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In a typical IC design flow, circuits are optimized using multilevel don’t cares. The computed don’t

cares are discarded before Technology Mapping or Automatic Test Pattern Generation (ATPG).

In this paper, we present two combinational ATPG algorithms for combinational designs. These

algorithms utilize the multilevel don’t cares that are computed for the design during technology

independent logic optimization. They are based on Boolean Satisfiability (SAT), and utilize the

single stuck-at fault model. Both algorithms make use of the Compatible Observability Don’t Cares

(CODCs) associated with nodes of the circuit, to speed up the ATPG process. For large circuits, both

algorithms make use of approximate CODCs (ACODCs), which we can compute efficiently. Our first

technique speeds up fault propagation by modifying the active clauses in the transitive fanout (TFO)

of the fault site. In our second technique, we define new j-active variables for specific nodes in the

transitive fanin (TFI) of the fault site. Using these j-active variables we write additional clauses

to speed up fault justification. Experimental results demonstrate that the combination of these

techniques (when using CODCs) results in an average reduction of 45% in ATPG runtimes. When

ACODCs are used, a speed-up of about 30% is obtained in the ATPG run-times for large designs.

We compare our method against a commercial structural ATPG tool as well. Our method is slower

for small designs, but for large designs, we obtain a 31% average speedup over the commercial tool.
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1. INTRODUCTION

In order to ensure that a manufactured IC is error-free, IC vendors typically
perform a set of tests before shipping each die. Manufacturing defects manifest
themselves as logical faults, which are mathematically modeled as circuit nodes
becoming statically 1 (stuck-at-1) or 0 (stuck-at-0). Using this single stuck-at
fault model, automatic test pattern generation (ATPG) algorithms determine
a set of tests (vectors on the primary inputs of the circuit) to test all possible
stuck-at faults in a design.

In this article we propose two techniques that significantly speed up SAT-
based ATPG. Both techniques use the compatible observability don’t cares
(CODCs) associated with nodes of the circuit. These don’t cares are generally
computed during technology independent optimization of the circuit and are
discarded thereafter. In our approach we save these don’t cares and use them
to speed up ATPG.

The key contribution of this article is a pair of orthogonal techniques to
augment SAT-based ATPG with circuit Don’t Care information.

—In our first technique we augment the active clauses of the nodes in the
transitive fanout of the fault site, with approximate CODC information to
speed up the process of fault propagation.

—In the second technique we define new active variables for specific nodes in the
transitive fanin of the fault. Additional clauses which encode the approximate
CODCs, using these active variables are then added to speed up the process
of fault justification.

This paper can be extended to address sequential ATPG, by unfolding a se-
quential circuit in time, computing sequential Don’t Cares and applying the
same techniques as described in the sequel. Further, in such a scenario, se-
quential don’t cares can be used to additionally enhance the technique. The
experiments for this paper are conducted on combinational designs.

The rest of this article is organized as follows. In Section 2, we provide defi-
nitions that are used in the rest of the paper. Section 3 discusses previous work
while Section 4 describes our improved SAT-based ATPG scheme. Experimental
results are presented in Section 5, and conclusions are drawn in Section 6.

2. PRELIMINARIES AND TERMINOLOGY

Definition 2.1. The Boolean difference [McCluskey 1986] of a function f
with respect to x is defined as

∂ f
∂x

= f x ⊕ f x ,

where f x and f x are f with x set to 1 and 0 respectively.

Definition 2.2. Given a multilevel combinational Boolean network C, a sin-
gle stuck-at fault f = f (x,B) causes a node x in C to be permanently stuck at
logic value B (where B ∈ {0, 1}). The faulty circuit, denoted by C f is then C
with the faulty node x assigned to B.
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Definition 2.3. The test for a node x stuck-at-0 is defined as

(x) ·
(

∂ f
∂x

)
,

where f is some primary output of the multilevel Boolean circuit.

In the expression above, the first term x represents the fault excitation and
justification conditions and the second term ∂ f

∂x represents the fault propagation
condition.

Similarly, the test for a node x stuck-at-1 is defined as

(x) ·
(

∂ f
∂x

)
.

Definition 2.4. A conjunctive normal form (CNF) Boolean formula f on
n Boolean variables x1, x2, . . . , xn is a conjunction (logical AND) of m clauses
c1, c2, . . . , cm. Each clause ci is the disjunction (logical OR) of its constituent
literals.

For example,

f = (x1 + x3) · (x1 + x2)

is a CNF formula with two clauses, c1 = (x1 + x3) and c2 = (x1 + x2).

Definition 2.5. The problem of Boolean satisfiability (SAT) is to determine
whether a Boolean formula in conjunctive normal form (CNF) has a satisfying
assignment.

SAT is an NP complete problem [Garey and Johnson 1979]. Several heuristics
exist for efficient solution of SAT. Among these are Zchaff [Moskewicz et al.
2001] and GRASP [Silva and Sakallah 1996]. In GRASP, efficiency results
from the use of non-chronological backtrack. Zchaff improves these results
further by an efficient mechanism of ’watching’ literals in the clauses.

Definition 2.6. The Observability Don’t Care of node y j in a multilevel
Boolean network with respect to output zk is

ODC j k = {x ∈ Bn s.t. zk(x)| y j =0 = zk(x)| y j =1}.
Here B ∈ {0, 1}.
In other words ODCjk is the set of minterms of the primary inputs for which
the value of y j is not observable at zk [Savoj and Brayton 1990]. This can also
be denoted as

ODCjk =
(

∂zk

∂ y j

)
,

where

∂zk

∂ y j
= zk(x)| y j =0 ⊕ zk(x)| y j =1. (1)
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Fig. 1. Don’t Care example networks.

In the network of Figure 1(a), zk explicitly depends on y j so ∂zk
∂ y j

can be

computed using equation 1. In general, when zk is not explicitly dependent on
y j , as is the case in Figure 1(b), we can compute ∂zk

∂ y j
using the chain rule:

∂zk

∂ y j
= ∂zk

∂ g1

· ∂ g1

∂ y j
⊕ ∂zk

∂ g2

· ∂ g2

∂ y j
⊕ · · · ⊕ ∂zk

∂ gq
· ∂ gq

∂ y j

⊕ ∂2zk

∂ g1 g2

· ∂ g1

∂ y j
· ∂ g2

∂ y j
⊕ ∂2zk

∂ g1 g3

· ∂ g1

∂ y j
· ∂ g3

∂ y j
⊕ · · ·

⊕ ∂2zk

∂ g1 gq
· ∂ g1

∂ y j
· ∂ gq

∂ y j
⊕ · · · ⊕ ∂2zk

∂ gq−1 gq
· ∂ gq−1

∂ y j
·

∂ gq

∂ y j
⊕ ∂3zk

∂ g1 g2 g3

· ∂ g1

∂ y j
· ∂ g2

∂ y j
· ∂ g3

∂ y j
⊕ · · ·

⊕ ∂qzk

∂ g1 g2 . . . gq
· ∂ g1

∂ y j
· ∂ g2

∂ y j
· · · ∂ gq

∂ y j
. (2)

Once a node function is changed by minimizing [Brayton et al. 1984] it against
its ODCs, the ODCs of the other nodes must be recomputed. To avoid recom-
putation of ODCs during optimization, Compatible Observability Don’t Cares
(CODCs) [Savoj and Brayton 1990] were developed. The CODC of a node is a
subset of the ODC for that node. Unlike ODCs, CODCs have a property that
one can simultaneously change the function of all nodes in the network as long
as each of the modified functions are contained in their respective CODCs.

Definition 2.7. A node x is said to be the dominator of another node y (i.e.,
node y is dominated by node x), if all paths from y to the primary outputs go
through node x [Tarjan 1974].

This is illustrated by means of an example in Figure 2. We can see that all paths
from nodes c, e, and g pass through node x. Hence node x dominates nodes c,
e, and g .

In the rest of this section, we briefly review SAT-based ATPG, with a view to
providing a framework for discussing our approach.

In the SAT-based ATPG method we first generate a formula (in conjunctive
normal form (CNF)) to represent the test for the fault. Every gate of the circuit
has a CNF formula associated with it which represents the function performed
by the gate. This formula is true iff the variables representing the gate’s inputs
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Fig. 2. Example circuit.

and output take on values consistent with its truth table. For example, consider
a 2-input AND gate with x and y as inputs and z as output. The CNF formula
for the AND gate is written as:

(z + x) · (z + y) · (z + x + y).

A CNF formula for the entire circuit is obtained by forming the conjunction
of the CNF formulas of all gates of the circuit. This CNF formula describes the
good (fault-free) circuit behavior. The faulty circuit is a copy of the fault-free
circuit with new faulty variables for the gates affected by the fault (i.e., gates in
the transitive fanout of the fault). A CNF formula describing the faulty circuit
is obtained in a similar manner as the formula obtained for the good circuit. A
clause for the faulty circuit is written only if it is different from the good circuit
clauses. Next, fault detection clauses are written. These clauses consist of:

—Clauses representing the XOR of each good circuit output and the correspond-
ing faulty circuit output.

—Clauses representing the logical OR of each XOR output above.

For SAT-based ATPG, a CNF formula for the ATPG instance is constructed
by taking the conjunction of the good circuit clauses (conjunction of good circuit
clauses of each gate), the faulty circuit clauses (conjunction of faulty clauses
for each gate in the TFO of the fault site) and fault detection clauses. This
CNF formula is then solved using a SAT solver. If a satisfying assignment S
exists, then the fault is testable else it is redundant. The assignment of values
to primary input variables in S represents the test vector for the fault. The
entire process is repeated for each distinct fault in the circuit.

To speed up the process of finding a satisfying assignment, active clauses
[Larrabee 1992] are added to the composite CNF formula. These are described
in Section 4.1.

Recall that our technique proposes to use CODCs that are generated during
the technology independent optimization. After mapping, several technology
independent nodes may get collapsed into a gate. Finding the CODCs of gates
in this context is simple. Suppose we map a set of 3 technology independent
nodes a, b and c into a gate G. Suppose b and c are fanouts of a. Then the CODC
of G can be computed as the composition of the CODCs of b and c in the CODC
of a.
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3. PREVIOUS WORK

In the past, the ATPG problem has received extensive attention in academia
and industry. ATPG techniques can be classified as structural, algebraic, and
hybrid.

A large fraction of ATPG techniques use structural methods. The D-
Algorithm [Roth 1966] was one of the earliest known ATPG techniques. This
method tried to perform fault justification and propagation by a structural
search on all nodes of a circuit. This was improved by PODEM [Goel 1981] where
the search space was restricted to the primary inputs of the circuit, resulting in
a significantly more efficient ATPG technique. Techniques like FAN [Fujiwara
and Shimono 1983] further improved performance by exploiting immediately
applicable implications, headlines, and multiple back-traces. An algorithm that
exploits the notion of circuit dominators was introduced in Kirkland and Mercer
[1988]. Structural ATPG techniques based on Boolean learning were introduced
in Schulz et al. [1988] [Kunz and Pradhan 1994]. These techniques augmented
the structure-based search process by performing additional static or dynamic
learning of logical implications in the circuit.

Algebraic techniques are elegant from a mathematical perspective, and in-
volve algebraic manipulation of the equations describing the testability condi-
tion. The most well known of these techniques is [Sellers et al. 1968]. In general,
these techniques can prove to be expensive and therefore there has not been
much attention devoted to them.

Hybrid techniques are more recent, and they typically utilize a mixed struc-
tural and functional approach.

One such hybrid technique is the SAT-based ATPG technique introduced by
Larrabee [1992] and explored further in TEGUS [Stephan et al. 1996]. These
techniques translate the testability condition into a Boolean Satisfiability (SAT)
instance, which retains the circuit structure. A test for the circuit is now ob-
tained by invoking a SAT solver. During this step, the circuit structure is not
explicitly used in determining a test. SAT-based ATPG techniques were shown
to be robust and fast, and our algorithms are developed in a SAT-based ATPG
framework.

Shi et al. [2005] exploit advanced SAT techniques for ATPG. They evaluate
the performance of different SAT solvers in ATPG, and show the potential for
problem specific heuristics for speeding up SAT. Further, they reduce the time
taken to generate the CNF by efficient memory allocation. These approaches for
speeding up CNF generation and SAT solving for ATPG are orthogonal to our
scheme (since they don’t enhance the ATPG process by using Don’t Cares) and
hence can be easily combined with our current approach for further runtime
improvements.

Another SAT-based technique was reported in Tafertshofer et al. [1997]. In
this approach, the authors perform justification and propagation on an implica-
tion graph (IG) structure. This represents an efficient implementation of a SAT-
based method to analyze Boolean networks. Our techniques are orthogonal to
those of Tafertshofer et al. [1997]. It would be interesting to see the performance
of a method which combines our approach and that of Tafertshofer et al. [1997].
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Gupta et al. [2001] present a dynamic method to detect and remove inac-
tive clauses during SAT. Their approach is orthogonal to ours, and it would
be an interesting research problem to see how a combined approach performs.
Our method would make the search of the remaining clauses faster since it
augments the clauses with CODC information.

The efforts of Zhaohui et al. [2005], Velev [2004], and Safarpour et al. [2004]
are similarly motivated. In Safarpour et al. [2004], SAT is sped up for a circuit
instance by labeling variables as lazy when they are determined to be noncon-
trolling. For example, if a logic cone feeds into an AND gate, one of whose inputs
is a 0, then all the variables in the logic cone can be disregarded by the SAT
solver. The approach of Zhaohui et al. [2005] uses don’t care literals, which are
treated differently during the solution process. A similar approach is reported
in Velev [2004], where unobservable literals are added to each clause. These
three approaches are quite similar in their motivation. The main difference be-
tween these approaches and ours is that our computed don’t cares do not need to
be updated during a SAT run, since we utilize Compatible Observability Don’t
Cares (CODCs). Further, our approach is different from those of Zhaohui et al.
[2005], Velev [2004], and Safarpour et al. [2004], since the information used by
these approaches does not utilize CODCs, but rather the structure of the circuit.

Radecka and Zilic [2001, 2002] describe techniques to identify redundant
gate and wire replacement conditions. The work is based on SAT, and the au-
thors utilize CODCs (which they refer to as approximate ODCs). The difference
of our approach from Radecka and Zilic [2001, 2002] lies in the fact that we
utilize approximate CODCs [Saluja and Khatri 2004] (in order to handle large
designs for which CODCs cannot be computed). The use of approximate CODCs
makes our technique extremely robust, allowing it to handle arbitrarily large
designs. The application setting of our paper is quite different from Radecka
and Zilic [2001, 2002], and hence our technical approach is also different. Fur-
ther, their experiments are performed on smaller examples, and not compared
to a commercial tool (unlike our experiments).

SPIRIT is a SAT-based ATPG tool [Gizdarski and Fujiwara 2000] that imple-
ments structural concepts like unjustified lines and static learning. An extended
version of these heuristics are presented by the same authors in Gizdarski and
Fujiwara [2002]. However, unlike our method, the learning applied is local. Our
method implicitly utilizes dynamic learning since the underlying SAT solver in-
corporates this. Our method also utilizes structural information (in the form of
CODCs) to make the SAT-based search more efficient.

Bhattacharya et al. [1995] present an ROBDD-based ATPG tool. In this hy-
brid technique, circuit structure is lost when the ROBDD of the circuit is con-
structed, but structural information is used to guide the ROBDD-based test
generation process.

There have been prior efforts to use ATPG in order to improve the speed or
quality of logic synthesis and verification [Chang and Marek-Sadowska 2002;
Chang and Marek-Sadowska 1994; Chang et al. 1996; Kunz 1994; Huang et al.
2001; Huang et al. 2000]. The guiding principle of these papers is exactly the
reverse of our article (which uses logic synthesis information in the form of
multilevel don’t cares) to speed up ATPG.
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4. OUR APPROACH

Our approach utilizes a SAT-based formulation of ATPG. We utilize the efficient
SAT solver Zchaff [Moskewicz et al. 2001] to solve the SAT instance that arises
from the ATPG problem. Our approach has two orthogonal parts.

In the first part we augment the active clauses [Larrabee 1992] in the tran-
sitive fanout of the fault by utilizing the available CODC information. This
improves the efficiency of fault propagation. In the second part we introduce
new active variables and new clauses for selected nodes in the TFI of the fault.
These clauses utilize CODC information as well, and help improve the efficiency
of fault justification.

4.1 Efficient Fault Propagation

In Larrabee’s SAT-based approach [Larrabee 1992], fault propagation is sped
up by adding active clauses to the composite CNF formula representing the
testability condition. If a fault is testable, then there must be at least one path
from the fault site to the primary output, such that every node along that path
has different good and faulty values. Hence, every node in the transitive fanout
of the fault is allocated an active variable. A node x is active (represented as
xa) if its value in the good circuit is different from its value in the faulty circuit.
The clauses for this condition are:

xa ⇒ x ⊕ x f .

If a node is active then at least one of its fanouts must be active. The clauses
for this condition are obtained from the expression:

xa ⇒
∑

y∈FO(x)

( ya).

Finally, one of the outputs must be active.
We write active clauses for every node in the TFO of the fault, in order

to guide the SAT solver to search in the relevant region of the circuit. Since
the SAT solver natively has no notion of circuit structure, such guidance is
quite essential. By adding active variables and the associated active clauses, we
effectively incorporate some structural information in the SAT search process.
Correctness is not compromised if some or all active variables and/or active
clauses are omitted.

As an example consider Figure 2. Assume that node x is the fault node. If xa
and za are the active variables for nodes x and z respectively, then the active
clauses would be written as

(xa + x + x f ) · (xa + x + x f )

and

(za + z + z f ) · (za + z + z f ).

Along with these clauses, the other active clauses that are added are (xa + za)
and (za).

In our method, we add new clauses to guide fault propagation. These clauses
make use of the Compatible Observability Don’t Cares (CODCs) of the nodes
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in the transitive fanout of the fault site. It is generally the case that these don’t
cares are computed during technology independent optimization of a digital
circuit so there is no computational overhead in adding the proposed clauses.

We could use full ODCs as well, and these would result in improved results.
However, full ODCs are harder to compute. Since CODCs are typically com-
puted during the technology independent phase of a design, we simply re-utilize
them in our approach.

CLAIM 1. If the assignment of the inputs of a node n is contained in the
CODC of n, then n cannot be on a path consisting of active nodes starting from
the fault site and ending at a primary output.

The above claim can be proved easily since the CODC of a node is contained
in its ODC. In our approach, we assert that if the input assignment of a node is
contained in its CODC, the node cannot be active, thereby avoiding unnecessary
search. Hence, for node x in Figure 2, the new clauses that can be added to the
circuit are

(xa ⇒ CODCx);

that is,

(xa + CODCx).

In general, the clauses generated by the above expression may have large
number of literals. In our implementation, we ensure that the resulting clauses
have at most k literals, by deleting clauses with k + 1 or more literals. Here k
is a user-specified parameter. As a result, we actually implement

(xa ⇒ Sx),

where

Sx ⊇ CODCx .

These clauses are added for all nodes in the transitive fanout of the fault. Ex-
perimental results show an average improvement of 41.5% in the SAT runtime
due to the addition of these new clauses.

4.2 Efficient Fault Justification

We now describe our method of adding new j-active clauses for selected nodes
in the TFI of the fault site. These new clauses help speed up fault justification.
These clauses can be expressed in terms of the ODC of the nodes in the TFI of
the fault. However, since the CODCs of every node have already been computed,
we make use of them instead. To do this we first find all the nodes in the TFI of
the fault (except for primary inputs) for which the fault node is a dominator. We
assign j-active variables1 to all such nodes. Because these new j-active nodes
are dominated by the fault node, we can reduce the chain rule (Equation (2) in

1For a node p, we denote its j-active variable as pact. This notation is intentionally different from

the notation used for active variables corresponding to nodes in the TFO of the fault site.
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Section 2) to:

∂zk

∂ y j
=

(
∂zk

∂ g1

)
·
(

∂ g1

∂ y j

)
, (3)

where zk is a primary output, g1 is the fault node and y j is a node which is

dominated by g1. This is valid since ∂ gn
∂ y j

= 0 for n > 1. From this equation, we

note that the first term of the right hand side (RHS) is the care-set associated
with fault propagation. The second term of the RHS is the care-set associated
with fault justification. Since we require that the fault be justified and propa-
gated, we need to ensure that the care points used for the node y j satisfy both
terms of the RHS. In other words, the care points used for the node y j must be
the care points obtained by computing the Boolean difference of the output zk
with respect to y j (the condition on the left hand side (LHS) of Equation (3)).

For a multi-output circuit, we would need to compute the care points for node
y j as the complement of ODC j , where

ODC j =
∏

k∈PO

(ODCjk).

In practice, we compute the care points for node y j as the comple-
ment of CODC j , since these have already been computed during technology-
independent logic optimization.

The new j-active clauses for a node p which is dominated by the fault site
are written in two parts:

(1) A node p is said to be j-active if the immediate fanins of its fanout nodes
(other than the node p itself) do not determine the value of the fanout node.

(2) If a node is j-active then its input assignment must not be contained in its
CODC. In other words, for node p which is dominated by the fault site, we
write clauses:

pact ⇒ CODCp.

The traversal of the circuit to write the first part of the j-active clauses is
illustrated by the following algorithm. Note that we run this algorithm on each
node (in the transitive fanin of the fault site) which is dominated by the fault
site.

Active clauses (node, fault site) {
ForEach Fanout (node) {

AddActive clause (node)

if (fanout = fault site)

return
else

Active clauses (fanout, fault site)

}
return

}
The function AddActive clause(node) adds the first part of the new j-active

clauses based on the type of gate being implemented at the node.
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Fig. 3. AOI-211 gate.

Next, we write the second part of the new j-active clauses.

pact ⇒ ∂ g1

∂p
.

For the AOI-211 gate of Figure 3 the first part of the j-active clauses that
would be added for node x would be

(c · a · b) ⇒ xact.

This is because the value of z is determined by x only if c = 0 and a · b = 0.
The second part of the j-active clauses would be

(xact ⇒ CODCx).

The addition of these new active clauses for our working example in Figure 2
is described next.

Assume node x is the fault node. Here the nodes c, e, and g are dominated
by x. Now, node g will determine the value of x only if f equals 1. Hence the
new active clauses for node g can be written as

( f ⇒ gact) · (gact ⇒ CODCg )

i.e

( f + gact) · (gact + CODCg )

Similarly, we can also write new active clauses for the node e as

(d · f ⇒ eact) · (eact ⇒ CODCe)

i.e

(d + f + eact) · (eact + CODCe)

Note that j-active clauses for node c are not written since it is a primary
input. In this manner we can write new j-active clauses for all nodes in the
TFI of the fault node, which are dominated by the fault node. Experimental
results using CODCs show an average improvement of 45% in the SAT run
times due to the addition of the clauses implemented in Sections 4.1 and 4.2.
The incremental improvement obtained by including clauses of this section is
only about 5%, since we are able to write new j-active clauses for a small subset
of nodes in the TFI of the fault site.

In a traditional SAT-based ATPG flow, active clauses [Larrabee 1992] are
utilized. Therefore, implementing our method of Section 4.1 incurs no variable
overhead. Also, the number of dominators we found in typical circuits was very
small. As a result, we do not report results for the method of Section 4.2 applied
in isolation.
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4.3 Approximate CODCs

CODCs are computed using an ROBDD [Bryant 1986] based computation.
Therefore, it is not possible to compute them for larger designs. Hence, for
larger designs, we implement a technique to compute approximate CODCs
(ACODCs) [Saluja and Khatri 2004], which computes a large subset of the
CODCs quickly. ACODCs can be computed on average 25× faster than CODCs,
with an average 33× reduction in memory utilization. This method is robust in
that it can be applied to large designs for which the CODC computation does
not complete.

We demonstrate the utility of our techniques using CODCs (on circuits for
which CODCs can be computed) as well as ACODCs. For larger designs, we
utilize ACODCs exclusively. In this case, we simply replace the CODC terms in
the clauses described in Sections 4.1 and 4.2 by the ACODCs.

5. EXPERIMENTAL RESULTS

Both our techniques are implemented in SIS [Sentovich et al. 1992]. For our
experiments we use the mcnc91 and itc99 benchmark circuits. Our experimen-
tal procedure consists of reading in a design and running script.rugged on the
design. This script computes CODCs for the circuit during circuit optimiza-
tion. For ACODC tests, we replace full simplify with our ACODC [Saluja and
Khatri 2004] version of this code. These don’t cares are generally computed
during technology independent optimization of the circuit and are discarded
thereafter. In our approach we save these don’t cares and use them to speed up
ATPG. Hence the use of these don’t cares for ATPG incurs no extra runtime cost.
Next we technology-map the circuit using the library lib2.genlib. Two mapping
schemes are employed, one which attempts to minimize area and another which
attempts to minimize delay. Now for each uncollapsed fault in the design, we
generate SAT clauses to test the fault, and then invoke Zchaff [Moskewicz et al.
2001] to find a test. Our method is compared with SAT-based ATPG (without
don’t cares)2 as well as a commercial ATPG tool. Comparisons with the old
method are performed on an IBM IntelliStation running Linux with a 1.7 GHz
Pentium-4 CPU and 1 GB of RAM. Comparisons with the commercial tool are
run on a Sun Ultra-4 SPARC machine, running SunOS 5.7 (we ran our method
and the commercial ATPG tool on the same Sun machine). We use the latest
version of this commercial tool. The licensing agreement for this tool requires
that we do not mention the name of the tool in this paper. In all experiments,
no random vector simulation is performed and all faults are tested using our
deterministic procedure. This ensures that runtime comparisons are fair and
objective. The reason for this choice is that if random vector simulation is per-
formed, the commercial tool and our tool may test a different set of faults during
random vector simulation, making it impossible to draw objective conclusions
from the results. All runtimes are in seconds.

2The original SIS ATPG algorithm uses a SAT solver internal to SIS. This has been modified such

that the SIS ATPG algorithm uses Zchaff [Moskewicz et al. 2001] as the SAT solver. This method is

referred to as the ’old method’ in this paper. It utilizes the notion of active clauses [Larrabee 1992],

but uses no Don’t Care enhanced clauses like our method does.
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Table I. Average Speed-Up of Our Techniques

DC set Mapping % improvement (1) % improvement (1 + 2)

sub-fanin area 40.86% 45.47%

level area 41.92% 45.93%

all area 41.52% 46.60%

sub-fanin delay 38.71% 45.66%

level delay 42.18% 46.21%

all delay 43.42% 46.21%

Table II. Clause and Variable Overheads for Our Techniques—Medium Sized Circuits

using CODCs using ACODCs
old

circuit flts test red clause cl % (1) cl %(1 + 2) old vars var % (2) cl % (1) cl %(1 + 2) var % (2)

alu2 976 968 8 1297k 5.12 5.73 411529 0.20 4.96 5.21 0.15
alu4 1833 1812 21 4191k 4.60 4.87 1366145 0.09 4.32 4.55 0.08
apex6 2153 2153 0 497k 4.46 5.08 202319 0.17 4.11 4.67 0.15
apex7 650 649 1 133k 3.23 3.50 57703 0.24 3.01 3.22 0.20
C1355 1337 1337 0 2643k 4.17 4.62 892533 0.03 3.83 3.99 0.02
C1908 1284 1282 2 2414k 4.84 5.04 857028 0.06 4.33 4.65 0.05
C2670 2304 2297 7 3145k 1.44 2.06 1260296 0.17 1.32 1.57 0.15
C499 1337 1337 0 2646k 3.90 4.09 981219 0.06 3.61 3.89 0.05
C880 1216 1216 0 824k 1.48 1.83 315654 0.11 1.22 1.45 0.10
frg2 2219 2213 6 780k 3.48 3.70 323958 0.06 3.18 3.35 0.05
i5 844 844 0 147k 0.23 0.32 70584 0.09 0.20 0.30 0.08
i6 1529 1529 0 195k 5.38 5.83 76996 0.15 4.56 4.92 0.12
i7 2096 2096 0 298k 5.26 5.37 121723 0.12 5.02 5.10 0.09
rot 1954 1953 1 1166k 1.34 1.50 479787 0.04 1.11 1.26 0.03
term1 498 494 4 131k 2.98 4.36 51436 0.32 2.77 3.43 0.22
too large 810 803 7 518k 1.26 1.91 198527 0.20 0.99 1.34 0.15
vda 1092 1092 0 1127k 6.82 6.89 383695 0.02 5.96 6.01 0.02
x1 862 862 0 198k 0.52 1.03 85480 0.14 0.42 0.86 0.10
x3 2303 2303 0 508k 3.30 3.84 203281 0.15 3.03 3.26 0.11
x4 1126 1126 0 211k 4.40 4.60 90763 0.16 4.12 4.35 0.13

AVG — — — — 3.71 4.07 — 0.10 3.36 3.65 0.08

In our experiments, we use three different sets of CODCs (which are imple-
mented in SIS [Sentovich et al. 1992]). Assume that the CODCs of a node n are
being computed. These three sets are discussed below.

—The sub-fanin set: This set consists of fanin don’t cares only for nodes with
the same or subset support as the node n.

—The level set: This set consists of fanin don’t cares only for nodes with the
same or subset support as the node n, which have level less than the node n.

—The all set: This set consists of all the don’t cares that can be generated for
each node.

Table I summarizes the average improvements in SAT runtimes for differ-
ent don’t care sets. Column 1 lists the don’t care sets used while Column 2
describes the type of mapping. Column 3 lists the percentage improvement in
the SAT runtimes for our first technique over the SIS ATPG algorithm, while
Column 4 does the same comparison for both our techniques applied simultane-
ously. The average improvement in the SAT run-times over the original ATPG
method is 41.5% for the first technique and 46% for both techniques applied
simultaneously.

Table II describes the clause and variable overhead of our proposed tech-
niques applied to medium sized circuits. Column 1 lists the circuit name,
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Table III. Clause and Variable Overheads, and Runtime for Our Techniques—Large Designs

cls. ovh norm. time
old old vars aborts

circuit faults tested clauses % (1) % (1 + 2) vars %(2) (1) (1 + 2) time our/comm. our/comm.

b14 C 31055 30850 286.9M 2.11 2.21 98.1M 0.06 0.65 0.62 4818.06/5625.34 = 0.85 0/1
b15 C 28950 28037 444.9M 2.23 2.34 151.1M 0.03 0.83 0.81 14591.42/22370.30 = 0.65 0/0
b17 C 101143 98685 1381.3M 1.64 1.77 467.6M 0.02 0.72 0.69 36459.48/56912.03 = 0.64 0/2
b20 C 63127 62718 812.6M 2.43 2.71 274.0M 0.06 0.76 0.74 15534.91/31270.12 = 0.49 0/3
b21 C 64465 64003 851.7M 1.28 1.35 287.9M 0.02 0.63 0.59 15506.17/38152.79 = 0.40 0/3
b22 C 93309 92838 1171.7M 1.32 1.45 396.3M 0.02 0.69 0.66 23419.98/6429.08 = 3.64 0/3

AVG — — — 1.835 1.97 — 0.035 0.71 0.685 110330.02/160759.66 = 0.69 —

column 2 reports the number of faults to be tested and columns 3 and 4 re-
port the number of tested and redundant faults respectively. Column 5 lists the
total number of clauses (for all the faults) in the old method, while column 6
lists the clause overhead using our first technique (as described in Section 4.1).
Column 7 lists the clause overhead using both our techniques (as described in
Sections 4.1 and 4.2) simultaneously. Column 8 lists the total number of vari-
ables in the old method (over all tested faults), whereas column 9 shows the
variable overhead in the new method (new variables are added only in our sec-
ond technique). Columns 6, 7, and 9 correspond to the use of CODCs. Columns
10, 11, and 12 respectively represent the same overheads as columns 6, 7, and
9 for the case when ACODCs are used in the ATPG computation.

Note that the average clause overhead of our techniques (using CODCs) is
low (approximately 4%). The average variable overhead of our second technique
is also low (0.1%). The percentage of nodes, on average, that are dominated by
fault nodes is about 5%. Also, note that for our method, there are no aborted
faults. When ACODCs are used, these overheads reduce marginally. In all cases
the clause and variable overheads are extremely reasonable.

Table III describes the ATPG results for large designs (for which CODCs can-
not be computed). Therefore we use ACODCs for both our algorithms. Columns
1 through 4 of this table are self-explanatory. Columns 5 and 6 respectively
represent the clause overhead for our first method in isolation and for both
methods together. Column 8 represents the variable overhead for our second
method. Columns 9 and 10 represent the runtimes of our techniques using the
method of Section 4.1 and using the combination of the methods of Section 4.1
and Section 4.2, both normalized with respect to the old method. We see that
for large designs, our techniques deliver about 31.5% speedup compared to the
old method (i.e., compared to the use of SAT-based ATPG with just the use of
traditional active clauses, but no don’t care enhancements). For these large de-
signs, the percentage of nodes, on average, that are dominated by fault nodes is
about 3.8%. Column 11 reports the runtime of our method, the runtime of the
commercial tool, and the ratio of the two. Also, Column 12 reports the aborted
faults of our method and the commercial tool. Note that on average, for these
large designs, our method runs 31% faster than the commercial tool. Also, our
method aborts on no faults, while the commercial tool aborts on a handful of
faults in some of these designs. The increased runtime for b22 C is attributed to
the presence of some hard faults, which our method tested but the commercial
tool aborted on.
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Fig. 4. SAT runtime comparison using large examples.

Table IV. Effect of Limiting Clause Sizes in Our Techniques

cls.ovh.w/CODC time w/CODCs
time time

w/ACODCs w/CODCs (k > 5)

circuit k = 3 k = 4 k = 5 k > 5 k = 3 k = 4 k = 5 k > 5 k > 5 vs. commercial tool

alu2 3.80 4.45 5.05 5.73 0.87 0.93 1.00 0.91 0.98 8.17/0.53 = 15.41

alu4 3.14 4.17 4.58 4.87 0.66 0.89 0.83 0.69 0.74 28.28/1.51 = 18.72

apex6 3.87 4.33 4.46 5.08 0.17 0.19 0.16 0.16 0.30 4.33/0.21 = 20.61

apex7 2.31 2.87 3.23 3.50 0.69 0.77 0.54 0.31 0.35 1.19/0.05 = 23.80

C1355 3.63 4.06 4.30 4.62 0.77 0.77 0.77 0.73 0.80 26.45/11.10 = 2.38

C1908 3.96 4.71 4.79 5.04 0.73 0.92 1.05 0.93 0.98 18.26/0.66 = 27.67

C2670 1.05 1.21 1.41 2.06 0.82 0.87 0.85 0.81 0.91 30.36/0.55 = 55.20

C499 3.79 3.90 4.02 4.09 0.70 0.75 0.81 0.76 0.83 26.52/11.02 = 2.40

C880 1.21 1.24 1.48 1.83 0.88 0.91 0.87 0.76 0.83 6.29/0.17 = 37.00

frg2 3.20 3.46 3.48 3.70 0.48 0.55 0.48 0.43 0.65 7.17/0.19 = 37.73

i5 0.05 0.10 0.25 0.32 0.44 0.50 0.50 0.50 0.74 1.32/0.03 = 44.00

i6 5.01 5.38 5.48 5.83 0.36 0.46 0.50 0.60 0.75 1.70/0.07 = 24.28

i7 5.26 5.30 5.36 5.37 0.83 0.88 0.92 1.37 1.45 3.15/0.07 = 45.00

rot 1.07 1.33 1.33 1.50 0.13 0.15 0.15 0.14 0.35 10.30/0.22 = 46.81

term1 2.33 2.88 2.98 4.36 0.66 1.50 2.16 1.80 1.82 1.13/0.10 = 11.30

too large 0.73 1.07 1.26 1.91 0.73 0.75 0.81 0.81 0.87 4.53/0.36 = 12.58

vda 6.74 6.80 6.82 6.89 0.93 1.20 1.03 0.88 0.93 7.98/0.44 = 18.13

x1 0.50 0.52 0.74 1.03 0.53 1.00 1.06 1.33 1.36 1.67/0.11 = 15.18

x3 2.55 3.20 3.30 3.84 0.11 0.12 0.15 0.12 0.35 4.79/0.21 = 22.81

x4 3.73 4.24 4.40 4.60 2.5 3.00 3.16 2.83 2.85 1.95/0.07 = 27.86

AVG 3.01 3.52 3.73 4.07 0.52 0.59 0.59 0.55 0.77 195.54/27.67 = 7.07

Figure 4 shows the scatter plot comparing the SAT run times for the old
method with both our techniques (described in Sections 4.1 and 4.2). The set
of benchmark circuits used are a superset of those listed in Table III. Figure 4
shows that our methods perform consistently better, and are very effective for
harder examples.

Table IV describes the effect of restricting the maximum number of liter-
als in each new clause to a user-specified value k. For the results of Table IV,

ACM Transactions on Design Automation of Electronic Systems, Vol. 13, No. 2, Article 24, Pub. date: April 2008.



24:16 • N. Saluja et al.

we implemented both our techniques simultaneously. Column 1 lists the cir-
cuits used while column 2, 3, 4, and 5 list the clause overhead as a function
of k. Columns 6, 7, 8, and 9 list the normalized runtime of our technique
again as a function of k (compared to the old method). Column 10 lists the
normalized runtime (with respect to the old method) when ACODCs are used.
Finally, Column 11 reports the runtime of our method, the run-time for the
commercial ATPG tool, and the ratio of the two. Since we compute an approx-
imation of the CODCs in this technique, we choose k > 5 so that cubes of
the ACODC are not removed. Further, since the number of clauses did not
increase dramatically for k > 5 based on columns 2, 3, 4, and 5, this is a
pragmatic choice. In general, the overheads for k > 5 are reasonable. Note
that the ACODC method has a speedup of 23% on average for medium sized
designs, compared to a 45% average speedup for the CODC method. This re-
duction is because ACODCs compute a subset of the CODCs, resulting in a re-
duced benefit. The reason for choosing ACODCs is that CODCs cannot be com-
puted for large designs, while ACODCs can be computed [Saluja and Khatri
2004] much faster (25× faster on average) and with lower memory utiliza-
tion (33× lower on average). This allows ACODCs to be used for large in-
dustrial designs, yielding a speedup of 31.5% for larger designs as we saw
earlier. Note that our method is slower than the commercial ATPG tool for
these small examples (by a factor of about 7×), since the SAT clause gener-
ation overhead dominates the total runtime. However, as we saw earlier, for
large designs, our method is 31% faster than the commercial ATPG tool on
average.

6. CONCLUSIONS

Boolean satisfiability (SAT) based formulations result in efficient techniques
to solve the ATPG problem [Larrabee 1992; Stephan et al. 1996; Tafertshofer
et al. 1997]. In these methods, we first transform the testability condition into an
equivalent CNF formula. This formula is then solved using a SAT solver [Silva
and Sakallah 1996; Moskewicz et al. 2001]. If the formula is satisfiable, the
SAT solver returns a satisfying assignment, from which we can extract the test
vector.

In this work we have presented two techniques to speed up SAT-based ATPG.
In both techniques, we add clauses to the existing CNF formula in order to speed
up the SAT solution process. In both techniques, these additional clauses are
derived from the CODCs of the nodes of the circuit. We assume that CODCs of
circuit nodes are computed before-hand, during technology independent logic
optimization. As a result, they are available for the SAT-based ATPG tool, and
there is no overhead in computing them. For large designs, for both techniques,
we utilize Approximate CODCs (ACODCs) [Saluja and Khatri 2004], which can
be computed efficiently for a design.

In our first technique we add clauses designed to speed up fault propagation.
This is performed by augmenting the active clauses [Larrabee 1992] (which
are written for nodes in the TFO of the node being tested) with don’t care
information.
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In our second technique, we define new j-active variables and add new j-
active clauses for selected nodes in the TFI of the fault node. These clauses are
designed to speed up the fault justification process.

When using CODCs, we demonstrate an average improvement in runtimes
of 41.5% when only our first technique was used. If both our techniques are
used together, the average improvement in runtimes is 45%. When ACODCs
are used, we demonstrate an improvement of about 31.5% in ATPG runtimes
for large examples. When compared to a commercial ATPG tool, our method is
31% faster for large designs, but slower for small designs since the SAT clause
generation overhead dominates the runtime for small designs. In the future,
we plan to optimize our implementation, to further improve its performance.
Further, we are looking at extending our technique to address sequential ATPG,
by unfolding a sequential circuit in time, computing sequential Don’t Cares and
applying the same ideas outlined in the paper. In such a scenario, sequential
don’t cares will be used to additionally enhance the technique.
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