21st International Conference on VLSI Design

A Merged Synthesis Technique for Fast Arithmetic
Blocks involving Sum-of-Products and Shifters

Sabyasachi Das
Synplicity Inc
Sunnyvale, CA, USA
Email: sabya@synplicity.com

Abstract—1In modern Digital Signal Processing (DSP) and
Graphics applications, the arithmetic Sum-of-Products, Shifters
and Adders are important modules, contributing a significant
amount to the overall delay of the system. A datapath structure
consisting of multiple arithmetic sum-of-product, shifter and
adder blocks is often found in the timing-critical path of the chip.
In this paper, we propose a new operator-level merging technique
to synthesize this type of datapath structure. In our approach, we
combine the shifting operation with the partial product reduction
stage of the sum-of-product blocks. This enables us to implement
the functionality of the original design by using only one carry-
propagate adder block (instead of two carry-propagate adders).
As a result, the timing-critical path of the design gets shortened
by a significant percentage and the overall performance of the
design improves. Our experimental data shows that the datapath
block generated by our approach is significantly faster (13.28%
on average) with a modest area penalty (3.24% on average) than
the corresponding block generated by a commercially available
best-in-class datapath synthesis tool. These improvements were
verified on placed-and-routed designs as well.

I. INTRODUCTION

The design complexity and performance requirements of
datapath operations implemented in systems on chips has
increased considerably over the years. This is especially true
in ICs for communication, multimedia and graphic applica-
tions, which have highly parallel implementations of signal
processing algorithms.

The arithmetic sum-of-products, shifters and adders are
some of the most widely used arithmetic datapath operations
in modern digital design. The block diagram of the Figure-1 is
often seen in modern datapath designs. This design consists of
multiple computationally expensive arithmetic sum-of-product
(SOP) blocks. The outputs of some of the SOP blocks get
shifted by different shift signals, followed by an addition of
all the outputs of the shifters, remaining SOPs and some
other additive input signals. The critical path of this design
goes through an SOP, a shifter and an adder. Since this
design requires intensive computations, they incur a significant
amount of delay, and therefore tend to be typically found in
the timing-critical path of the chip. Developing an efficient
architecture for this design structure would reduce the delay
of the individual blocks and thereby improve the performance
of the IC. Hence there is great interest in generating timing-
efficient architecture for this type of datapath structure.

In [1], [2], [3] and [4], the authors presented techniques to

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.112

Sunil P. Khatri
Texas A&M University
College Station, TX, USA
Email: sunilkhatri@tamu.edu

572

. . . . additive
inputs inputs inputs inputs inputs
eoe e oee eee eoe

‘ SOR | e°° SOIf1 ‘ ‘SO]’;‘1+1 ooe SO]; ‘

sh sh,

‘1 “ ‘q ‘q Lgs1)
‘ z1<<shy [®®® 2g<< shq ‘

ty ty

et th + (all additive inputs) ‘

z

Fig. 1. The generalized block-diagram of our problem statement

emphasize the usefulness of arithmetic sum-of-product (SOP)
blocks over a collection of cascaded blocks performing unit
operations (like additions, subtractions, multiplications etc).
In [5], the critical path delays and hardware complexities of
Multiplier-Accumulation units are explored to derive a high
performance MAC. In [6], a technique to reduce the partial
products in multiplication and sum-of-product units has been
proposed. A hybrid compression technique to reduce the delay
of SOP has been presented in [7]. The basic architecture for a
barrel shifter was proposed in [8]. In [9], a timing-driven de-
composition is introduced for fast shifter. The use of dynamic
logic for shifter blocks was demonstrated in [10]. Timing-
driven layout techniques of shifters were proposed in [11],
[12]. A 32-bit rotator/shifter circuit design with short latency
was discussed in [13]. Several architectures for performing
fast timing-driven two-operand addition are explained in [14],
[15] and [18]. A mix of these architectures can be used to
synthesize the blocks involving sum-of-products and shifters.

In this paper, we propose an operator-level merging-based
technique involving the sum-of-products (SOP) and shifters.
In our approach, we combine the shifting operation with the
partial product reduction stage of the SOP blocks. This enables
us to implement the original design by using only one carry-
propagate adder block. As a result, the timing-critical path
of the design gets shortened by a significant percentage and
the overall performance of the design improves. Our paper
addresses a different datapath design issue than what was
implemented in the references cited in this section.

We have organized the rest of the paper as follows: Some
preliminary information is given in the Section II. In the
Section III, we present the definition of the problem we

@) CO‘ pute
1(!) I
& SOCIety

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:40 from |IEEE Xplore. Restrictions apply.

are addressing in this paper. In the Section IV, we discuss
our proposed approach in detail. The experimental setup is
explained in the Section V. The Section VI presents the
experimental results. Conclusions are drawn in the Section VII.

II. PRELIMINARIES

In this section, we briefly explain the concepts of an
arithmetic Sum-of-Product (SOP) and a Shifter [18].

An example sum-of-product (SOP) block can be expressed
by the following Verilog RTL:

assign z=axb+cxd+exf+g+h;

In this block, there are three product terms (a*b, cxd and e
f) and two input sum terms (g and h). In general, the number
of product and sum terms are arbitrary. After evaluating the
product terms (or performing the multiplication operations for
each product term), the results of each product term also get
added with the input sum terms to produce the final result of
the overall SOP block. A sum-of-product block can have any
number (including zero) of product terms or sum terms. As a
consequence, an SOP block is quite general. It can be used to
implement a multiplier. MAC (multiply-accumulator), adder,
subtractor, squarer, chain-of-adders or combinations thereof.

% 1’00

5 X% % X X%

1'b0 1'b0

\ S 5 B

1 | 1
1°b0 160 1'b0 160
S) S 5) $ 5 S
% % % &l El a %

Fig. 2.

A Traditional Barrel Shifter with 3-stages

A generalized left-shifter block can be expressed by the
Verilog RTL: “assign z = a << sh”; where the input data
signal (a) gets shifted by an input shift signal (sh) to produce
the output (z) signal. If the data input signal is n-bits wide,
then the shift signal is typically [log2(n)] bits wide. The width
of the output (z) is also typically same as the input-width (n).

In a barrel shifter having an n bit wide data signal, the
shifter is divided into [loga(n)] stages, where each stage (4)
handles a single shift of 0 or 2 bits. Each bit of the shift
signal controls the functionality of exactly one barrel shifter
stage. The input data will be shifted or not shifted by each
of the stages in sequence. To implement this, multiplexers (or
an equivalent logic circuit constituted using technology library
cells) are used in each stage. Figure-2 shows the block-level
diagram of a 3-stage barrel shifter. In this diagram, the data
input signal () is 8-bit wide and the output signal (2) is also
8-bit wide. The shift signal has 3 bits ([log2(8)] = 3) and the
shifter consists of 3 stages only.

III. PROBLEM DEFINITION

In this paper, we propose an operator-level merging-driven
technique to synthesize a fast arithmetic block involving sum-

of-product (SOP) and shifter blocks. The generalized descrip-
tion of our targeted datapath design block involving SOP and
shifter blocks is as follows.

The datapath module consists of p arithmetic sum-of-
product (SOP) blocks. Each SOP block takes any number of
input vectors. The inputs to each of the p SOPs are arbitrary.
The functionality of each of the p SOPs is arbitrary as well.
Out of the p outputs of the p SOP blocks, ¢ signals get shifted
left by g shifter blocks. The ¢ shift signals (sh1, sho, ..., shq)
are also arbitrary. Finally, the outputs of ¢ shifters and the
outputs of the remaining (p-q) sum-of-products (which do not
go through the shifters) and » primary additive input signals
(which do not go through any sum-of-products or shifters) get
added together by a final adder.

The block diagrams shown in Figure-1 depicts the above-
described datapath structure. This type of circuit topology is
often seen in modern datapath designs (specially DSP ICs).

One specific example of the above-described generalized
datapath design is shown in the Figure-3. In that specific
example design, p=2, ¢=1 and r=2.

IV. OUR APPROACH

Our proposed synthesis approach has four steps. In the
following sub-sections, we discuss each step in detail.

A. Generation of Partial Products

For every product term in an SOP block, partial products are
generated by performing a bit-wise multiplication between the
appropriate bits of the multiplicand and the multiplier. Each
partial product is shifted by one or more bits, depending on
the bit number of the multiplicand. If PP; is the ith partial
product of the product term a*b, and b has n bits, then partial
products can be represented by the following expression:

PP, =axb; 2 fori=0,1,...(n — 1)

After computing the set of all the partial products corre-
sponding to the product terms, the r additive terms of the
SOP expression get included in the set of partial products.

For an SOP with the expression z = a * b + ¢ (where a, b
and c each are n-bits wide), there will be a total of n+1 partial
products. Out of these, n partial products will be generated by
the product term a * b. The remaining single partial product
will be the sum-term c. Similarly, for a more complex SOP
with the expression z = a * b+ ¢ ¥ d + e + f + g (where
each input signal is n-bits wide), there will be a total of 2n+3
partial products.

B. Shifting of Partial Products

As mentioned in the description of the datapath structure
targeted in this paper, ¢ of the p outputs of the sum-of-products
need to be shifted. In the traditional synthesis approach, all the
q SOP blocks get computed and then the ¢ output values get
shifted before being fed to the final adder module. In this
case, the critical path traverses one SOP block (which in turn
has a carry-propagate adder in it), one shifter block and one
final carry propagate adder block. It is well-known that the
carry propagate adder is one of the most delay-consuming

573

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:40 from |IEEE Xplore. Restrictions apply.

arithmetic operations. Our experimental analysis suggests that
the carry propagate adder inside a multiplier (which is one
of the most heavily used sum-of-products block), typically
contributes about 30% to the total delay of the multiplier
[16]. Hence any reduction in the number and structure of the
adder stages in our targeted datapath design plays a key role
in determining the critical path delay.

In our approach, we implement the shifting of the ¢ SOP
outputs by performing the shift operation on each of the partial
products corresponding to the g sum-of-product blocks. This
eliminates the need for carry propagate adders in the ¢ SOP
blocks, leading to the improvement of about 30% delay of the
individual SOP blocks. Note that, to achieve this improvement
in speed of the individual SOP blocks, we require more shifter
modules compared to the traditional approach.

To implement a fast shifter, we use the decomposition of the
barrel shifter approach [9]. We describe this technique briefly,
for completeness. In this approach, two or three stages of the
shifter are merged into a single stage whenever feasible. If two
stages are merged, the newly created stage is called a dual
merged stage. On the other hand, if three stages are merged,
then the new stage is called a triple merged stage.

In the case of dual merged stages, let us assume that the
stages corresponding to the i** bit and the j* bit of the shift
signal s were merged, where 0 < i <n,0 < j < nandi #
j. Note that 7 and j do not require to be two consecutive bits
of the shift signal. The newly created dual merged stage will
perform one of the following four operations:

1) no shifting operation (if s;=0 and s;=0)

2) shift by 2¢ bits (if s;=1 and 5;=0)

3) shift by 27 bits (if s;=0 and s;=1)

4) shift by (2'+27) bits (if s;=1 and s;=1).

The functionality of each bit-slice of the dual merged stage
for the left shifter is as follows (data signal is denoted as x):

outq = (t1) A (t2) A (t3) A (ta).
where t; = x4 A5; \'Sj

to = Z(g—27) NSi N\NSj

t3 = T(g—2i) NSi \'sj

ty = T(g—2i—2i) N Si A Sj

for 0 < q < n.

In a similar manner, one can formulate the output equation
of each bitslice for triple merged stages as well. Let us assume
that the stages corresponding to the i** bit, j** bit and the
k" bit of the shift signal s are merged, where 0 < ¢ < n,
0<j<n 0<k<n i#j,j#kandk # i The
functionality of each bit-slice of triple merged stage for a left
shifter is as follows:

O’U,tq = (tl) A (tQ) A (t3) A (t4) A (t5) A (t(;) A (t7) A (tg).
for 0 < g < n.
where t; = x4 A5, A5 A5y
to = T(g—21) N s; NS5 NSy
t3 = :L'(quj) NS N Sj NSk
ty = T(g—2%) NS;NSj NS
ts = T(g—2i—2i) N Si N8 NS
tg = T(g—2i_ok) NS NSj N\ Sk

tr = T(g—2i—20) NS N\ Sj N\ Sg
tg = $(q_21_2j_2k) VANC:ZAN Sj N Sk

A general-purpose technology mapper should be able to
identify the most efficient implementation of the traditional
unmerged stage, dual-merged stage and triple merged stage
of a shifter. The best possible delays of these three types of
stages are denoted as Del;, Dels and Dels.

In addition to the design of the merged stages, the technique
for identification of the mergeable stages plays a key role to
determine the performance of the shifter architecture. Without
an efficient algorithm to identify the mergeable stages, the
design of merged stages would not be useful.

In the approach of [9], the following timing-driven analysis
was done to find two or three stages for merging: Assume that
the earliest arriving three shift signals are s;, s; and s;. Let
ts; be the arrival time of the shift signal s,. For the signals s;
and s;, if a dual merged stage is constructed, then the output
of the dual merged stage will be available at time

Tdual = tSj + Delg.
On the other hand, if two individual stages are constructed in
cascade, then the output of the second stage will be available
at time

Tsingle? = Max ((tsi + Dell), tSj) + Dell.
Similarly, for the signals s;, s; and sy, if a triple merged stage
is constructed, then the output of the triple merged stage will
be available at time

Tiriple = tsg + Dels.
On the other hand, if three individual cascaded stages are
constructed, then the output of the third stage will be available
at time

Tsingle3 = Max (TsingleZs tsy) + Del;.

N0W7 if (Ttv'iplc<Tsingl€3) and (T;f’riple<(Tdual+(D€l2/2))s
then the three stages (i, j, and k) of the shifter are chosen as
the mergeable stages. If the above conditions are not true and
if (Tquat < Tsingle2), then the two stages (z and 7) are selected
as the mergeable stages. If both the above conditions are false
(WhICh means, (TsingleZ < Tdual) and (Tsingle?) < Ttriple))a
then ¢ is not included into any merging combination and one
single stage is utilized for the stage 7. Next, the same analysis
is performed with the three stages corresponding to the next
three earliest arriving bits. This analysis and identification of
mergeable stages continues until all the stages are analyzed. At
the end of this algorithm, the list of all the mergeable stages
is determined in this manner.

In terms of the execution of the flow, the mergeable stages
are first identified. Once the configurations of all the dual
merged, triple merged and unmerged stages are identified, then
the merged stages as well as unmerged single-stages in the
netlist are implemented with proper connectivity.

Note that during technology mapping in our approach, the
mapper sizes the output of any node based on their load
capacitance. Also, the delay analysis for each configuration
considers actual capacitance of the output node, using a load-
dependent delay model. Also, note that any of our nodes inside
the shifter block do not have high fanouts.

574

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:40 from |IEEE Xplore. Restrictions apply.

C. Reduction of Partial Products

In our approach, all the shifted partial products (correspond-
ing to the ¢ sum-of-products), the non-shifted partial products
(corresponding to the remaining p-q sum-of-products) and the
r additive terms are fed to a partial product reduction tree.
The purpose of this partial product reduction tree is to perform
column-wise reduction of the elements in each bitslice, such
that each bitslice finally consists of 2 elements or less.

If all the sum-of-products in the Figure-1 are multipliers
and each signal is n-bits wide, then a total of (pn+r) partial
products will be fed to this partial product reduction tree. On
the other hand, if all the sum-of-products in the Figure-1 are
multiply-accumulators (MAC) and each signal is n-bits wide,
then a total of (pn+p+r) partial products will be fed to this
partial product reduction tree.

To perform the reduction of partial products, we use the
technique presented in [7]. This technique uses the concept of
counters. A (p:q) counter is a functional block, which adds
p single-bit inputs and produces ¢ single-bit outputs; where p
and ¢ satisfy the following equation: ¢ = |logap + 1]

To reduce the partial products, we use the concept of (4:3)
counter. This is defined as a functional block which accepts 4
single-bit signals in the i bitslice and transform them into 3
different single-bit output signals (one for the " bitslice; one
for the (i + 1)* bitslice and the third one for the (i + 2)*"
bitslice). Let us assume that there is a (4:3) counter in bitslice;,
which takes 4 signals (a;, b;, ¢; and d;) as inputs and produces
3 outputs (z; 2 for the bitslice; 2, ;41 for the bitslice;;; and
x; for the bitslice;). The functionality of the (4:3) counter is
as follows:

o ;= (a; ®b;) O (c; Od;)

e Tit1 = ((az N bz) © (Ci VAN dz)) N ((CLL &) bz) N (Ci) dt))

o T2 =ai/\bi/\ci/\di

The (3:2) counter is widely used in column-compression
schemes. A (3:2) counter accepts 3 inputs signals (a;, b;
and ¢;) belonging to the *" column (bitslice) in the partial-
products and would produce 1 output signal (x;) for the ‘"
column (bitslice) and 1 output signal (2;,1) for the (i + 1)
bitslice. The functionality of the (3:2) counter is:

o T, =a; Db Dc;

o Tit1 = (CLi N bz) A (bz N Ci) N (Ci VAN Cli)

Similarly, the functionality of a (2:2) counter is:

e Ty =a; Db

o Tijy1 = (ai N bl)

In our approach, we use a timing-driven algorithm to design
the partial product reduction tree by using a combination of
(4:3), (3:2) and (2:2) counters. The key idea in our partial
product reduction approach is to find the opportunity to use
the (4:3) counters. Let us consider that a;, b;, ¢; and d; are four
input signals (sorted in the ascending order of the arrival time)
in bitslice;. Our algorithm would use the following scheme to
determine the type of counter to be instantiated:

o If a; and b; arrive at least a 2-input EXOR gate-delay

before signal c; arrives; then instantiate a (2:2) counter.

o If the above condition fails and a;, b;, ¢; arrive at least
two 2-input EXOR gate-delay before the signal d; arrives;
then instantiate a (3:2) counter.

o If both the above-mentioned conditions fail; then instan-
tiate a (4:3) counter.

In other words, our algorithm instantiates a (4:3) counter,
if the arrival times of all four signals at the bitslice; are
reasonably close to each other. We continue to perform the
reduction in all the bitslices until each of the bitslices contain
< 2 elements. With an instantiation of the (4:3) counter, four
elements are reduced in every bit. In addition, due to the
simple circuitry needed to generate x;;2 in a (4:3) counter;
the arrival time of the signal (z;+2) at the input of bitslice; 42
is also low. This reduces timing-skew of the signals at the
output of the reduction tree.

D. Computation of the Final Sum

After performing the column-wise reduction of the partial
products, each column in the reduced element-set consists of
a maximum of 2 elements. Hence, after the partial product
reduction step, we effectively transform all the partial products
into two operands. To produce the final output (z) of our
targeted datapath design, the 2 addends of all the columns have
to be added by a final carry propagate adder circuit. Therefore,
a 2-operand addition is required to compute the final result of
the arithmetic block.

To obtain faster performance, we need to use a fast addition
technique. In high-frequency datapath designs, adders with
parallel prefix computation methodologies [14] are very
popular. The hybrid adder described in [16] exploits the
skewed pattern of the input arrival-times and can be very
effective for the sum-of-product computation. In our approach,
we use a hybrid adder which consists of three subadders.
The bit-width of each of the subadders in the hybrid adder
are computed by using the approach discussed in [17]. The
internal topology of our hybrid adder is as follows:

e Ripple-Carry for the few bits near the least significant bit

(LSB).
o A fast Kogge-Stone adder for several bits in the middle.
o A carry-select adder based on the Kogge-Stone architec-
ture for the remaining bits near the most significant bit
(MSB).

V. EXPERIMENTAL SETUP

We have implemented our proposed approach in the C++
programming language. The experiments were performed with
datapath RTL designs written in Verilog hardware description
language. For all our experiments, we used a Linux work-
station (RedHat 7.1) with dual-2.2GHz processors and 4GB
memory.

To collect different data-points regarding the quality of
results for the different types of datapath designs involving
SOP and shifter blocks in the timing-critical portion of the
design, we used the following variations:

o Multiple types of designs of different expressions and

input bit-widths:

575

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:40 from |IEEE Xplore. Restrictions apply.

— QOur first design has one SOP block (multiply-
accumulator) driving a shifter. That means, g=1. The
three Inputs to the SOP block are 16-bit wide. In ad-
dition, there is another SOP block (multiplier), whose
output directly drives the adder. That means, p=2.
The two inputs to the SOP block are 16-bit wide.
Finally, there are two 16-bits wide additive signals
which get fed to the final adder. That means, r=2.
Figure-3 shows a block-diagram of this example. We
referred to this design as Des-ql-p2-r2.

— Using this notation, the next design is referred to as
Des-q3-p7-16.

— We also experimented with the following 3 designs:
Des-q2-p3-r0, Des-q4-p9-15 and Des-ql-p6-13.

‘ z=02+3+f+g ‘

z

Fig. 3. The block-diagram of one design (Des-ql-p2-12)

« The different technologies and libraries we used are:

— Two industrial libraries (L; and Ly) for a 0.13p
technology.

— Two industrial libraries (L3 and L4) for a 0.09u
technology.

« Different input arrival time constraints:
To facilitate the explanation, let us assume that there are
four inputs to the datapath structure of the Figure-1 and
each of the four input signals is n-bit wide. We have used
the following types of input arrival time constraints:

— All input bits of all the signals arrive at the same
time. We refer to this constraint as Type-A. If we
denote Arr(a;) as the arrival time of the bit a; and
if k is a constant number, then this Type-A constraint
can be represented as:

Arr(a;) = k; 0<i<n
Arr(b;) = k; 0<i<n
Arr(c;) = k; 0<i<n
Arr(d;) = k; 0<i<n

This category represents the actual timing situations
if the SOP blocks are placed immediately after a
register-bank or the primary inputs of the design are
fed to the SOP blocks.

— Different input bits arrive at different times. We refer
to this category of timing constraints as Type-B. We
believe that this category represents the actual timing
situations for many sum-of-product blocks in real-
life designs. Assuming that k£ is a constant number
and 9 is the delay of the fastest 2-input AND-gate in
the given technology library, the following are some
specific examples of the Type-B timing constraints.
Here we have explained the arrival times for signal
a;. Similar expressions for arrival times of all the
bits of signals b, ¢ and d can be written as well.

1) Arr(a;) =ixkx*J; 0<i<n

2) Arr(a;) = i%k6; 0<i<n

3) Arr(a;) = 0; 0<i<[n/2]
Arr(a;) = ko; [n/2] <i<n

4) Arr(a;) =0; 0<i<[n/4]
Arr(a;) = ké; [n/4] <i< [n/2]
Arr(a;) = 2k9; [n/2] <i< [3n/4]
Arr(a;) = 3k9; [3n/4] <i<n

5) Arr(a;) = 0; 0<i<[n/4]
Arr(a;) = ikd; [n/4] <i< [n/2]
Arr(a;) = 2ikd; [n/2] <i< [3n/4]
Arr(a;) = 3ikd; [3n/d] <i<n

VI. EXPERIMENTAL RESULTS

We compared our approach against a commercially available
datapath synthesis tool which is considered to be the best-
in-class solution. The synthesis tool generates arithmetic-
optimized architectures for all the arithmetic blocks (like sum-
of-products, shifters, adders) and then it performs general-
purpose operations like technology-independent optimizations,
constant propagation, redundancy removal, technology map-
ping, timing-driven optimization, area-driven optimization, in-
cremental optimization etc. While running the synthesis tool,
we turned on all the above-mentioned optimizations. In the
Table-I, we report the worst-case delay and the total area
results obtained for the datapath block from the commercial
synthesis tool and from our approach. In this table, we report
20 sets of data-points involving different combinations of
datapath blocks and technology libraries.

If we compute the average of all the 20 data-points pre-
sented in the Table-I, then our approach results in about
13.28% faster implementation of the datapath block, with a
3.24% area penalty compared to the netlist generated by the
commercial datapath synthesis tool. State-of-the-art designs
have very strict timing goals, hence most designers would be
willing to accept a 13.28% delay improvement at the expense
of a 3.24% area penalty of the datapath block only.

To keep the size of the Table-I relatively brief, we do
not report the results for different types of Type-B timing
constraints. Note that the results in each of the combinations
which are not reported here also support our conclusion that
the proposed approach produces significantly faster netlist.

576

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:40 from |IEEE Xplore. Restrictions apply.

Worst-case Delay (ps) Area (u2)

Design Technology Timing Commercial Our (%) Commercial Our (%)

Name Library Constraint Tool Approach ‘ Improvement Tool ‘ Approach ‘ Penalty
Des-ql-p2-12 Liby Type-A 1572 1396 11.19% 6358 6469 1.76%
Des-q3-p7-r6 Liby Type-A 1749 1523 12.92% 22413 23316 4.03%
Des-q2-p3-r0 Liby Type-A 1527 1351 11.53% 9862 10125 2.67%
Des-q4-p9-r5 Liby Type-A 1681 1447 13.87% 29571 31318 5.91%
Des-q1-p6-r3 Liby Type-A 1603 1419 11.47% 20247 20814 2.80%
Des-ql-p2-r2 Libs Type-A 1243 1068 14.08% 7416 7523 1.45%
Des-q3-p7-16 Libs Type-A 1419 1254 11.63% 25539 26514 3.82%
Des-q2-p3-r0 Liba Type-A 1207 1045 13.42% 11282 11649 3.26%
Des-q4-p9-r5 Liba Type-A 1356 1172 13.56% 34753 36480 4.97%
Des-q1-p6-r3 Liba Type-A 1285 1093 14.94% 23927 24346 1.75%
Des-q1-p2-12 Libs Type-A 1847 1582 14.35% 4672 4779 2.31%
Des-q3-p7-16 Libs Type-A 2169 1814 16.37% 16461 17031 3.46%
Des-q2-p3-r0 Libs Type-A 1785 1539 13.78% 7518 7786 3.58%
Des-q4-p9-r5 Libs Type-A 2031 1763 13.19% 22085 23257 5.32%
Des-q1-p6-r3 Libz Type-A 1914 1627 14.99% 14359 14652 2.04%
Des-ql-p2-r2 Liby Type-A 1094 961 12.16% 6892 7019 1.85%
Des-q3-p7-16 Liby Type-A 1256 1089 13.29% 23641 24521 3.71%
Des-q2-p3-r0 Liby Type-A 1061 913 13.95% 10367 10694 3.16%
Des-q4-p9-r5 Liby Type-A 1183 1027 13.19% 32753 34286 4.69%
Des-q1-p6-r3 Liby Type-A 1128 996 11.70% 21536 21863 1.52%

[Average] [I | R | [320% |
TABLE I

AREA AND DELAY COMPARISON OF BLOCKS GENERATED BY A COMMERCIAL SYNTHESIS TOOL AND BY OUR APPROACH

To verify the correlation of the post-synthesis experimental
data of the Table-I with the post place-and-route data, we
performed placement and routing on Des-ql-p2-r2 and Des-
q3-p7-r6. For these two testcases, the average improvement
in the post-routing worst case delay of the datapath design
generated by our proposed approach is 12% compared with
the worst delay of the corresponding block generated by the
commercial datapath synthesis tool (with the average 4% post-
roting area penalty). The individual results for these testcases
correlate closely with the post-synthesis numbers reported in
the Table-I. These post-routing data confirm our conclusion
about significant timing improvement of the netlist produced
by using our approach (with a modest area penalty).

Our delay improvement is consistent across multiple types
of designs, technology libraries and arrival time constraints.
This underscores the strength of our approach. Since this
type of datapath structure is frequently used in modern digital
design, we believe that the timing-critical portions of many
real-life designs can significantly benefit from our approach.

VII. CONCLUSION

In this paper, we have presented a new approach to im-
plement a faster datapath block involving arithmetic sum-
of-products, shifters and a final adder. Our approach would
be very useful when the critical path of the design goes
through such a block. Our approach to generate the timing-
efficient architecture for this block works seamlessly with
different types of datapath blocks, arrival timing constraints
and across different technology domains (0.13x, 0.09). The
experimental results indicate that our implementation of the
datapath block is significantly faster (with a modest area
penalty) than the datapath block generated by a commercially
available best-in-class datapath synthesis tool.

(1]

[2]

[3]

[4

[5

[6

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

577

REFERENCES

T. Kim, W. Jao, S. Jjiang. “Circuit optimization using carry-save-adder cells,” in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
CAD-17, pp. 974-984, 1998.

A. Mathur, S. Saluja. “Improved merging of datapath operators usin%information
content and required precision analysis,” in Proceedings of the 38" conference
on Design Automation, pp. 462-467, 2001.

A. K. Verma, P. Ienne. “Improved Use of the Carry-Save Representation for the
Synthesis of Complex Arithmetic Circuits,” in Proceedings of the 2004 IEEE/ACM
International conference on Computer-aided design, pp. 791-798, 2004.

A. Fayed, W. Elgharbawy, M. Bayoumi, "A data merging technique for high-
speed low-power multiply accumulate units,” in IEEE International Conference
on Acoustics, Speech, and Signal Processing, vol. 5, pp. 145-148, 2004.

L. Chen, O. T. C. Wang, Y. C. Ma. ”A multiplication accumulation computation
unit with optimized compressors and minimized switching activities,” in IEEE
International Symposium on Circuits and Systems, vol. 6, pp. 6118-6121, 2005.
C. S. Wallace, “A suggestion for a fast multiplier,” in IEEE Transactions on
Electronic Computers, EC-13(2):14-17, 1964.

S. Das, S. P. Khatri, “A Timing-Driven Hybrid-Compression Algorithm for Faster
Sum-of-Products”, in Proceedings of International Conference on Circuits, Signals
and Systems, 2007.

R. S. Lim, “A Barrel Switch Design,” in Computer Design, pp. 76-78, 1972.

S. Das, S. P. Khatri, “Timing-Driven Decomposition of a Fast Barrel Shifter”, in
Proceedings of IEEE MidWest Symposium on Circuits and Systems, 2007.

R. Rafati, S. M. Fakhraie, K. C. Smith, “A 16-Bit Barrel-Shifter Implemented
in Data-Driven Dynamic Logic (D3 L), in IEEE Transactions on Circuits and
Systems 1, vol 53, issue 10, pp. 2194-2202. 2006.

P. M. Seidel, K. Fazel, “Two dimensional folding strategies for improved lay-
outs of cyclic shifters,” in Proceedings of the IEEE Computer society Annual
Symposium on VLSI, pp. 277-278, 2004.

M. A. Hillebrand, T. Schurger, P. M. Seidel, “How to half wire lengths in the
layout of cyclic shifters,” in Proceedings of the IEEE International Conference
on VLSI Design, pp. 339-344, 2001.

A. P. Singh, M. Barany, D. J. Deleganes, “A mixed signal rotator/shifter for SGHz
Intel/spl reg/ Pentium/spl reg/ 4 integer core,” in Proceedings of the Symposium
on VLSI Circuits, pp. 394-397, 2004.

P. M. Kogge, H. S. Stone, “A parallel algorithm for the efficient solution of a
general class of recurrence equations,” in IEEE Transactions on Computers, C-
22(8):783-91, 1973.

R. P. Brent, H. T. Kung, “A regular layout for parallel adders,” in IEEE
Transactions on Computers, C-31(3):260-64, 1982.

P. E. Stelling, V. G. Oklobdzija, “Design strategies for the final adder in a parallel
multiplier,” in 29" Asilomar Conference on Signals, Systems and Computers,
pp. 591-595, vol. 1, 1995

S. Das, S. P. Khatri, “Generation of the Optimal Bit-Width Topology of the Fast
Hybrid Adder in a Parallel Multiplier”, in Proceedings of International Conference
on Integrated Circuit Design and Technology, 2007.

M. D. Ercegovac, T. Lang, “Digital Arithmetic,” The Morgan Kaufmann Series
in Computer Architecture and Design, 2003

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:40 from |IEEE Xplore. Restrictions apply.

