
SPFD-based Wire Removal in a Network of PLAs

Sunil P. Khatri Subarnarekha Sinha Andreas Kuehlmann Robert K. Brayton

Alberto Sangiovanni-Vincentelli

Abstract

This paper describes the application of an SPFD-based wire removal technique for circuit implementations
utilizing networks of PLAs. It has been shown that a design style based on a multi-level network of approximately
equal-sized PLAs results in a dense, fast, and crosstalk-resistant layout.Wire removal is a technique where the
total number of wires between individual circuit nodes is reduced, either by removing wires, or replacing them
with other existing wires. The benefit of SPFD-based wire removal is shown to be insignificant when the circuit
is mapped using standard cells. We demonstrate that this technique is very effective in the context of a network of
PLAs. Further, we outline a technique for wire removal usingmulti-valued SPFDs which we expect will further
improve the results.

1 Introduction

Programmable Logic Arrays (PLAs) are being rediscovered as an efficient implementation style for high-performance

circuits. For example, in the recently introduced Gigahertz processor [1], performance critical parts of the control

were implemented using flat PLAs. Recent work [2] demonstrates that a circuit implementation based on a network

of approximately equal-sized PLAs yields a fast, compact, and cross-talk resistant design. The use of minimum-sized

transistors in the PLA core results in a fast and dense layout, while a structured arrangement of wires guarantees an

effective shielding among signals. The speed and area of each PLA in this design style was reported to be about 50%

less than the corresponding standard-cell based implementation.

In order to reduce the area utilized by such a network, the removal of wires between individual PLAs is desired.

This increases the freedom to place the PLAs and eliminates potential wire conjestion in the routing area. In this

1

paper, we focus on Sets of Pairs of Functions to be Distinguished (SPFDs) as a candidate technique for wire removal.

SPFDs were introduced in [3] in the context of FPGA optimization. In [4] this technique was refined and adapted

to multi-level networks, while its application to logic optimization was described in [5]. The authors report a sig-

nificant average wire reduction for technology-independent wire removal. However, when technology mapping is

performed on the resulting circuits, the benefits of wire removal are erased.

In this work, we apply the wire removal algorithm of [5] to a network of PLAs, and demonstrate an approximate

20% reduction in wiring, which directly translates into a reduction of the layout area. This is because a separate

technology mapping step is not required when the circuit is implemented as a network of PLAs. Further, we outline

a new multi-valued SPFD computation that can be employed to perform wire removal in this context. This idea is

motivated by the observation that the modeling of multi-output PLAs as multi-valued functions provides additional

flexibility to optimize them.

The organization of the rest of this paper is as follows: In Section 2, we briefly describe the implementation style

using a network of PLAs. Section 3 introduces Multi-valued SPFDs, while Section 4 outlines our multi-valued SPFD

based technique for wire removal. Section 5 describes the wire replacement experiments we performed. Finally,

Section 6 concludes the paper and gives an outline of future work.

2 Networks of PLAs

In [2], a new layout and design methodology was introduced, motivated by the goal to achieve fast and dense designs

which are are not susceptible to cross-talk, an increasingly important design consideration in deep sub-micron (DSM)

technologies. The circuit being implemented was decomposed into a network of medium-sized PLAs, each with

between 5 and 10 inputs or outputs, and in the order of 20 product terms. It was shown that this size range for the

PLAs constituted an optimal design point with respect to speed and density. Such PLAs were typically 50% faster, and

about 40% smaller than a comparable standard-cell based implementation. A simple greedy algorithm was introduced

2

Figure 1: Multi-level circuit decomposed into a network of PLAs.

to decompose a multi-level circuit into a network of PLAs.

A sample multi-level circuit, with nodes shown as circles, is shown in Figure 1. The rectangular regions in this

figure represent the clustering of circuit nodes into PLAs.

The layout of a circuit implemented in the network of PLAs style is shown in Figure 2. The dark rectangles in

this figure correspond to the PLAs in the design.

3 Multi-valued SPFDs

Definition 1 An SPFDF (y) on a domain Y is an undirected graph (V;E) where each v 2V corresponds to a unique

minterm v = (y1;y2; � � � ;yk)2Y . An edge (e = (v1;v2))2E means that the minterms corresponding to the two vertices

v1 and v2 must have different functional values.

Figure 3 shows a multi-valued nodeH with k values, and its corresponding (MV-)SPFD. This SPFD is a set with

k tuplesfH0;H1; � � � ;Hk�1g. Each tupleHi consists of several mintermsfhi
1;hi

2; � � � ;hi
ni
g, whereni � k. Each minterm

in Hi must be distinguished from (i.e. have different functionalvalues than) minterms in each of the remainingk�1

tuples.

3

Figure 2: Sample Layout using Network of PLAs

a b c f
0 0 0 1 h1

0

0 0 1 2 h2
0

0 1 0 2 h2
1

0 1 1 0 h0
0

1 0 0 1 h1
1

1 1 0 2 h2
3

1 0 1 2 h2
2

1 1 1 0 h0
1

h2
0 h2

1 h2
2 h2

3

H1

H2

H0 h0
1 h1

1

h0
0 h1

0

Figure 3: A Multi-valued SPFD.

4

Note that this definition of an SPFD is a Multi-valued generalization of the definition of [5]. For a detailed

exposition of binary valued SPFDs, and how they can be used for network optimization, the reader is referred to [5].

Definition 2 A function F(y) implementsF = (V ;E) if F(y) is a valid coloring of F , i.e.

F(y1) 6= F(y2);(y1;y2) 2 E

In other words, for a functionF to satisfyF , F assigns a different value to functionsf i
p and f j

q , for i 6= j. This

suggests that thechromatic number of an SPFD is minimum the number of values required to implement the SPFD

using a multi-valued function.

4 Wire Removal using Multi-valued SPFDs

In the network of PLAs, each individual PLA is a multi-output, multi-input structure. Suppose a given PLA hask

outputs. Then, it can be viewed as a single output node with 2k values. At this point, a multi-valued SPFD can be

computed for this node, and wires in its fanin can be removed using a SPFD based computation. This computation is

described below.

Given a wire,(i; j), its SPFD represents the pairs of minterms that have to be distinguished by it. Thus, in a sense,

the SPFD of(i; j) encodes the information content of a wire. We can replace a wire by another as long as the second

wire has all the information of the original wire. A wire(s; j) can replace the wire(k; j) if all the minterms uniquely

distinguished by the wire(k; j) are also distinguished by(s; j). In other words, the objective is to replace wire(k; j)
from nodenk to n j with a wire(s; j) from nodens to n j, such that the original SPFD atn j is preserved, and some gain

is realized by this change.

The procedure for removing wires in a PLA network is explained below. Consider the PLAP, which hasm inputs

andn outputs. Figure 4-a shows a sample network of PLAs, in whichP resides. Each rectangle represents a PLA, with

5

.

. . .

. .

P

X

. .

. . . .

.

.

. . .

X

Z

Y

Z

. . .

a) A network of PLAs b) Its corresponding multi-valued network

Y

QiQ1
Qm

P

2n values

Qm

QiQ1

Figure 4: Multi-valued SPFD based wire removal.

its AND (input) plane on the left, and the OR (output) plane onthe right. The PLAP can equivalently be considered

a multi-valued node with 2n values, andm binary-valued inputs, as shown in Figure 4-b.

After computing theP (Y) of P, (hereY is the space of the fanins ofP) we re-assign the task of distinguishing

edges ofP (Y) to the fanins ofP, using the following procedure.� Fanins ofP that exclusively distinguish some edge ofP (Y) are first identified, and the corresponding edges are

assigned to these fanins.� The remaining edgesP (Y) are then assigned to the fanins ofP. As far as possible, edges are assigned to fanins

that already have SPFD edges assigned to them, until no more edges can be assigned.� Of the remaining edges, consider those that can be distinguished by two fanins. Of these fanins, assign as many

edges as possible to the fanin that distinguishes most remaining edges.� Next consider the edges that can be distinguished by three fanins. Of these fanins, assign as many edges as

possible to the fanin that distinguishes most remaining edges.� Proceed in this fashion until no edges remain.

6

After this computation, if there are fanins that have no edges to distinguish, these can be removed, and the network

can be accordingly simplified. The new fanin space ofP is calledŶ . The remaining fanins are re-implemented, by

computing the image of their new SPFDs in the input space or a space corresponding to an intermediate cut of the

network (we call this spaceX), and projecting this image back to the space of their fanins, Z. Now espresso [6] is

called to get the new function at the fanin.

In the PLA context, re-implementing any fanin ofP means modifying that specific output of the PLAQ, which is

an input toP. This would in general result in a new implementation ofQ. The only constraint is that the total number

of product terms ofQ after this modification is still bounded by the upper limit onproduct terms.

Now, P is modified. First the image ofP (Y) is computed on theX space. This image is projected back to theŶ

space, to get̂P (Ŷ), the new SPFD ofP in terms of its new fanins. Now we can simply run espresso on the new SPFD

to get the new function ofP.

The above method for performing wire removal is effective for the following reasons:� It was observed [5] that whenever the nodes were simple, SPFDbased optimizations resulted in little improve-

ment. The multi-valued nodes corresponding to the PLAs are complex, since they usually constitute several

inputs and outputs. As a result, the flexibility offered by SPFDs can be exploited to the fullest.� In an SPFD-based computation, a logic node and its fanins areoptimized simultaneously. When the fanins of

a nodeF are modified, the logic function ofF needs to be changed as well. In [5], to avoid the propagation of

changes throughout the transitive fanout ofF, the CODCs (compatible output don’t-cares) [7] of the immediate

fanouts ofF are used toblock the changes ofF. For the application of MV-SPFDs in PLA-based wire removal,

the changes to any node (i.e. a PLA)F do not need to be blocked by the don’t cares of nodes in the fanout

of F. This is because fanout PLAs can be easily re-implemented ifF changes, as long as the total number of

product terms in the fanout PLAs are bounded. This is expected to result in significantly more flexibility while

optimizing any given PLA.

7

Circuit Standard Cell Network of PLAs
before WR after WR Ratio before WR after WR Ratio

C432 1.063 1.042 0.980 1.414 1.217 0.861
C499 2.578 2.617 1.015 2.200 1.917 0.871
C880 2.460 2.593 1.054 3.809 2.876 0.755
rot 7.591 7.416 0.977 7.782 4.453 0.572

Table 1: Wire Removal without Prior Optimization

Circuit Standard Cell Network of PLAs
before WR after WR Ratio before WR after WR Ratio

C432 0.906 0.998 1.102 1.403 1.299 0.926
C499 2.484 2.422 0.975 2.533 2.016 0.796
C880 2.515 2.456 0.977 2.082 1.730 0.831
rot 6.659 6.413 0.963 5.524 4.250 0.769

Table 2: Wire Removal afterscript.rugged

5 Experimental Results

In our experiments to validate the usefulness of SPFD-basedwire removal for a network of PLAs, we utilize the

wire replace code which was described in [5]. The computation is done at the level of binary-valued SPFDs1

Table 1 reports the results ofwire replace on unoptimized circuits. In our tables, the final layout areaof the circuit

is measured in units of 106 square grids. All reported numbers include the area for the actual logic as well as routing.

Columns 2 and 3 report the results for a standard-cell based implementation, with and withoutwire replace,

respectively. Column 4 reports the ratio of the standard cell area after wire removal, to the area before wire removal.

Columns 5 and 6 report the results for a PLA based implementation, with and withoutwire replace, respectively.

Column 7 reports the ratio of the PLA based area after wire removal, to the area before wire removal. Table 2 is

organized in the same fashion, except that each circuit was first subjected toscript.rugged, a technology-independent

optimization script in SIS [8].

In essence, we note that for the standard-cell based methodology, wire replace does not impact the overall layout

area. This is because the benefits attained through wire removal at the technology independent level are negated by the

technology mapping step. However, in the case of the networkof PLAs,wire replace results in a significant reduction

1It is expected that we will have significantly better resultswhen performing wire removal using MV-SPFDs as described inSection 4, since
the changes to a MV node (i.e. PLA) do not need to be blocked by the Don’t Cares of its fanouts, and also because the MV nodes are more
complex, allowing greater optimizational flexibility

8

in circuit area (23.5% for the non-optimized case, and 16.9%in the optimized case). This is due to the absence of a

technology mapping step after wire removal. As a result, thebenefits of wire removal are directly translated into a

reduction in circuit area.

6 Conclusions and Future Work

In this paper we have demonstrated that SPFD based wire removal is a powerful technique for reducing the wiring,

and therefore the overall layout area, of a circuit implemented as a network of PLAs. We show that the binary-valued

wire removal algorithm of [5] provides a 20% reduction in wiring for a network of PLAs, while the same algorithm

delivers no improvement for a standard-cell based implementation.

We have also outlined a multi-valued SPFD computation to perform wire removal for a network of PLAs. We

plan to implement this in the future. It is expected to provide yet better results, since the changes in a MV node (i.e.

a PLA) do not need to be blocked by the don’t-cares of fanout nodes. Also, since each of the MV nodes are complex,

we expect that then MV-SPFD based algorithm will have a larger flexibility in re-implementing an MV node.

References

[1] S. Posluszny, N. Aoki, D. Boerstler, J. Burns, S. Dhong, U. Ghoshal, P. Hofstee, D. LaPotin, K. Lee, D. Meltzer, H. Ngo,K. Nowka, J. Silberman,

O. Takahashi, and I. Vo, “Design methodology for a 1.0 ghz microprocessor,” inProceedings of the International Conference on Computer Design (ICCD),

pp. 17–23, Oct 1998.

[2] S. Khatri, “A novel VLSI layout and design flow utilizing regular layout fabrics.” Internal Study, University of California at Berkeley, Feb 1999.

[3] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to express functional permissibilities for LUT based FPGAs and its applications,” inProceedings

of the International Conference on Computer-Aided Design, pp. 254–61, Nov 1996.

[4] R. Brayton, “Understanding SPFDs: A new method for specifying flexibility,” in Workshop Notes, International Workshop on Logic Synthesis, (Tahoe City,

CA), May 1997.

[5] S. Sinha and R. Brayton, “Implementation and use of SPFDsin optimizing boolean networks,” inProceedings of the International Conference on Computer-

Aided Design, pp. 103–10, Nov 1998.

9

[6] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli,Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic

Publishers, 1984.

[7] H. Savoj,Don’t Cares in Multi-Level Network Optimization. PhD thesis, University of California Berkeley, Electronics Research Laboratory, College of

Engineering, University of California, Berkeley, CA 94720, May 1992.

[8] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,

“SIS: A System for Sequential Circuit Synthesis,” Tech. Rep. UCB/ERL M92/41, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, May

1992.

10

