1020

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

SPFD-Based Wire Removal in Standard-Cell and
Network-of-PLA Circuits

Sunil P. Khatri, Member, IEEE, Subarnarekha Sinha, Member, IEEE, Robert K. Brayton, Fellow, IEEE, and
Alberto L. Sangiovanni-Vincentelli, Fellow, IEEE

Abstract—Wire removal is a technique by which the total
number of wires between individual circuit nodes is reduced,
either by removing wires or replacing them with other new wires.
The wire removal techniques we describe in this paper are based
on both binary and multivalued sets of pairs of functions to
be distinguished (SPFDs). Recently, it was shown that a design
style based on a multilevel network of approximately equal-sized
programmable logic arrays (PLAs) results in a dense, fast, and
crosstalk-resistant layout. This paper describes the application of
SPFD-based wire removal techniques for circuit implementations
utilizing networks of PLAs as well as standard-cells. In our first
set of wire removal experiments (which utilize binary SPFD-based
wire removal), we demonstrate that the benefit of SPFD-based
wire removal is insignificant when the circuit is mapped using
standard cells. We demonstrate that this technique is very effec-
tive in the context of a network of PLAs. In the next set of wire
removal experiments, we focus only on circuits implemented using
a network of PLAs. Three separate wire removal experiments
are performed. Wire removal is invoked before clustering the
original netlist into a network of PLAs, or after clustering, or both
before and after clustering. For wire removal before clustering,
binary SPFD-based wire removal is used. For wire removal after
clustering, multivalued SPFD-based wire removal is used since
the multioutput PLAs can be viewed as multivalued single output
nodes. We demonstrate that these techniques are effective. The
most effective approach is to perform wire removal both before
and after clustering. Using these techniques, we obtain a reduction
in placed and routed circuit area of about 11%. This reduction is
significantly higher (about 20%) for the larger circuits we used in
our experiments.

Index Terms—Logic, logic arrays, multivalued logic, pro-
grammable logic arrays, very large scale integration (VLSI).

I. INTRODUCTION AND PREVIOUS WORK

ROGRAMMABLE logic arrays (PLAs) are being re-
discovered as an efficient implementation style for
high-performance circuits. For example, in the gigahertz
processor [1], performance-critical parts of the control logic

Manuscript received November 22, 2002; revised June 12, 2003. This work
was supported by the IEEE. This research was supported in part by the Survey
Research Center (SRC) under Grant 683, in part by the Gigascale Silicon Re-
search Center (GSRC)/Marco center at Berkeley, and in part by the California
Micro program with industrial sponsors Motorola, Fujitsu, Synopsys, and Ca-
dence. This paper was recommended by Associate Editor M. Sarrafzadeh.

S. P. Khatri is with the Department of Electrical and Computer Engi-
neering, Texas A&M University, College Station, TX 77843 USA (e-mail:
sunil@ee.tamu.edu).

S. Sinha is with Synopsys, Inc., Mountain View, CA 94043 USA (e-mail:
subarna@synopsys.com).

R. K. Brayton and A. L. Sangiovanni-Vincentelli are with the Department
of Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA 94708 USA (e-mail: brayton@eecs.berkeley.edu; alberto@eecs.
berkeley.edu).

Digital Object Identifier 10.1109/TCAD.2004.829821

were implemented using single flat PLAs. Recent work [2]
demonstrates that a circuit implementation based on a network
of approximately equal-sized PLAs yields a fast, compact,
and crosstalk-resistant design. The use of minimum-sized
transistors in the PLA core results in a fast and dense layout,
while a structured arrangement of wires guarantees an effective
shielding among signals. The speed and area of each PLA in
this design style was reported to be about 50% less than the
corresponding standard-cell-based implementation.

Wire removal is a technique to reduce the total number of
wires between individual circuit nodes, either by removing
wires, or replacing them with other new wires. In order to
reduce the area utilized by such a network, the removal of
wires between individual PLAs is desired. This increases
the freedom to place the PLAs and eliminates potential wire
congestion in the routing area. Several techniques based on
redundancy addition and removal [3], [4] have been proposed
to improve the area or the routability of a multilevel circuit
by wire removal. In this paper, we focus on sets of pairs of
functions to be distinguished (SPFDs) as a candidate technique
for wire removal. We show that SPFD-based wire removal
can remove wires that redundancy removal based techniques
cannot. Our wire removal techniques utilize both binary SPFDs
as well as multivalued SPFDs (MV-SPFDs).

SPFDs [5] were introduced in the context of field-pro-
grammable gate array (FPGA) optimization. In [6], this
technique was refined and adapted to multilevel networks,
while its application to logic optimization was described in [7].
The authors of [7] reported a significant average wire reduction
for technology-independent wire removal.

We perform two separate experiments to test the effective-
ness of SPFD-based wire removal. In our first experiment, we
show that the benefit of binary SPFD-based wire removal is in-
significant when the circuit is mapped using standard cells. For
this experiment, we use the binary SPFD code of [7]. The au-
thors of [7] report a significant average reduction in the number
of wires for technology-independent wire removal. However,
we show that when technology mapping is performed (using a
standard-cell-based design flow) on the resulting circuits, the
benefits of wire removal are erased. Binary SPFD-based wire
removal after technology mapping is not effective because the
resulting circuit after wire removal needs to be remapped, again
erasing the benefits of wire removal. On the other hand, we
demonstrate that binary SPFD-based wire removal is very ef-
fective in the context of a network of PLAs. In this experiment,
we do not utilize MV-SPFDs. We apply the wire removal algo-
rithm of [7] to a few circuits implemented using a network of
PLAs, and demonstrate an approximate 13% reduction in the

0278-0070/04$20.00 © 2004 IEEE

KHATRI et al.: SPFD-BASED WIRE REMOVAL IN STANDARD-CELL AND NETWORK-OF-PLA CIRCUITS

number of wires, which directly translates into a reduction of
the (placed and routed) layout area. This is because a separate
technology mapping step is not required when the circuit is im-
plemented as a network of PLAs.

Encouraged by the layout area reduction using binary SPFD-
based wire removal for circuits implemented using a network of
PLAs, we next generalize the notion of SPFDs to multivalued net-
works, and formulate an MV-SPFD-based wire removal scheme.
We observe that (multioutput) PLAs can be naturally modeled as
multivalued functions. Hence, a network of PLAs can be mod-
eled as a multilevel network of multivalued nodes. We extend
the binary wire removal technique described in [7] to the multi-
valued case, and use this idea to perform wire removal for a net-
work of PLAs. This flavor of wire removal is performed after the
clustering of a circuit into a network of PLAs. We also observe
that since each multivalued node is more complex than the binary
nodes encountered in [7], additional flexibility is obtained in op-
timizing them, as evidenced by our results.

In our second experiment, we focus on MV-SPFD-based wire
removal for circuits implemented using a network of PLAs.!
We describe three related wire removal experiments. Wire re-
moval is invoked either before clustering the original netlist into
a network of PLAs, or after clustering, or both before and after
clustering. For wire removal before clustering, binary SPFD-
based wire removal is used. Binary SPFD-based wire removal
is performed in the manner described in [7]. For wire removal
after clustering, MV-SPFD-based wire removal is used since the
multioutput PLAs can be viewed as multivalued single output
nodes. We demonstrate that these techniques are effective. The
most effective approach is to perform wire removal both before
and after clustering. Using these techniques, we obtain a reduc-
tion in placed and routed circuit area of about 11% compared to
a PLA network without wire removal. This reduction is signifi-
cantly higher (about 20%) for the larger circuits we used in our
experiments. Although the full flexibility of multivalued wire
removal has not been exploited in our work, we still get good
reductions in layout area.

The organization of this paper is as follows. In Section II,
we describe the circuit implementation style using a network
of PLAs. Section III describes binary SPFDs and their use
in removing wires in binary networks. Section IV introduces
MV-SPFDs, while Section V outlines our MV-SPFD-based
technique for wire removal. Section VI reports the experi-
mental results for the two sets of wire removal experiments we
conducted. Finally, Section VII concludes the paper and gives
some directions for future work in this area.

II. NETWORKS OF PLAS

In [2], a new layout and design methodology was introduced,
motivated by the goal to achieve fast and dense designs which
are not susceptible to crosstalk, an increasingly important design
consideration in deep submicrometer (DSM) technologies. The
circuit being implemented was decomposed into a network

ISince SPFD-based wire removal was shown to be ineffective for standard-
cell-based designs, we do not perform MV-SPFD-based wire removal for such
designs. Also, a network of PLAs can be directly mapped to a multilevel network
of multivalued nodes. There is no natural way to model a standard-cell-based
design as a multivalued network of multivalued nodes. For these reasons, we
restrict our attention to network of PLA-based designs in our second experiment.

1021

/A 7

Fig. 1. Multilevel circuit decomposed into a network of PLAs.

of medium-sized PLAs, each with between 5 and 10 inputs or
outputs, and in the order of 20 product terms. It was shown that
this size range for the PLAs constituted an optimal design point
with respect to speed and density. Such PLAs were typically
50% faster, and about 40% smaller than a comparable stan-
dard-cell-based implementation. A simple greedy algorithm was
introduced to decompose a multilevel circuit into a network of
PLAs.

A sample multilevel circuit, with nodes shown as circles, is
shown in Fig. 1. The rectangular regions in this figure represent
the clustering of circuit nodes into PLAs.

The layout of a circuit implemented in the network of PLAs
style is shown in Fig. 2. The dark rectangles in this figure cor-
respond to the PLAs in the design.

III. BINARY SPFDs
A. Definitions

SPFDs are a new way to represent the flexibility of a node
in a multilevel network. In this section, we focus on SPFDs for
binary valued nodes.

(Binary) SPFDs were introduced in [5] in the context of
FPGA optimization. In [6], this technique was refined and
adapted to multilevel networks, while its application to tech-
nology-independent logic optimization was described in [7].

Definition 1: A function f is said to distinguish a pair of
functions g; and g if either one of the following two conditions
is satisfied:

91 CfCT, (1

92 Cf € g @)

Note that this definition is symmetrical between g; and go.
We can think of conditions 1 and 2 specifying two incompletely
specified functions, with g; as the onset and g, as the offset in

condition 1 or vice-versa for condition 2.
Definition 2: An SPFD

{(glmglb); sy (gna;gnb)}

is a set of pairs of functions to be distinguished.

1022

Fig. 2. Sample layout using network of PLAs.

We can think of an SPFD as an undirected graph with vertices

{glaaglb7g2a7g2ba-"7gna7gnb}~ (3)
This graph has edges
{(91a>910), (920, 926) - - -, (Gna> gnb) } - “

An edge (gia, giv) means that minterm g;, must be assigned a
different functional value from minterm g;p.

For example, consider g; = ab and g5 = ab. Now, if f=a,
then we observe that condition 1 is satisfied. In other words,
when g7 is true, we can conclude that f is also true, and that
g2 is false. Therefore, the function f is able to distinguish the
functions g; and gs.

Definition 3: A function f satisfies an SPFD, if f distin-
guishes each pair of the set, i.e.,

[(91a C© f C 1)+ (916 Cf CTr)] AL A
[(9na € F CGup) + (gnb € C Fa)]-

Thus, f evaluates to a different value for each g;, and g;;, where
1 varies from 1 to n.

Hence, an SPFD can be conveniently used to express the flex-
ibility that can be used to implement a node in a network. The
only condition required is that the function implemented at the
node satisfies its node SPFD. Note that vertices of a node’s
SPFD correspond to the on-set, off-set, or don’t-care minterms
of the node function. There are no edges incident on don’t-care
minterms.

If the SPFD consists of a single pair, it represents
two incompletely specified functions (ISFs) where
one is the complement of the other. If each of the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

ab ab

ab ab
Fig. 3. Example SPFD.

ab @ @ ab

ab @ ® ab

Fig. 4. Example SPFD after optimization.

{(gla7 glb)7 (gZav 9217)7 T (gnm gnb)} are pairwise dis-
joint, then the SPFD represents 2™ ISFs.2

Classically, in computing the flexibility at a node in a Boolean
network, don’t cares are computed which represent a single ISF.
These computations can be generalized so that SPFDs are ob-
tained, which provide much more freedomin optimizing the node.

As an example to illustrate these ideas, consider the function
f(a,b) = b. The SPFD of f is obtained by considering g1 = f
and g, = f. The SPFD F of f is a graph whose vertices are the
points in B2. Each onset minterm must be distinguished (have a
different functional value) from each offset minterm, resulting
in the SPFD F shown in Fig. 3.

If, during optimization, it is found that edges (@b, @b) and
(ab, ab) are distinguished by another node in the multilevel net-
work, the SPFD of F can be simplified to the graph shown in
Fig. 4. Since the simplified SPFD of F has two connected com-
ponents, there are four separate implementations at the node f
that satisfy the simplified SPFD F. In general, each such imple-
mentation is an ISF.

B. Wire Removal/Replacement Using Binary-Valued SPFDs

The information content of a wire (which is effectively the
set of pairs of minterms it can distinguish) in a network can
be efficiently represented by an SPFD. This allows SPFDs to
help remove certain “difficult” wires in the network or to re-
place them by other wires. The technique of wire removal/re-
placement using SPFDs works as follows.

Consider a multilevel network, with some nodes 7;,7;, and
ne. Given a wire (n;,7;), its SPFD represents the pairs of
minterms that have to be distinguished by it. In this sense, the
SPFD of (7;,7n;) encodes the information content required
of that wire (i.e., the set of pairs of minterms that must be
distinguished by the wire). If the wire (7;, 17;) need not uniquely
distinguish any minterms required of node 7;* (i.e., it has
no unique information content required), we can remove it.
We can also try to replace it by another wire as long as the
second wire has all the information required of the original.
So, a wire (n,,7n;) can replace the wire (ng,n;) if all the
minterms required to be distinguished by the wire (7, 7;) are
also distinguished by (7s,7;). In other words, the objective
is to replace wire (7,n;) from node 7 to 7; with a wire

2Note that an SPFD cannot represent a single function, it always represents
at least a pair. Thus, it cannot represent the tautologous function.

3This is possible if all the pairs of minterms distinguished by (n;, n,) are
distinguished by other wire(s), (5. 7;).

KHATRI et al.: SPFD-BASED WIRE REMOVAL IN STANDARD-CELL AND NETWORK-OF-PLA CIRCUITS

(ns,m;) from node 7, to 7;, such that the original SPFD at 7;
is covered by the union of the SPFDs of its inputs, and some
gain is realized by this change. The cost function in this case
is literal count. In the sequel, we shall refer to this technique
as wire_replace. Note that in any iteration of wire_replace, at
most one wire is removed from the fanin of any node. In [7],
it was shown that there can be a substantial reduction in the
number of wires (at the technology-independent level) in the
network using the wire_replace algorithm.

For a detailed exposition on SPFDs and how they are com-
puted and used for wire replacement, see [7].

We use a simple example to illustrate why wire removal using
SPFDs is more powerful than redundancy removal-based tech-
niques. Consider the following example:

z1 =gb+ gb
g=ab+ab
zo=b+c.

Running redundancy removal on this example results
in no simplification. Now, consider wire removal using
SPFDs. The SPFD of the wire (g,z;) is given by the set
A = {(00,10),(11,01)} (in the set A, each minterm
is of the form gb). Now, if we express the minterms
of A in terms of the primary inputs, a and b, we get
A" = {(00,10),(11,01)} (the minterms in A’ are of the
form ab). These computations are performed using binary
decision diagram (BDD)-based image computations, and are
described in detail in [7]. For the simple example above,
we observe that the SPFD of the global function of z; (of
the form ab) is Z; = {(11,01),(11,00),(00,10),(10,01)}.
The SPFD of the global function of g (of the form ab) is
G = {(00,10),(10,11),(01,00),(11,01)}. Note that the
SPFD of the edge (g, z1) is the set A’ of edges of Z; that are
also distinguished by G, yielding A’ = {(00, 10), (11,01)}.

Since g isasingle fanoutnode, henceits SPFDis the same as the
SPFD of its fanout wire, (g, z1). In general, the SPFD of any node
is the union of the SPFDs of its fanout wires. Thus, the SPFD of ¢
(which is the set A”) has two edges, both of which can be distin-
guished by the wire (a, g). Hence, the wire (b, g) does not do any-
thing and can be removed. If we now alter the functions of nodes
g and z; toreflect these changes (for details on how to do this, see

[7]), the new simplified circuit can be represented as

zZ1 =a
zo=b+c.

The additional flexibility that SPFDs provide over CODCs [8]
or redundancy removal is due to the fact that we alter the func-
tion of each node and its fanins simultaneously. This allows
minterms in the original onset and offset to be suitably swapped
to get many different functions, some of which cannot be ob-
tained by CODCs or redundancy removal.

IV. MV-SPFDs

We provide a graph-theoretic definition of MV-SPFDs, which
is a generalization of the definition of binary SPFDs of the pre-
vious section.

1023

abcef

0001 « Al
()0124—/1%
OlOZ(—h%
0110<—h(,’
1001« h}
1102<—h§
1012<—h§
1]10<—h2

Fig. 5. MV-SPFD.

Definition 4: An MV-SPFD F(y) on a domain Y is an undi-
rected graph (V, E') where each v € V' corresponds to a unique
minterm v = (y1,y2, -, Yr) € Y. Anedge (e = (vy,v2)) €
FE means that the minterms corresponding to the two vertices vy
and vo must have different functional values.

Fig. 5 shows a multivalued node H with k = 3 values, and its
corresponding MV-SPFD. This MV-SPFD can be described as
aset with k tuples { Ho, Hy,- - -, Hy—1 }. Each tuple H; consists
of several minterms {h}, h,---,h }, where ¥n; = N, the
total number of minterms of f. Each minterm in H; must be
distinguished from (i.e., have different functional values than)
minterms in each of the remaining k — 1 tuples. Each H; is also
referred to as a component.

Definition 5: A function F(y) implements 7 = (V| E) if
F(y) is a valid coloring of F, i.e.,

F(y') # F(y*).(y".y°) € E.

In other words, for a function F' to implement F, F' assigns
a different value to minterms h;, and hi, for i # j. Thus, the
chromatic number of an MV-SPFD is the minimum number of
values required to implement the MV-SPFD using a multivalued
function. An MV-SPFD with n connected components can be
colored in
[CN (k)] - [CN - (kal)] -+ [ON - (k)]

n

ways, where k; is the chromatic number of the sth connected
component. Each different coloring of this graph represents a
different incompletely specified multivalued function (ISF).
This allows us flexibility in implementing the multivalued
function, which can be exploited in many ways.

The MV-SPFD of a completely specified multivalued func-
tion is a complete k-partite graph. As we saw in the binary-
valued SPFD example in Section III-A, it is possible that after
optimization, a subset of edges of the MV-SPFD are removed.
These edges are distinguished by some other node(s) in the mul-
tivalued, multilevel logic network.

In Section V, we will illustrate why MV-SPFDs, rather than
binary SPFDs, are a more natural choice for a network of PLAs.

V. WIRE REMOVAL USING MV-SPFDs

In a network of PLAs, each individual PLA is a multi-input,
multi-output structure. Suppose a given PLA has k outputs.
In that case, it can be modeled as a single output node with
2k values. In this way, a network of PLAs can be modeled

1024

a)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

| 2" values

b)

Fig. 6. MV-SPFD-based wire removal. (a) A network of PLAs. (b) Its corresponding multivalued network.

as a multilevel network of multivalued nodes. An MV-SPFD
can be computed for each node and can be used to remove
wires in its fanin. The binary SPFD techniques for computing
and distributing SPFDs using BDDs [9] can be generalized to
MV-SPFD techniques using multivalued decision diagrams
(MDDs) [10]. The details of the computation are discussed
below.

Consider a node 7; in a multilevel, multivalued logic net-
work. We know that the MV-SPFD of 7; represents the set of
multivalued minterms (henceforth equivalently referred to as
minterms) that should be distinguished by 7); in order to ensure
that the functions of the primary outputs remains unchanged.
To achieve this, it is necessary that each pair of minterms in the
MV-SPFD of 7; be distinguished by at least one of its fanin
wires.4 Thus, the union of the MV-SPFDs of its fanin wires
should cover the MV-SPFD of 7n;. Now, we can think of the
pairs of minterms distinguished by the node/wire as the infor-
mation content of the node/wire. In other words, the MV-SPFD
of a node/wire gives the information content required of the
node/wire. So, all the information contained in a node has to
be provided by its fanins.

We define the minimum MV-SPFD of a wire (7;,7;) to be
the set of pairs of minterms of 7); that must be distinguished
exclusively by this wire. In order to ensure that all the pairs
of minterms in the MV-SPFD of 7; are distinguished, the wire
(m:,mj) must distinguish at least these pairs of minterms.

Given the MV-SPFD of the node 7;, we compute the min-
imum MV-SPFD of each fanin wire. If the minimum MV-SPFD
of a fanin wire is not empty, then we cannot remove this wire
since it uniquely distinguishes some pair of minterms in the
MV-SPFD of the node 7;. On the other hand, if the MV-SPFD
of a fanin wire is empty, it is a candidate for removal. How-
ever, we cannot simultaneously remove some or all fanin wires
whose minimum MV-SPFDs are empty. This is because there
could be two fanin wires (n;,7n;) and (7, n;) with empty min-
imum MV-SPFDs, such that both wires distinguish the pair of
minterms (mq, ms) in the MV-SPFD of ;, and no other fanin

4We require that each pair be distinguished by a fanin wire, instead of any
wire in the transitive fanin of 7;, to minimize the changes in the transitive fanin
of a node.

wire distinguishes this pair of minterms. In such a situation, at
least one of these wires must be retained. If both wires are re-
moved, (1, ms) will not be included in the new MV-SPFD of
74, and, hence, the resulting network will not be correct.

Algorithm 1 describes our algorithm for MV-SPFD-based
wire removal. The steps of the algorithm are detailed as follows.

First, we construct a multivalued network A from the given
network of PLAs, M. Assume the PLA P has m inputs and n
outputs. Fig. 6(a) shows the network of PLAs in which P re-
sides. Each rectangle in this figure represents a PLA, with its
AND (input) plane on the left, and the OR (output) plane on the
right. The PLA P can be considered equivalently as a multi-
valued function (MVF)> with 2" values, and m multivalued in-
puts, as shown in Fig. 6(b).

For each multivalued node P in the network , in topological
order from the PIs of the network, we perform the following
steps.

* The MV-SPFD of P, denoted as Sp(Y), is computed from
its original multivalued function (MVF). This MV-SPFD
of P distinguishes every minterm in every component of
its MVF from every minterm in every other component of
its MVF. After computing Sp(Y") (here, Y is the space
of the fanins of P), we reassign the task of distinguishing
edges of Sp(Y') to the fanins of P in the following steps.

* Fanins of P that have nonempty minimum MV-SPFDs,
denoted as Y, are first identified.

* All the edges e of Sp(Y) that are distinguished by these
fanins are assigned to these fanins and are removed from
Sp(Y).

* A weighted covering problem W is set up between the
remaining fanins of P, Y \ Y’, and the remaining edges
of Sp(Y). The fanins are weighted according to the fol-
lowing heuristic: the smaller the number of fanouts of a
particular fanin, the greater its weight. This means that
a fanin with a single fanout has the largest weight and
so has the least likelihood of being included in the solu-
tion. Hence, the corresponding wire is most likely to be re-
moved. Let the solution of this weighted covering problem

5A multivalued function (formally, F : Py X Py X ... X P,, — P,)of m
variables X, X, ..., X,, can take on P, integer values {0, ..., |P,|—1}.

KHATRI et al.: SPFD-BASED WIRE REMOVAL IN STANDARD-CELL AND NETWORK-OF-PLA CIRCUITS

t

(a)

Fig. 7. Example. (a) PLA network. (b) Corresponding MV network.

be Y. Note that we may remove more than one wire in

one iteration of this algorithm (as contrasted to wire_re-

place where only one wire is removed per iteration).

 The new fanin space of P is the union of Y/ and Y and

will be subsequently referred to as Y. Now, P is modi-
fied. First, the image of Sp(Y’) is computed on the pri-
mary input space X . This image is projected back to the
Y space, to get Sp(f/), the new SPFD of P in terms of its
new fanins. We use a coloring algorithm to obtain a new
ISF at P. The connected components of the MV-SPFD are
obtained and each component is colored appropriately to
obtain a new ISF. Next, we run Espresso-MV [11] to get
the new minimized function of P.

We proceed in a topological order from the inputs to the
outputs in the network and perform wire removal on each
node in the network. This procedure involves MDD-based
image computations, and in general, it is not feasible for very
large circuits. Typically, MV-SPFD-based wire removal (and
binary SPFD-based wire replacement as well) work for circuits
whose MDDs/BDDs can be computed. We are looking into
overcoming these limitations by utilizing alternative methods
to perform the image computations.

As mentioned earlier, any valid coloring of Sp(Y") can be
used to obtain an incompletely specified MV function for P.
But, if a node is changed, then its changes must be propagated
throughout the transitive fanout of P. In practice, this can prove
to be expensive since the entire network may need to be mod-
ified in general, when a single node is modified. To avoid this,
we block the changes in the new function by its MV-CODCs
[12] (a generalization of compatible observability don’t cares
(CODCs) [8] for the multivalued case). In other words, we only
consider those changes at P which would be contained in its
MV-CODC set. Since such changes are by definition compat-
ible, the nodes in the transitive fanout of P need not be mod-
ified when P is modified. Thus, at any point in the algorithm,
the region of change consists of a single node, and possibly its
immediate fanins.

Let us consider the following simple example to illustrate the
working of the algorithm. Consider the network of PLAs shown
in Fig. 7(a). PLA B has three outputs and C has one output.
The function of A is given in Table I. The corresponding MV
network is shown in Fig. 7(b) and the functionality of 74 is
shown in Table II.

The MV-SPFD of 74 is the set of edges {(1— — —, 0000),
(1———,0111), (0000, 0111) }(any input minterm is of the form

[s

1025

s

(b)

TABLE 1
FUNCTION TABLE OF PLA A

By | Bi [Bo | Go | Ag | Ay

o0 O
1 1 1

S O -

1 1
0 1
1 0

TABLE 1I
FUNCTION TABLE OF MV NODE 7 4

Bo | Bi | Bo | Co

0]0]0
1 1 1

N — Wil

SO -

TABLE III
MODIFIED FUNCTION TABLE OF PLA A

B Al
Tl
01
L]o

- 1
010
1 0

Co By B1B>). Now, the minimum MV-SPFD of a fanin wire are
the set of edges that are exclusively distinguished by that wire.
So, the minimum MV-SPFD of the wire (7¢,,7n4) is the set
{(1000,0000),(1111,0111)}. Since it is not empty, we cannot
remove this wire. On the other hand, the minimum MV-SPFD
of each of the input wires (nBo ’ ,r]A)’ (7731) 774) and (7732 ’ 77A)
is empty as neither of these wires uniquely distinguishes the
edge (0000,0111), although each of these wires distinguishes
the edge (0000, 0111). Hence, by the algorithm, we need to re-
tain Only one of (7730 s T1Co)’ (7731) 77Co) or (7732 y NICo) Suppose
we choose to retain (7p,, 1,)- Then, the modified function at
A is shown in Table III.

Algorithm 1 MV-SPFD-Based Wire Removal
N = construct_mv_network(M)
for P e NV
do
Construct Y = fanins(P)
Compute Sp(Y) from its MVF
Y' =¢
for all () € fanins(P) do
Sq,,ry = minimum MV-SPFD of ep = (Qx, P)
if S(Qk,P) # ¢ then
Y — Y'U Qk

(in some topological order from PIs)

1026

end if
end for
for all F € Sp(Y) do
if F € Sp(Y) is distinguished by some y € YV’
then
Remove E from Sp(Y), and assign it to y
end if
end for
for all fanins @; € V\Y’' do
w(j) = 1/(num_fanouts(Q;)
end for
Construct W(Y \Y', remaining_edges(Sp(Y)),w(y))
Y" = solution of W
Y =Y'UuYy”
Construct Sp(Y)
C = color(Sp(Y))
ESPRESSO-MV(C) gives the new function of P
end for

A. Advantages of MV-SPFD-Based Wire Removal

There are several reasons why MV-SPFD-based wire removal
is a better choice than binary SPFD-based wire removal for a
network of PLA implementation of a circuit.

e In the example above, if we had used binary SPFDs,
then we would have specified a binary SPFD at each
output of the PLA separately. Then, the SPFDs of
Ap and A; are {(1- — —,0000),(0111,0000)} and
{(1- — —,0111),(0000,0111)}, respectively (the
minterms are in the form CyByB1Bs). In order to
distinguish the SPFD of Ay, we could use the inputs
{Bo,Cop} and for Ay, we could use the inputs, { By, Co}.6

Therefore, the final PLA will have three inputs, unlike
the final PLA in the previous case which has two inputs.”
So, it is more advantageous to look at all the outputs of
a PLA at the same time and MV-SPFDs are ideal for that
purpose.

 Also, with binary SPFDs, the actual encoding of the out-
puts becomes important. Thus, in our example, we would
have a different answer if the outputs of A are encoded dif-
ferently. Even if this is the case, however, the MV-SPFD
of the node remains unchanged (assuming that the three
minterms have different functional values).

 Similarly, when we reimplement the PLA after removing
the wires, it is better to consider the modified MV-SPFD
of the entire PLA instead of considering the modified bi-
nary SPFDs of the outputs of the PLA separately. In the
former case, it is possible to change the number of outputs
of the PLA while in the latter case, this is not possible.

It was observed [7] that whenever the nodes were complex,
SPFD-based optimizations resulted in better results. The
multivalued nodes corresponding to the PLAs are com-
plex, since they usually constitute several inputs and out-
puts. As a result, the flexibility offered by SPFDs can be

Note that the inputs to distinguish Ao and A, are selected independently of
each other.

TThis is because we analyze all values of the (multivalued) output simultane-
ously (i.e., we implicitly analyze all output bits of the PLA simultaneously).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

exploited to the fullest, since complex nodes typically in-
crease the likelihood of having a large number of discon-
nected components in the SPFDs of the fanins.

B. Extensions

In this paper, we only do wire removal using MV-SPFDs.
However, we can easily extend the algorithm to perform wire
replacement. Thus, given the minimum MV-SPFD of a wire
(mi,mj), we can replace it with another wire (7, 7;), if all the
edges of (n;,n;) are distinguished by (7%, 7;). In the example
given in Section IV, the wire (a, z1) can replace the wire (g, z1).
However, if we use redundancy addition and removal-based
techniques [3] to generate alternate wires, we cannot get (a, 21)
as an alternate to (g, 21).

In SPFD-based optimizations, when the fanins of a node F’
are modified, the logic function of F' needs to be changed as
well. In our implementation of (binary or MV) SPFD-based wire
removal, when F' changes, we avoid the propagation of changes
throughout the transitive fanout of F' by blocking these changes
with the (binary or MV) CODC:s of F'. In general, in the applica-
tion of MV-SPFD-based wire removal to circuits implemented
using a network of PLAs, the changes to any node (i.e., a PLA)
F do not need to be blocked by its MV-CODCs. This is be-
cause fanout PLAs can be easily reimplemented if F' changes, as
long as the total number of product terms in the fanout PLAs are
bounded. This can result in significantly more flexibility while
optimizing any given PLA.

The coloring of MV-SPFDs gives rise to interesting possi-
bilities. A binary SPFD with n connected components can be
colored in 2™ ways. An MV-SPFD with n components can be
colored in [C) - (k)] - [CY - (ka!)] - - - [CF - (n!)] ways, where
k; is the chromatic number of the ith component. Each coloring
of an MV-node would represent a different PLA encoding and
thus different wiring connections between the PLA and its out-
puts. This flexibility can be exploited in many ways. In a net-
work of PLAs, for instance, re-encoding a node could change
the wiring connections between a node and its fanouts. So, if we
expand the region of change to include a node and its fanouts,
we can use an encoding algorithm to suitably modify the wiring
between a node and its fanouts. This is a difficult problem and
is currently being investigated.

VI. EXPERIMENTAL RESULTS

In Section VI-A, we perform experiments with binary SPFD-
based wire removal. We demonstrate the utility of this technique
in a network of PLAs, and show that it is not useful in a tradi-
tional standard-cell-based implementation style.

In Section VI-B, we perform binary and MV-SPFD-based
wire removal experiments in a network of PLAs, and demon-
strate the effectiveness of these techniques.

A. Experiment 1

In our experiments to validate the usefulness of SPFD-based
wire removal for a network of PLAs, we utilize the wire_replace
code which was described in [7]. The computation is done using
binary-valued SPFDs.

KHATRI et al.: SPFD-BASED WIRE REMOVAL IN STANDARD-CELL AND NETWORK-OF-PLA CIRCUITS

TABLE IV
WIRE REMOVAL WITHOUT PRIOR OPTIMIZATION

Circuit Standard Cell Network of PLAs
before WR | after WR | Ratio || before WR | after WR | Ratio
C432 1996.08 1956.64 | 0.980 2655.18 2285.26 | 0.861
C499 4840.91 4914.14 | 1.015 4131.11 3599.70 | 0.871
C880 4619.33 4869.08 | 1.054 7152.46 5400.49 | 0.755
rot 14254.21 | 13925.60 | 0.977 14612.87 8361.74 | 0.572
alu2 4104.82 4144.26 | 1.010 3141.52 1626.16 | 0.518
AVG 1.007 0.715

TABLE V
WIRE REMOVAL AFTER SCRIPT.RUGGED

Circuit Standard Cell Network of PLAs
before WR | after WR | Ratio || before WR | after WR | Ratio
C432 1701.27 1874.02 | 1.102 2634.52 2439.23 | 0.926
C499 4664.40 454798 | 0.975 4756.41 3785.60 | 0.796
C880 4722.61 4611.82 | 0.977 3909.53 3248.56 | 0.831
rot 12504.12 | 12042.19 | 0.963 10372.84 7980.56 | 0.769
alu2 3323.67 3030.73 | 0.912 1757.60 1774.50 | 1.010
C1355 4964.84 5011.79 | 1.009 399591 3635.38 | 0.910
C1908 5385.47 5528.18 | 1.026 4553.61 3836.30 | 0.842
AVG 0.995 0.869

Table IV reports the results of wire_replace on unoptimized
circuits. In our tables, the final layout area of the circuit is mea-
sured in units of square microns. All reported numbers include
the area for the actual logic as well as routing.

Columns 2 and 3 report the results for a standard-cell-based
implementation, with and without wire_replace, respectively.
Column 4 reports the ratio of the standard cell area after wire
removal, to the area before wire removal. Columns 5 and 6
report the results for a PLA-based implementation, with and
without wire_replace, respectively. Column 7 reports the ratio
of the PLA-based area after wire removal, to the area before
wire removal. Table V is organized in the same fashion, ex-
cept that each circuit was first subjected to script.rugged, a tech-
nology-independent optimization script in SIS [13].

In essence, we note that for the standard-cell-based method-
ology, wire_replace does not impact the overall layout area. This
is because the benefits attained through wire removal at the tech-
nology independent level are negated by the technology map-
ping step. However, in the case of the network of PLAs, wire_re-
place results in a significant reduction in circuit area (28.5% for
the nonoptimized case, and 13.1% in the optimized case). This
is due to the absence of a technology mapping step after wire
removal. As a result, the benefits of wire removal are directly
translated into a reduction in circuit area.

B. Experiment 2

To validate the usefulness of wire removal for a network of

PLAs, we utilize the two SPFD-based wire removal techniques.

* For wire removal before clustering a circuit into a net-

work of PLAs, we use the wire_replace code detailed in

[7] and in Section III-B. This computation is done using

binary-valued SPFDs, since the logic nodes are binary
valued before clustering into PLAs.

* After clustering into a network of PLAs, each PLA can be

viewed as a multivalued node, as described in Section V. At

1027

this point, MV-SPFD-based wire removal is invoked, using
thealgorithmdescribedin Section V. Wedonotperform wire
replacement in this step; only wire removal is performed.

The reason for not performing binary-valued
SPFD-based wire removal clustering are described
in Section V-A. MV-SPFD-based wire removal is more
powerful, and is a generalization of binary SPFD-based
wire removal.

The clustering and wire removal code was written in SIS [13].
Placement of the network of PLAs was done using VPR [14],
an FPGA-based placement and routing tool. Since all PLAs in
the network of PLAs have roughly the same size, VPR is a
good choice for placement. However, routing is not done using
VPR since it assumes an FPGA connection topology. Therefore,
routing of the network of PLAs was performed using wolfe [15].

The initial blif netlist for the benchmark circuit is clustered
into nodes with up to five inputs. No redundancy removal is
performed. Now the nodes of the resulting network is sorted
in depth-first manner. The resulting array of nodes is sorted in
levelization® order, and placed into an array L.

Now we greedily construct the logic in each PLA P, by suc-
cessively combining nodes from L into a single PLA. Next, we
call a PLA folding routine which attempts to fold the inputs of
P so as to implement a more complex PLA in the same area.
Finally, we check that the final PLA, after folding and sim-
plification using espresso, satisfies the maximum width® and
height!® constraints, respectively. If so, we attempt to include
another node from L into P, otherwise we append the last PLA
(satisfying the height and width constraints) to the result.

Nodes in the fanout of the nodes N* which are combined into
the PLA P are favored when attempting to include new nodes into
P (inanattempttoreduce the wiring between PLAs). If suchnodes
are not available, the first unmatched node from L is returned.

The resulting PLA netlist is the starting point for all wire
removal experiments. We now perform one of four wire removal
experiments.

¢ For no wire removal NOWR), we cluster the netlist into a
network of PLAs. This network is now placed and routed
as described above.

» For wire removal after clustering (WRA), we follow the
clustering step by a wire removal step, using MV-SPFD-
based wire removal. The result of this step is then placed
and routed.

e For wire removal before clustering (WRB), we perform bi-
nary-valued SPFD-based wire removal on the netlist, and
then cluster the resulting netlist into a network of PLAs.
This network is then placed and routed.

* For wire removal before and after clustering (WRBA), we
perform binary-valued SPFD-based wire removal on the

8Primary inputs are assigned a level 0, and other nodes are assigned a level
which is one larger than the maximum level of all their fanins.

9Based on the physical design of the PLAs we used, the width of the PLA is
4m 4 2n (where m is the number of inputs and » the number of outputs of the
PLA). Any values of n and m are permitted as long as the width of the PLA
is less than the width constraint value. See [2] for details on the design of our
PLAs.

10The height of the PLA is the number of cubes in the PLA.

1028

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

TABLE VI
WIRE REMOVAL EXPERIMENTS—MAX WIDTH 40, MAX HEIGHT 15

Circuit || NOWR | WRA | Improve % || WRB | WRBA | Improve % || WRA% | WRB% | WRBA% | BEST%
vda 20862.11 | 17331.89 16.96 19040.67 | 16693.44 12.24 16.96 8.78 19.95 19.95
frg2 12111.67 | 10703.33 11.63 11191.56 | 10233.89 8.61 11.63 7.49 15.45 15.45

C1908 10590.67 | 10534.33 0.52 8600.22 | 8130.78 5.44 0.52 18.81 23.23 23.23

apex6 8356.11 7586.22 9.25 8281.00 | 7980.56 354 9.25 0.98 4.48 9.25

x3.blif 8299.78 | 8149.56 1.88 8619.00 | 8281.00 3.89 1.88 -3.72 0.32 1.88

toolarge 8093.22 | 8074.44 0.22 8262.22 | 8187.11 0.98 0.22 -2.14 -1.14 0.22

x1 3849.44 | 3511.44 8.39 3398.78 | 3492.67 -2.98 8.39 11.75 9.12 11.75
x4 3830.67 | 3999.67 -4.25 3642.89 | 3642.89 0.00 -4.25 4.99 4.99 4.99
alu2 3042.00 | 2760.33 9.26 3098.33 | 3060.78 1.05 9.26 -1.40 -0.34 9.26
C432 2572.56 | 2535.00 1.95 2309.67 | 2328.44 -0.71 1.95 10.53 9.89 10.53
term1 2347.22 1971.67 15.96 1802.67 1652.44 8.62 15.96 23.26 29.88 29.88
apex7 1859.00 1596.11 13.92 1783.89 1727.56 3.03 13.92 3.96 6.87 13.92
ttt2 995.22 845.00 15.36 976.44 957.67 2.05 15.36 1.94 3.95 15.36
count 676.00 600.89 13.23 694.78 600.89 14.16 13.23 -1.08 13.23 13.23
pcle 507.00 488.22 2.78 507.00 488.22 2.78 2.78 0.00 2.78 2.78
decod 338.00 338.00 0.00 338.00 338.00 0.00 0.00 0.00 0.00 0.00
AVERAGE 7.32 3.92 7.32 5.26 8.92 11.35
TABLE VII
WIRE REMOVAL EXPERIMENTS—MAX WIDTH 40, MAX HEIGHT 20
Circuit || NOWR | WRA [Improve% [WRB [WRBA [Improve% [| WRA% [WRB% | WRBA% | BEST%
vda 23359.56 | 19284.78 17.41 21237.67 | 17857.67 15.94 17.41 9.04 23.53 23.53
frg2 10177.56 | 9050.89 11.15 10327.78 | 9520.33 7.83 11.15 -1.54 6.42 11.15
C1908 12543.56 | 10947.44 12.67 9726.89 | 8431.22 13.29 12.68 22.48 32.78 32.78
apex6 9126.00 | 8806.78 3.37 8957.00 | 8374.89 6.64 3.38 1.70 8.23 8.23
x3.blif 9370.11 8431.22 10.12 8750.44 | 8919.44 -1.94 10.12 6.76 4.95 10.12
toolarge 8844.33 | 8788.00 0.69 8769.22 | 8788.00 -0.18 0.69 0.93 0.75 0.93
x1 3962.11 3943.33 0.60 3887.00 | 3943.33 -1.64 0.60 1.95 0.34 1.95
x4 3868.22 | 3811.89 1.62 4056.00 | 4187.44 -3.32 1.62 -4.71 -8.19 1.62
alu2 3211.00 | 2985.67 6.73 3436.33 | 2891.78 15.50 6.73 -7.06 9.53 9.53
C432 2929.33 | 2760.33 5.81 2497.44 0.00 - 5.81 14.89 - 14.89
terml 2441.11 2121.89 13.36 1765.11 1614.89 8.61 13.36 27.74 33.97 33.97
apex7 1934.11 1821.44 5.75 2028.00 | 1934.11 471 5.75 -4.54 0.39 5.75
ttt2 1126.67 976.44 12.73 1126.67 1070.33 3.68 12.73 0.72 4.37 12.73
count 901.33 769.89 15.96 901.33 788.67 13.86 15.97 0.00 13.86 15.97
pcle 582.11 563.33 2.44 582.11 582.11 0.00 2.44 0.00 0.00 2.44
decod 375.56 375.56 0.00 375.56 375.56 0.00 0.00 0.00 0.00 0.00
AVERAGE 7.53 5.19 7.53 4.27 8.18 11.60

netlist, and then cluster the resulting netlist into a network
of PLAs. This is followed by MV-SPFD-based wire re-
moval. The resulting netlist is placed and routed as de-
scribed above.

We constrain the clustering step by imposing a maximum
width and maximum height constraint on the PLAs. In this sec-
tion, we report the results of experiments with two such combi-
nations which utilize a PLA height constraint of 15 and 20, and
a PLA width constraint of 40. The total number of outputs of
each PLA is constrained to be no larger than 5.

Table VI reports the results of wire removal on some bench-
mark circuits. All examples in this table use a PLA height con-
straint of 15, and a PLA width constraint of 40. Table VII reports
the results of wire removal where all examples use a PLA height
constraint of 20 and a PLA width constraint of 40. Each PLA has
five or less outputs in both cases. In both tables, the final layout
area of the circuit is measured in units of square micrometers.
All reported numbers include the area for the actual PLA logic
plus the routing area. For each table, the first column reports the
circuit name. The second column reports the resulting layout
area using no wire removal (NOWR), while the third column

reports layout area using MV SPFD-based wire removal after
clustering the circuit into a network of PLAs (WRA). The fourth
column reports the improvement in layout area by performing
WRA (compared to the NOWR case). The fifth column con-
tains layout area results when binary-valued SPFD-based wire
removal is performed before clustering into a network of PLAs
(WRB). The sixth column reports layout area when SPFD-based
wire removal is performed both before and after clustering into
a network of PLAs (WRBA). The seventh column reports the
area improvement of the sixth column over the fifth. The eighth,
ninth, and tenth columns represent the percentage area improve-
ments of WRA, WRB, and WRBA over the NOWR case, re-
spectively. Finally, the 11th column represents the best area
improvement from the preceding three columns.

We observe that the best area reduction using any flavor of
wire removal is above 11% for both tables. Also note that the
best area reduction is in excess of 19% for the three largest ex-
amples. This suggests that SPFD-based wire removal is very ef-
fective for larger circuits. In all the experiments, there was no
situation where an entire PLA was removed (by removing the
output wires of any PLA, the entire PLA may be removed). So

KHATRI et al.: SPFD-BASED WIRE REMOVAL IN STANDARD-CELL AND NETWORK-OF-PLA CIRCUITS

the number of PLAs remained unchanged in all cases, and the
area reduction is entirely due to wire removal.

Comparing the wire removal techniques in isolation, we ob-
serve that WRBA provides the best average improvement in area
(8.92% and 8.18% for Table VI and Table VII, respectively). In
both these tables, WRBA improves on WRB by an average of
3.92% and 5.19%, respectively. The least effective of the three
wire removal flows is WRB. In general, WRB is least effec-
tive, since it utilizes binary SPFD-based techniques. WRA pro-
vides better results, since it utilizes MV-SPFD-based techniques
which we predicted would be more effective than binary SPFD-
based techniques (Section V). In fact, WRBA gives the best re-
sults on average, providing further evidence that MV-SPFD-
based wire removal is very effective and can improve on the
wire removal performed using binary SPFDs. Due to the lack
of standard techniques to do optimization on a multivalued net-
work, we could not compare our MV-SPFD-based wire removal
with any other technique.

Furthermore, the results reported in Section VI-A indicated
that wire removal applied to traditional standard-cell-based de-
signs results in no area improvement, since wire removal ob-
tained by such techniques is negated by the technology map-
ping step required in such a design style. This suggests that
using a network-of-PLAs design methodology has additional
advantages over the standard-cell-based design methodology.
The reason for this is that in the network-of-PLAs design style,
there is a more direct relationship between the cost function
being optimized during synthesis, and the actual implementa-
tion of the logic. This is because there is no technology-map-
ping step required in this design style.

Among the three wire removal experiments conducted, the
most effective are WRBA and WRA. These two experiments to-
gether contributed to a majority of the best case results (column
11). In Table VI, in the cases in which WRB contributed the best
result, either WRA or WRBA had improvements very close to
this. For the C432 example in Table VII, WRB contributed the
best result, and the improvement provided by WRA trailed it
significantly. However, WRAB was not able to complete on this
example, so we are not sure if WRAB could have matched this
result if the example had completed.

We performed another study where all four experiments used
a series of nine values of maximum PLA height and width. The
maximum height varied from 15 to 25 in steps of five, and the
maximum width varied from 40 to 60 in steps of ten. The max-
imum number of outputs was restricted to five. We used the best
area from each of these nine cases for each example, and com-
pared the results just as in the tables above. The results obtained
were substantially similar to those reported in Tables VI and VII.
This is primarily due to the fact that the two combinations of
maximum width and height used in Tables VI and VII accounted
for the best results for most examples. In this study, the average
best case area improvement due to any flavor of wire removal
was 11.12%. WRBA once again was the most effective wire re-
moval style, with an average improvement of 9.22%. WRA and
WRB had an average improvement of 7.58% and 5.82% respec-
tively. The detailed results of this experiment are not included,
since they substantially track the results reported in this section.

1029

In the above experiments, all wire removal is performed be-
fore placement and routing of the PLAs. Thus, there is a pos-
sibility of an increase in circuit delay.!! This can be effectively
addressed by performing wire removal affer an initial placement
is obtained, and then not modifying the placement after wire re-
moval. This would guarantee that circuit delays do not increase.
We did not perform experiments based on this idea.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated that SPFD-based wire
removal is a powerful technique for reducing the wiring, and
therefore the overall layout area, of a circuit implemented as a
network of PLAs. Our first experiment show that the binary-
valued wire removal algorithm of [7] provides a 13% reduc-
tion in wiring for a network of PLAs, while the same algorithm
delivers no improvement for a standard-cell-based implemen-
tation. This is true regardless of whether logic optimization is
performed on the netlist or not.

In our second wire removal experiment, we focus exclusively
on circuits implemented using a network of PLAs. We demon-
strate the use of a combination of binary and MV-SPFD-based
wire removal on a larger set of examples. Results show that we
can obtain significant area savings, especially for large designs
implemented as a network of PLAs.

The findings of this experiment are summarized as follows.

* Wire removal results in a best case layout area reduction
on average of about 11%.

* This reduction increases to 19% or higher for larger exam-
ples, further suggesting the effectiveness of the technique.

* By choosing the best result among WRA and WRBA, we
obtain an improvement which is almost as good as the
best case improvement over all three wire removal styles.
These two styles of wire removal account for the best case
improvement in a majority of the examples.

* Also, since each of the MV nodes are complex, the
MV-SPFD-based algorithm has a larger flexibility in
reimplementing an MV node.

In the future, we plan to use wire removal after placement as
well. After placement, we may have critical wires in the sense
that if these wires are removed, there would be a reduction in
layout area. Performing wire removal which targets such wires
should further improve the results obtained. In [16], the authors
report a similarly motivated scheme, which targets rewiring of
delay-critical wires in a design.

Also, in our current implementation, the height of the PLAs
is allowed to grow when we perform MV-SPFD-based wire re-
moval. We plan to remove this restriction, which should prob-
ably result in further area savings. All the MV-SPFD computa-
tions are done using MDDs, which limit the applicability of the
technique for some large circuits. We are looking at alternate
ways to make the computations more rugged.

As mentioned in Section V-B, we also plan to investigate
ideas to further exploit the flexibility of MV-SPFD-based wire
removal.

11Even though the technology-independent delay is unchanged by our tech-
nique, there is a possibility that a wire on the critical path is not removed by wire
removal, and after placement and routing, it can become longer. This results in
a greater circuit delay.

1030

REFERENCES

[1] S. Posluszny, N. Aoki, D. Boerstler, J. Burns, S. Dhong, U. Ghoshal,
P. Hofstee, D. LaPotin, K. Lee, D. Meltzer, H. Ngo, K. Nowka, J.
Silberman, O. Takahashi, and I. Vo, “Design methodology for a 1.0
GHz microprocessor,” in Proc. Int. Conf. Computer Design (ICCD),
Oct. 1998, pp. 17-23.

[2] S.P. Khatri, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Cross-talk
immune VLSI design using a network of PLA’s embedded in a regular
layout fabric,” in Proc. Int. Conf. Computer-Aided Design, Santa Clara,
CA, Nov. 2000, pp. 412-418.

[3] S.Chang, K. Cheng, N. Woo, and M. Marek-Sadowska, “Layout driven
logic synthesis for FPGAS,” in Proc. Design Automation Conf., 1994,
pp. 308-313.

[4] L. Entera and K. Cheng, “Sequential logic optimization by redundancy
addition and removal,” in Proc. Int. Conf. Computer-Aided Design,
1993, pp. 310-315.

[5] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to express
functional permissibilities for LUT based FPGA’s and its applications,”
in Proc. Int. Conf. Computer-Aided Design, Nov. 1996, pp. 254-261.

[6] R. Brayton, “Understanding SPFDs: a new method for specifying flex-
ibility,” in Workshop Notes, Int. Workshop Logic Synthesis, Tahoe City,
CA, May 1997.

[7] S. Sinha and R. Brayton, “Implementation and use of SPFD’s in opti-
mizing Boolean networks,” in Proc. Int. Conf. Computer-Aided Design,
Nov. 1998, pp. 103-110.

[8] H. Savoj, “Don’t cares in multi-level network optimization,” Ph.D. dis-
sertation, Electronics Res. Lab., College of Engineering, Univ. Cali-
fornia, Berkeley, May 1992.

[9] R. Bryant, “Graph-based algorithms for Boolean function manipula-

tion,” IEEE Trans. Comput., vol. C-35, pp. 677-691, Aug. 1986.

A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton, “Algorithms for

discrete function manipulation,” in Proc. Int. Conf. Computer-Aided De-

sign, Nov. 1990, pp. 92-95.

R. Rudell and A. Sangiovanni-Vincentelli, “Espresso-MV: algorithms

for multiple-valued logic minimization,” in Proc. IEEE 1985 Custom

Integrated Circuits Conf., May 1985, pp. 230-234.

W. Jiang and R. Brayton, “Don’t cares and multi-valued logic network

minimization,” in Proc. Int. Conf. Computer-Aided Design, San Jose,

CA, Nov. 2000, pp. 520-525.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.

Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L. Sangio-

vanni-Vincentelli, “SIS: A system for sequential circuit synthesis,” Elec-

tronics Research Laboratory, Univ. of California, Berkeley, Tech. Rep.

UCB/ERL M92/41, May 1992.

V. Betz and J. Rose, “VPR: a new packing, placement and routing tool

for FPGA research,” in Proc. Int. Workshop Field Programmable Logic

and Applications, 1997, pp. 213-222.

C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf placement

and routing package,” IEEE J. Solid-State Circuits, vol. SSC-20, pp.

510-522, Apr. 1985.

J. Cong, J. Lin, and W. Long, “A new enhanced SPFD rewiring algo-

rithm,” in Proc. ICCADO2, Nov. 2002, pp. 672-678.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Sunil P. Khatri (M’98) received the B.Tech degree
in electrical engineering from the Indian Institute of
Technology, Kanpur, India in 1987, the M.S. degree
in electrical and computer engineering from the Uni-
versity of Texas, Austin, in 1989, and the Ph.D. de-
gree in electrical engineering and computer sciences
from the University of California, Berkeley, in 1999.
From 1989 through 1993, he worked at Motorola,
Inc., where he was a member of the design teams of
the MC88110 and PowerPC 603 RISC microproces-
sors. In January 2000, he joined the Electrical and
Computer Engineering Department, University of Colorado, Boulder, as an As-
sistant Professor. He is currently an Assistant Professor in electrical engineering
at Texas A&M University, College Station. His research interests include logic
synthesis, physical design automation and novel VLSI design flows to address
deep submicrometer design issues such as power and crosstalk. He has coau-
thored over 25 technical publications, five United States Patent awards, and a
book titled Cross-talk Noise Immune VLSI Design using Regular Layout Fab-
rics (Norwell, MA: Kluwer, 2001), and has presented numerous invited talks.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 7, JULY 2004

Subarnarekha Sinha received the B.Tech. degree in electronics and electrical
communication engineering from the Indian Institute of Technology, Kharagpur,
in 1996 and the Ph.D. degree in electrical engineering and computer sciences
from the University of California, Berkeley, in 2002.

She is currently with Synopsys, Inc. Her research interests include VLSI logic
synthesis.

Robert K. Brayton (M’75-SM’78-F’81) received
the B.S.E.E. degree from Iowa State University,
Ames, in 1956 and the Ph.D. degree in mathematics
from the Massachusetts Institute of Technology,
Cambridge, in 1961.

From 1961 to 1987, he was a member of the
Mathematical Sciences Department of the IBM T.
J. Watson Research Center, Yorktown Heights, NY.
In 1987, he joined the Department of Electrical
Engineering and Computer Sciences, University
of California, Berkeley, where he is the Cadence
Distinguished Professor of Engineering and the director of the SRC Center
of Excellence for Design Sciences. He held the Edgar L. and Harold H.
Buttner Endowed Chair in Electrical Engineering at University of California,
Berkeley from 1996 to 1999. He has authored over 400 technical papers and
nine books. Past contributions have been in analysis of nonlinear networks,
electrical simulation and optimization of circuits, and asynchronous synthesis.
His current research involves combinational and sequential logic synthesis for
area/performance/testability, formal design verification, and logical/physical
synthesis for DSM designs.

Dr. Brayton is a member of the National Academy of Engineering, and a
Fellow of the AAAS. He received the 1991 IEEE CAS Technical Achievement
Award, and five best paper awards, including the 1971 IEEE Guilleman-Cauer
award, and the 1987 ISCAS Darlington award. He received the CAS Golden
Jubilee Medal and the IEEE Millennium Medal in 2000. He was the editor of
the Journal on Formal Methods in Systems Design from 1992 to 1996.

Alberto L. Sangiovanni-Vincentelli (M’74-M"77-
SM’81-F’83) received the Dott. Ing. degree (summa
cum laude) in electrical engineering and computer
science from the Politecnico di Milano, Milan, Italy,
in 1971.

He holds the Edgar L. and Harold H. Buttner Chair
of Electrical Engineering and Computer Sciences at
the University of California, Berkeley, where he has
been on the Faculty since 1976. From 1980 to 1981,
he spent a year as a Visiting Scientist with the Math-
ematical Sciences Division of the IBM T. J. Watson
Research Center, Yorktown Heights, NY. In 1987, he was a Visiting Professor
with the Massachusetts Institute of Technology, Cambridge. He co-founded Ca-
dence Design Systems (where he is currently the Chief Technology Advisor and
Member of the Board of Directors), Synopsys, Inc., (where he was the Chair of
the Technical Advisory Board), and Comsilica, a startup in the wireless commu-
nication area (where he is currently the Chairman of the Board). He also founded
the Cadence Berkeley Laboratories and the Kawasaki Berkeley Concept Re-
search Center, where he is Chairman of the Board. He was a Director of View-
Logic and Pie Design Systems. He is currently a Member of the Board of Direc-
tors of Sonics, Inc., Softface, and Accent. He has consulted for a number of U.S.
companies, including IBM, Intel, AT&T, GTE, GE, Harris, Nynex, Teknekron,
DEC, HP, Japanese companies, including Kawasaki Steel, Fujitsu, Sony and
Hitachi, and European companies including SGS-Thomson Microelectronics,
Alcatel, Diamler-Benz, Magneti-Marelli, BMW, and Bull. He is the Scientific
Director of the Project on Advanced Research on Architectures and Design of
Electronic Systems, a European Group of Economic Interest. He is on the Advi-
sory Board of the Lester Center of the Haas School of Business and of the Center
for Western European Studies and a member of the Berkeley Roundtable of the
International Economy. He has authored or coauthored over 530 papers and 14
books in the area of design methodologies, large-scale systems, embedded con-
trollers, hybrid systems, and tools.

Dr. Sangiovanni-Vincentelli is a member of the National Academy of En-
gineering. He received the Distinguished Teaching Award of the University of
California in 1981, the Guillemin-Cauer Award in 1982, the Darlington award
in 1987, and the 1995 Graduate Teaching Award of the IEEE. He was the Tech-
nical Program Chairperson of the International Conference on Computer-Aided
Design and is currently General Chair and was also the Executive Vice-Presi-
dent of the IEEE Circuits and Systems Society.

