cambridge, MA 02139

Outline

- Motivation and Introduction
- Preliminaries and Notation
- Previous Work
- Memory Based Cross-talk Canceling CODECs
 - Overview
 - Mathematical Formulation
- Results
- Conclusions and Future Work

Motivation and Introduction

- Ratio of the cross-coupling capacitance between adjacent on-chip wires on the same metal layer to the total capacitance of any wire is becoming quite large.
- This results in significant **delay variation and noise immunity problems**, limiting system performance.
- This problem is **aggravated for long on-chip buses**.
- In this work, we present **memory-based crosstalk canceling CODECs** for on-chip buses.
 - Our **bus overheads are lower** than for a memoryless CODEC, and have been quantified in this work.
 - User may trade off the speed gain against the attendant bus size overhead, by using our approach

Preliminaries and Notation

- Consider an n -bit bus, consisting of signals $b_1, b_2, b_3 \dots b_{n-1}, b_n$.

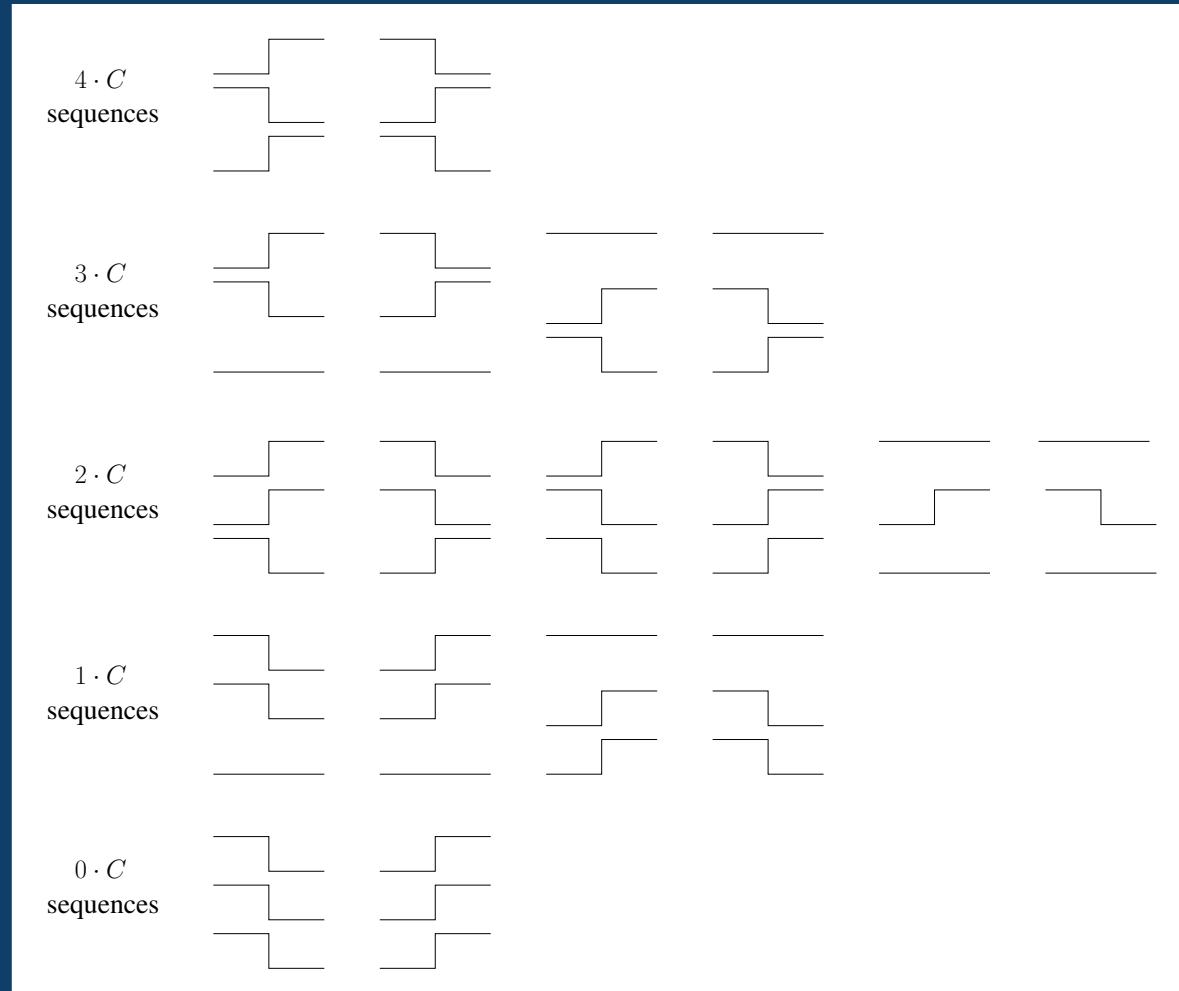
Definition 1 : A **Vector** v is an assignment to the signals b_i as follows:

$$b_i = v_i, \text{ (where } 1 \leq i \leq n \text{ and } v_i \in \{0, 1\}\text{)}.$$

- Consider two successive vectors v^j and v^{j+1} , being transmitted on a bus.
 - For vector v^j , assume $b_i = v_i^j$ ($1 \leq i \leq n$ and $v_i^j \in \{0, 1\}$).
 - For vector v^{j+1} , assume $b_i = v_i^{j+1}$ ($1 \leq i \leq n$ and $v_i^{j+1} \in \{0, 1\}$).
- Consider a vector sequence $v^1, v^2, \dots, v^j, v^{j+1}, \dots, v^k$ (of k n -bit vectors) applied on a bus.
 - We define five types of crosstalk sequences next.

Preliminaries and Notation ... 2

- For any three physically adjacent bits in the bus, and for any temporally adjacent vectors (a **vector pair**), if any one of the conditions below occurs, then the bus is classified as such.



Definition 2 A $p \cdot C$ **crosstalk canceling CODEC** (or $p \cdot C$ *crosstalk free CODEC*) *transforms an arbitrary m -bit vector sequence into a n -bit vector sequence ($m < n$) such that the output vector sequence is a $(p - 1) \cdot C$ sequence.*

Definition 3 A set C_n of n -bit vectors is said to be a $p \cdot C$ **crosstalk free clique** iff any vector sequence $v_1 \rightarrow v_2$ made up of vectors $v_1, v_2 \in C_n$ is a $l \cdot C$ sequence (where $l < p$), and there exists $v_1^*, v_2^* \in C_n$ such that $v_1^* \rightarrow v_2^*$ is a $(p - 1) \cdot C$ sequence.

A **memoryless CODEC** simply encodes an m bit vector with a unique n bit vector. A **memory-based CODEC** encodes an m bit vector with an n bit vector. The encoding depends on the k previous n bit vectors that were transmitted on the bus (for a memory depth k).

Note that in the sequel, *if we say that a CODEC is kC – free, we mean that it results in cross-talk of magnitude $(k - 1)C$ or less, for any bus transition.*

Previous Work

- In 2001, [SoCh] suggest that CODECs could be used for buses, to eliminate 4C and 3C sequences.
- In 2001, [DuTiKh] demonstrated memoryless CODECs to eliminate 4C and 3C sequences, using an inductive construction process.
- In 2001, [ViKu] discuss memoryless and memory-based CODECs for crosstalk cancellation. Method is based on *explicit enumeration* of all 2^{2n} vector transitions.
 - In contrast, our approach employs **implicit enumeration**, and **also cancels 2C crosstalk**.
- In 2004, [DuKh] describe 2C and 1C cross-talk canceling memoryless CODECs.

Our approach is applicable for **cancelling all types of crosstalk**, using a **unified, implicit formulation**. It can **actually speed up the bus by exploiting crosstalk among neighboring wires**

Memory-based Cross-talk Canceling CODECs

- Let v_r be the vector present on the bus at time t_r .
- Let v_{r+1} be the vector present on the bus at time t_{r+1} .
- If it is guaranteed that for any r , $v_r \rightarrow v_{r+1}$ is a $p \cdot C$ transition, then the sequence is a $p \cdot C$ sequence (sufficient condition).
- A memory-based CODEC will satisfy the $(p + 1) \cdot C$ free condition iff for each vector v in the set, there are at least 2^m vectors (including v itself) that are $(p + 1) \cdot C$ free with respect to v .
 - It is *not* required that every pair of vectors in the set is a $(p + 1) \cdot C$ free pair.
- To decode the data, the receiving decoder needs to know both the current received symbol *and* the previously received symbol. As a consequence, memory elements are needed in both the encoder and decoder.

Summary of our Approach

Our approach to determine the effective bus of width m that can be encoded in a $k \cdot C$ free manner, using a physical bus of width n consists of two steps:

- First, we construct an ROBDD $G_n^{kC-free}$ which encodes all vector transitions on the n -bit bus that are $k \cdot C$ free.
- Then, from $G_n^{kC-free}$, we find the effective bus width m , such that an m bit bus can be encoded in a $k \cdot C$ free manner using $G_n^{kC-free}$.

These steps are described in the sequel.

Efficient Construction of $G_n^{kC-free}$

- We employ an ROBDD based implicit construction of $G_n^{kC-free}$
 - We avoid explicit enumeration of legal kC-free vectors.
 - Implicit computation allows sharing of ROBDD nodes maximally, and in a canonical manner.
- In particular, we inductively compute $\overline{G_n^{kC-free}}$
 - Since the ROBDD of a function and its complement contain the same number of nodes (except for a complement pointer), this enables an efficient construction of $G_n^{kC-free}$
- We next show how this is done.

Efficient Construction of $G_n^{kC-free} \dots 2$

- To construct $G_n^{kC-free}$, we allocate $2n$ ROBDD variables.
 - The first n variables correspond to the vector from which a transition is made (referred to as $v = \{v_1, v_2, \dots, v_n\}$).
 - The next n variables correspond to the vector to which a transition is made (referred to as $w = \{w_1, w_2, \dots, w_n\}$).
 - If a vector sequence $v^* \rightarrow w^*$ is legal with respect to $k \cdot C$ crosstalk, then $w^* \rightarrow v^*$ is also legal.
- We construct the ROBDD for $G_n^{kC-free}$ by using ROBDDs for intermediate, partially $k \cdot C$ cross-talk free ROBDDs $\overline{G_i^{kC}}$ ($3 \leq i \leq n$).
- The construction of the ROBDD of G_n^{kC} proceeds iteratively, starting with the base case of G_3^{kC} .

Efficient Construction of $G_n^{4C-free}$

$$G_3^{4C} = \left[\begin{array}{cccccc|cccccc} \overbrace{v_1 \ v_2 \ v_3}^v & \overbrace{v_4 \ \cdots \ v_n} & & \overbrace{w_1 \ w_2 \ w_3}^w & \overbrace{w_4 \ \cdots \ w_n} \\ 1 & 0 & 1 & - & \cdots & - & 0 & 1 & 0 & - & \cdots & - \\ 0 & 1 & 0 & - & \cdots & - & 1 & 0 & 1 & - & \cdots & - \end{array} \right]$$

- Note that the ROBDD for $\overline{G_3^{4C}}$ is *only partially free of $4 \cdot C$ transitions*.
- It is immune to $4 \cdot C$ transitions only on the first three bits
- So, how to construct $\overline{G_n^{4C-free}}$ from G_3^{4C} ?

for $i = 1$ to $n - 3$ **do**

$$G_{i+3}^{kC} = G_{i+2}^{kC} + G_3^{kC}((v_{i+1}, v_{i+2}, v_{i+3}) \leftarrow (v_1, v_2, v_3), (w_{i+1}, w_{i+2}, w_{i+3}) \leftarrow (w_1, w_2, w_3))$$

end for

$\overline{G_n^{kC-free}} \leftarrow G_n^{kC}$
return $\overline{G_n^{kC-free}}$

Efficient Construction of $G_n^{4C-free} \dots 2$

- Only the final $\overline{G_n^{4C-free}}$ that is constructed using the previous algorithm is utilized for CODEC construction
 - Intermediate ROBDDs for G_i^{4C} ($i < n$) will possibly have $4 \cdot C$ crosstalk transitions.
- The final $G_n^{kC-free}$ encodes a family of Finite State Machines (FSMs) containing all legal transitions (in an implicit form using ROBDDs).
- Note that the construction of $G_n^{kC-free}$ is similar, details are in the paper.
- From $G_n^{kC-free}$, we can find the effective size m of the bus that can be encoded. This is the second step of our procedure.

Finding Effective kC-free Bus Width from $G_n^{kC-free}$

- If an m -bit ($m < n$) bus can be encoded using the legal transitions in $G_n^{kC-free}$, then there **must exist a closed set of vertices** $V_c \subseteq B^n$ in the v space of $G_n^{kC-free}(v, w)$ such that:
 - Each source vertex $v_s \in V_c$ has **at least 2^m outgoing edges** (v_s, w_d) to destination vertices w_d (including the self edge), such that the destination vertex $w_d \in V_c$.
 - The **cardinality of V_c** is at least 2^m .
- The resulting encoder is memory-based.

Finding Effective kC-free Bus Width from $G_n^{kC-free}$

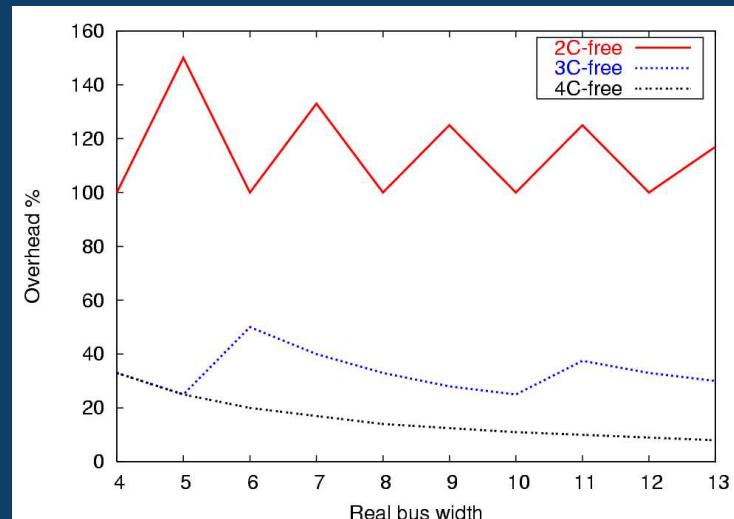
```
test_encoder( $m, G_n^{kC-free}$ )
  find out-degree( $v_s$ ) of each node  $v_s$ , insert  $(v_s, \text{out-degree}(v_s))$  in  $V$  if
   $\text{out-degree}(v_s) \geq 2^m$ 
  degrees_changed = 1
  while degrees_changed do
    degrees_changed = 0
    for each  $v_s \in V$  do
      for each  $w_d$  S.T.  $G_n^{kC-free}(v_s, w_d) = 1$  do
        if  $w_d \notin V$  then
          decrement out-degree( $v_s$ ) in  $V$ ; degrees_changed = 1
        end if
        if  $\text{out-degree}(v_s) < 2^m$  then
           $V \leftarrow V \setminus v_s$ ; break
        end if
      end for
    end for
  end while
  if  $|V| \geq 2^m$  then
    print( $m$  bit bus can be encoded using  $G_n^{kC-free}$ )
  end if
```

Finding Effective kC -free Bus Width from $G_n^{kC-free}$

- All operations in the algorithm are done using ROBDDs
- We initially call the algorithm with $m = n - 1$
 - If an m bit bus cannot be encoded using $G_n^{kC-free}$, then we decrement m .
 - *We repeat this until we find a value of m such that the m -bit bus can be encoded by $G_n^{kC-free}$.*
- Once we know the effective bus size m , we can construct an FSM for the encoder and decoder. There is **significant flexibility** in constructing the FSMs.
 - From the vertices in V , we can select a subset V^{FSM} such that $|V^{FSM}| = 2^m$.
 - Once this selection is made, we have further flexibility in assigning the 2^m labels out of each $v \in V^{FSM}$.
- In our current implementation, we make both these selections randomly.

Results

- Implemented in SIS
- Overhead $\frac{n-m}{m}$ shown below.



- Asymptotic overheads for the memory based CODECs are much lower than the memoryless CODEC overheads
 - Overhead for $2 \cdot C$ is 117% compared to 146%, $3 \cdot C$ is 30% compared to 44%, $4 \cdot C$ is 8% compared to 33%
- For wider buses, we recommend that the bus be partitioned into smaller bus segments

Results ... 2

- Standard cell based implementation has **delay 280ps** in a $0.1\mu\text{m}$ process.
 - PLA based implementation may reduce this further.
- CODEC **area** and **delay penalty** is respectively **15%** and **10%** **larger** than memoryless CODEC
- Total **area** of memory-based CODEC (after accounting for **wiring**) is **25%**, **10%** and **20%** **lower** than the memoryless CODECs (for 2C, 3C and 4C free solutions).
- The **bus operates faster** since delay variation due to cross-talk is eliminated.
 - Since $r = \frac{C_x}{C_{sub}}$ is large, eliminating 4C crosstalk results in a roughly 25% speedup. Eliminating 3C and 2C crosstalk each result in an additional 25% speedup.
- Also, delay overhead can be hidden in pipelined system

Conclusions and Future Work

- In DSM technologies, cross-coupling capacitances for two adjacent wires are high compared to self capacitances.
 - This leads to delay variation and possible loss of signal integrity
- We described memory-based CODECs to eliminate 4C, 3C and 2C cross-talk in buses.
- Formulation is general and handles all types of crosstalk
 - ROBDD based implicit construction of all legal vector transitions.
 - Analysis of the resulting ROBDD yields the effective bus width m for a physical bus width n ($m < n$).
- Bus overhead for $2 \cdot C$ is 117% compared to 146%, $3 \cdot C$ is 30% compared to 44%, $4 \cdot C$ is 8% compared to 33%
- Memory-based CODEC delay about 10% more than memoryless. But delay can be hidden in pipelined systems.