
0.5
setgray0

0.5
setgray1

Memory-based Cross-talk Canceling CODECs for On-chip
Buses

Chunjie Duan∗, Kanupriya Gulati†, Sunil P Khatri†
†(kgulati,sunil)@ece.tamu.edu

∗duan@merl.com

† Department of Electrical and Computer Engineering

Texas A&M University

College Station, TX 77843
∗ Mitsubishi Electric Research Laboratory

Cambridge, MA 02139

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 1

Outline

• Motivation and Introduction
• Preliminaries and Notation
• Previous Work
• Memory Based Cross-talk Canceling CODECs
◦ Overview
◦ Mathematical Formulation

• Results
• Conclusions and Future Work

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 2

Motivation and Introduction

• Ratio of the cross-coupling capacitance between adjacent
on-chip wires on the same metal layer to the total
capacitance of any wire is becoming quite large.

• This results in significant delay variation and noise immunity
problems, limiting system performance.

• This problem is aggravated for long on-chip buses.
• In this work, we present memory-based crosstalk canceling

CODECs for on-chip buses.
◦ Our bus overheads are lower than for a memoryless

CODEC, and have been quantified in this work.
◦ User may trade off the speed gain against the attendant

bus size overhead, by using our approach

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 3

Preliminaries and Notation

• Consider an n-bit bus, consisting of signals
b1, b2, b3 · · · bn−1, bn.

Definition 1 : A Vector v is an assignment to the signals bi as
follows:
bi = vi, (where 1 ≤ i ≤ n and vi ∈ {0, 1}).

• Consider two successive vectors vj and vj+1, being
transmitted on a bus.
◦ For vector vj , assume bi = v

j
i (1 ≤ i ≤ n and v

j
i ∈ {0, 1}).

◦ For vector vj+1, assume bi = v
j+1
i (1 ≤ i ≤ n and

v
j+1
i ∈ {0, 1}).

• Consider a vector sequence v1, v2, · · · , vj , vj+1, · · · vk (of k

n-bit vectors) applied on a bus.
◦ We define five types of crosstalk sequences next.

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 4

Preliminaries and Notation ... 2

• For any three physically adjacent bits in the bus, and for any
temporally adjacent vectors (a vector pair), if any one of the
conditions below occurs, then the bus is classified as such.

sequences

sequences

sequences

sequences

sequences

4 · C

1 · C

3 · C

2 · C

0 · C

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 5

Preliminaries and Notation ... 3

Definition 2 A p · C crosstalk canceling CODEC (or p · C crosstalk
free CODEC) transforms an arbitrary m-bit vector sequence into
a n-bit vector sequence (m < n) such that the output vector
sequence is a (p− 1) · C sequence.
Definition 3 A set Cn of n-bit vectors is said to be a p · C
crosstalk free clique iff any vector sequence v1 → v2 made up of
vectors v1, v2 ∈ Cn is a l · C sequence (where l < p), and there
exists v∗1, v

∗
2 ∈ Cn such that v∗1 → v∗2 is a (p− 1) · C sequence.

A memoryless CODEC simply encodes an m bit vector with a
unique n bit vector. A memory-based CODEC encodes an m bit
vector with an n bit vector. The encoding depends on the k

previous n bit vectors that were transmitted on the bus (for a
memory depth k).
Note that in the sequel, if we say that a CODEC is kC − free,
we mean that it results in cross-talk of magnitude (k − 1)C or
less, for any bus transition.

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 6

Previous Work

• In 2001, [SoCh] suggest that CODECs could be used for
buses, to eliminate 4C and 3C sequences.

• In 2001, [DuTiKh] demonstrated memoryless CODECs to
eliminate 4C and 3C sequences, using an inductive
construction process.

• In 2001, [ViKu] discuss memoryless and memory-based
CODECs for crosstalk cancellation. Method is based on
explicit enumeration of all 22n vector transitions.
◦ In contrast, our approach employs implicit enumeration,

and also cancels 2C crosstalk.
• In 2004, [DuKh] describe 2C and 1C cross-talk canceling

memoryless CODECs.

Our approach is applicable for cancelling all types of crosstalk,
using a unified, implicit formulation. It can actually speed up the
bus by exploiting crosstalk among neighboring wires

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 7

Memory-based Cross-talk Canceling CODECs

• Let vr be the vector present on the bus at time tr.
• Let vr+1 be the vector present on the bus at time tr+1.
• If it is guaranteed that for any r, vr → vr+1 is a p · C

transition, then the sequence is a p · C sequence (sufficient
condition).

• A memory-based CODEC will satisfy the (p + 1) · C free
condition iff for each vector v in the set, there are at least 2m

vectors (including v itself) that are (p + 1) · C free with
respect to v.
◦ It is not required that every pair of vectors in the set is a

(p + 1) · C free pair.
• To decode the data, the receiving decoder needs to know

both the current received symbol and the previously
received symbol. As a consequence, memory elements are
needed in both the encoder and decoder.

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 8

Summary of our Approach

Our approach to determine the effective bus of width m that can
be encoded in a k · C free manner, using a physical bus of width
n consists of two steps:

• First, we construct an ROBDD G
kC−free
n which encodes all

vector transitions on the n-bit bus that are k · C free.
• Then, from G

kC−free
n , we find the effective bus width m,

such that an m bit bus can be encoded in a k · C free
manner using G

kC−free
n .

These steps are described in the sequel.

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 9

Efficient Construction of GkC−free
n

• We employ an ROBDD based implicit construction of
G

kC−free
n

◦ We avoid explicit enumeration of legal kC-free vectors.
◦ Implicit computation allows sharing of ROBDD nodes

maximally, and in a canonical manner.

• In particular, we inductively compute G
kC−free
n

◦ Since the ROBDD of a function and its complement
contain the same number of nodes (except for a
complement pointer), this enables an efficient
construction of G

kC−free
n

• We next show how this is done.

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 10

Efficient Construction of GkC−free
n ... 2

• To construct G
kC−free
n , we allocate 2n ROBDD variables.

◦ The first n variables correspond to the vector from which
a transition is made (referred to as v = {v1, v2, · · · , vn}).

◦ The next n variables correspond to the vector to which a
transition is made (referred to as w = {w1, w2, · · · , wn}).

◦ If a vector sequence v∗ → w∗ is legal with respect to
k · C crosstalk, then w∗ → v∗ is also legal.

• We construct the ROBDD for G
kC−free
n by using ROBDDs

for intermediate, partially k · C cross-talk free ROBDDs GkC
i

(3 ≤ i ≤ n).
• The construction of the ROBDD of GkC

n proceeds iteratively,
starting with the base case of GkC

3 .

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 11

Efficient Construction of G4C−free
n

G4C
3 =







v
︷ ︸︸ ︷
v1 v2 v3 v4 · · · vn

w
︷ ︸︸ ︷
w1 w2 w3 w4 · · · wn

1 0 1 − · · · − 0 1 0 − · · · −

0 1 0 − · · · − 1 0 1 − · · · −







• Note that the ROBDD for G4C
3 is only partially free of 4 · C

transitions.
• It is immune to 4 · C transitions only on the first three bits

• So, how to construct G
4C−free
n from G4C

3 ?
for i = 1 to n− 3 do

GkC
i+3 = GkC

i+2 + GkC
3 ((vi+1, vi+2, vi+3)←

(v1, v2, v3), (wi+1, wi+2, wi+3)← (w1, w2, w3))
end for
G

kC−free
n ← GkC

n

return G
kC−free
n

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 12

Efficient Construction of G4C−free
n ... 2

• Only the final G
4C−free
n that is constructed using the

previous algorithm is utilized for CODEC construction
◦ Intermediate ROBDDs for G4C

i (i < n) will possibly have
4 · C crosstalk transitions.

• The final G
kC−free
n encodes a family of Finite State

Machines (FSMs) containing all legal transitions (in an
implicit form using ROBDDs).

• Note that the construction of G
kC−free
n is similar, details are

in the paper.

• From G
kC−free
n , we can find the effective size m of the bus

that can be encoded. This is the second step of our
procedure.

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 13

Finding Effective kC-free Bus Width from G
kC−free
n

• If an m-bit (m < n) bus can be encoded using the legal
transitions in G

kC−free
n , then there must exist a closed set of

vertices Vc ⊆ Bn in the v space of G
kC−free
n (v, w) such that:

◦ Each source vertex vs ∈ Vc has at least 2m outgoing
edges (vs, wd) to destination vertices wd (including the
self edge), such that the destination vertex wd ∈ Vc.

◦ The cardinality of Vc is at least 2m.
• The resulting encoder is memory-based.

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 14

Finding Effective kC-free Bus Width from G
kC−free
n

test_encoder(m, G
kC−free
n)

find out− degree(vs) of each node vs, insert (vs, out− degree(vs)) in V if
out− degree(vs) ≥ 2m

degrees_changed = 1

while degrees_changed do
degrees_changed = 0

for each vs ∈ V do
for each wd S.T. G

kC−free
n (vs, wd) = 1 do

if wd 6∈ V then
decrement out− degree(vs) in V ; degrees_changed = 1

end if
if out− degree(vs) < 2m then

V ← V \ vs; break

end if
end for

end for
end while
if |V | ≥ 2m then

print(m bit bus can be encoded using G
kC−free
n)

end if

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 15

Finding Effective kC-free Bus Width from G
kC−free
n

• All operations in the algorithm are done using ROBDDs
• We initially call the algorithm with m = n− 1

◦ If an m bit bus cannot be encoded using G
kC−free
n , then

we decrement m.
◦ We repeat this until we find a value of m such that the

m-bit bus can be encoded by G
kC−free
n .

• Once we know the effective bus size m, we can construct
an FSM for the encoder and decoder. There is significant
flexibility in constructing the FSMs.
◦ From the vertices in V , we can select a subset V FSM

such that |V FSM = 2m|.
◦ Once this selection is made, we have further flexibility in

assigning the 2m labels out of each v ∈ V FSM .
• In our current implementation, we make both these

selections randomly.
Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 16

Results

• Implemented in SIS
• Overhead n−m

m
shown below.

• Asymptotic overheads for the memory based CODECs are
much lower than the memoryless CODEC overheads
◦ Overhead for 2 · C is 117% compared to 146%, 3 · C is

30% compared to 44%, 4 · C is 8% compared to 33%
• For wider buses, we recommend that the bus be partitioned

into smaller bus segments

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 17

Results ... 2

• Standard cell based implementation has delay 280ps in a
0.1µm process.
◦ PLA based implementation may reduce this further.

• CODEC area and delay penalty is respectively 15% and
10% larger than memoryless CODEC

• Total area of memory-based CODEC (after accounting for
wiring) is 25%, 10% and 20% lower than the memoryless
CODECs (for 2C, 3C and 4C free solutions).

• The bus operates faster since delay variation due to
cross-talk is eliminated.
◦ Since r = Cx

Csub

is large, eliminating 4C crosstalk results
in a roughly 25% speedup. Eliminating 3C and 2C
crosstalk each result in an additional 25% speedup.

• Also, delay overhead can be hidden in pipelined system

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 18

Conclusions and Future Work

• In DSM technologies, cross-coupling capacitances for two
adjacent wires are high compared to self capacitances.
◦ This leads to delay variation and possible loss of signal

integrity
• We described memory-based CODECs to eliminate 4C, 3C

and 2C cross-talk in buses.
• Formulation is general and handles all types of crosstalk
◦ ROBDD based implicit construction of all legal vector

transitions.
◦ Analysis of the resulting ROBDD yields the effective bus

width m for a physical bus width n (m < n).
• Bus overhead for 2 · C is 117% compared to 146%, 3 · C is

30% compared to 44%, 4 · C is 8% compared to 33%
• Memory-based CODEC delay about 10% more than

memoryless. But delay can be hidden in pipelined systems.

Memory-based Cross-talk Canceling CODECs for On-chip Buses – p. 19

	Outline
	Motivation and Introduction
	Preliminaries and Notation
	Preliminaries and Notation ... 2
	Preliminaries and Notation ... 3
	Previous Work
	Memory-based Cross-talk Canceling CODECs
	Summary of our Approach
	Efficient Construction of $G^{kC-free}_n$
	Efficient Construction of $G^{kC-free}_n$... 2
	Efficient Construction of $G^{4C-free}_n$
	Efficient Construction of $G^{4C-free}_n$... 2
	Finding Effective kC-free Bus Width from $G^{kC-free}_n$
	Finding Effective kC-free Bus Width from $G^{kC-free}_n$
	Finding Effective kC-free Bus Width from $G^{kC-free}_n$
	Results
	Results ... 2
	Conclusions and Future Work

