
326 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 3, MARCH 2008

Fig. 5. Sum logic for late increment with critical INC signal.

Fig. 6. Sum logic for speculative sum generation.

pipeline stage can be added after the 64-bit additions. Fig. 6 shows
the sum logic for such a case. The second design is based on [12].
To reduce the cycle time, (c0i ; c

1

i)=(h
0

i ; h
1

i) needs to be generated as
quickly as possible and SCT2/LSCT2 are the best choices for this appli-
cation because a pipeline design is generally intended for maximizing
the throughput rather than for minimizing the area. Between SCT2 and
LSCT2, LSCT2 is a bit faster as stated in Section II-C.

IV. CONCLUSION

A formal framework for speculative carry generation is proposed.
The framework is successfully applied to adders using the Ling carry
as well as adders with a normal carry. Including two Ling carry cases,
three new speculative prefix schemes are introduced.

Several applications for speculative carry generation are presented
to show how this work broadens the design space of speculative prefix
adders.

REFERENCES

[1] N. Burgess, “Prenormalization rounding in IEEE floating-point opera-
tions using a flagged prefix adder,” IEEE Trans. Very Large Scale In-
tegr. (VLSI) Syst., vol. 13, no. 2, pp. 266–277, Feb. 2005.

[2] N. Burgess, “The flagged prefix adder and its application in integer
arithmetic,” J. VLSI Signal Process, vol. 31, pp. 263–271, 2002.

[3] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Trans.
Comput., vol. C-22, no. 8, pp. 786–793, Aug. 1973.

[4] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” JACM,
vol. 27, no. 4, pp. 831–838, 1980.

[5] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Trans. Comput., vol. C-31, no. 3, pp. 260–264, Mar. 1982.

[6] S. Knowles, “A family of adders,” in Proc. 15th IEEE Symp. Comput.
Arithmetic, 2001, pp. 277–281.

[7] Y. Choi and E. E. Swartzlander, Jr., “Parallel prefix adder design with
matrix representation,” in Proc. 17th IEEE Symp. Comput. Arithmetic,
2005, pp. 90–98.

[8] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix VLSI
Ling adders,” IEEE Trans. Comput., vol. 54, no. 2, pp. 225–231, Feb.
2005.

[9] Y. Choi and E. E. Swartzlander, Jr., “Design of a hybrid prefix adder for
non-uniform input arrival times,” in Proc. SPIE Adv. Signal Process.
Algorithms, Arch., Implementations XII, 2002, pp. 456–465.

[10] H. Ling, “High-speed binary adder,” IBM J. R&D, vol. 25, pp. 156–166,
1981.

[11] T. Lynch and E. E. Swartzlander, Jr., “A spanning tree carry lookahead
adder,” IEEE Trans. Comput., vol. 41, no. 8, pp. 931–939, Aug. 1992.

[12] J. Grad and J. E. Stine, “A hybrid Ling carry-select adder,” in Proc.
38th Asilomar Conf. Signals Syst. Comput., 2004, pp. 1363–1367.

A Novel Hybrid Parallel-Prefix Adder Architecture With
Efficient Timing-Area Characteristic

Sabyasachi Das and Sunil P. Khatri

Abstract—Two-operand binary addition is the most widely used arith-
metic operation in modern datapath designs. To improve the efficiency of
this operation, it is desirable to use an adder with good performance and
area tradeoff characteristics. This paper presents an efficient carry-looka-
head adder architecture based on the parallel-prefix computation graph.
In our proposed method, we define the notion of triple-carry-operator,
which computes the generate and propagate signals for a merged block
which combines three adjacent blocks. We use this in conjunction with
the classic approach of the carry-operator to compute the generate and
propagate signals for a merged block combining two adjacent blocks.
The timing-driven nature of the proposed design reduces the depth of
the adder. In addition, we use a ripple-carry type of structure in the
nontiming critical portion of the parallel-prefix computation network.
These techniques help produce a good timing-area tradeoff characteristic.
The experimental results indicate that our proposed adder is significantly
faster than the popular Brent–Kung adder with some area overhead. On
the adder hand, the proposed adder also shows marginally faster perfor-
mance than the fast Kogge–Stone adder with significant area savings.

Index Terms—Arithmetic and logic structures, integrated circuits, logic
design.

I. INTRODUCTION

The complexity and the performance requirement of the datapath op-
erations implemented in systems-on-chips (SoCs) has increased con-
siderably over the years. Since binary adders are one of the most basic
and widely used arithmetic datapath operations in modern integrated
circuits, they tend to play a critical role in determining the performance
of the design. Hence, developing an efficient adder architecture (from
the standpoint of timing, area, and power) is crucial to improving the
efficiency of the design.

Carry lookahead adders based on parallel prefix computation
methods yield the fastest adders. There are several techniques proposed
for the computation of the parallel prefix. In [1], Sklansky proposes one
of the earliest tree-prefix algorithms for adders, where a tree structure
is used to compute the intermediate signals. In the Brent–Kung (BK)
approach [2], Brent and Kung design the prefix-computation graph
in an area-optimal way and the Kogge–Stone (KS) architecture [3] is

Manuscript received March 18, 2007; revised June 11, 2007.
S. Das is with Asyst Technologies, Freemont, CA 94538 USA (e-mail:

sabya@asyst.com).
S. P. Khatri is with the Department of Electrical and Computer Engi-

neering, Texas A&M University, College Station, TX 77843 USA (e-mail:
sunilkhatri@tamu.edu).

Digital Object Identifier 10.1109/TVLSI.2007.915507

1063-8210/$25.00 © 2008 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 3, MARCH 2008 327

optimized for timing. In [4], another prefix-computation architecture
is proposed, where the fan-out of gates increases with the depth of the
prefix computation tree. In [5], a hybrid adder architecture based on
BK and KS is proposed. In [6], a zero-deficiency prefix adder with
minimal depth was introduced. In [7] and [8], the authors present new
algorithms to construct a class of depth-size optimal parallel prefix
circuits. In [9], a parallel prefix adder synthesis was introduced, which
performs two-step area minimization under given timing constraints.
In [10], Choi and Swartzlander present a one-shot batch process that
generates a wide range of designs for a group of parallel prefix adders.
In [11], Dimitrakopoulos and Nikolos save one-logic level of imple-
mentation leading to faster performance of the parallel-prefix addition.
In [12], a performance evaluation analysis was performed between
flagged prefix adders with the other well-known prefix adders. In [13],
Liu et al. propose an algorithmic approach to generate an irregular
parallel-prefix adder. In [14], Lin et al. use domino logic to generate an
efficient parallel-prefix architecture. Our approach is different from all
the other approaches mentioned earlier, because we use combination
of two types of merged blocks.

In this paper, we propose a new design of an efficient addition block
based on the parallel-prefix computation technique. In our approach,
we use the notion of computing the generate and propagate signals for
a merged block combining three adjacent blocks. We use this in con-
junction with the classic approach of computing generate and propa-
gate signals for a merged block combining two adjacent blocks. Our
design is timing driven in the timing critical path. At the same time, we
optimize for area in the nontiming critical path. This is another novel
aspect of our proposed approach.

We have organized the rest of this paper as follows. In Section II,
we present some background information about the parallel-prefix ar-
chitecture. In Section III, we discuss our proposed approach in detail.
Section IV presents the experimental results. Conclusions are drawn in
Section V.

II. PRELIMINARIES

In this section, we briefly explain the concept of the carry looka-
head adder and the parallel-prefix network, using the example of a
two-operand (a and b) addition block.

In every bit (i) of the two-operand adder block, the two input signals
(ai and bi) are added to the corresponding carry-in signal (carry

i
) to

produce the sum output (sumi).
The equation to produce the sum output is:

sumi = ai � bi � carry
i
: (1)

Computation of the carry-in signals at every bit is the most crit-
ical and time-consuming operation. In the carry-lookahead scheme of
adders, the focus is to design a circuit which can efficiently compute
the (n � 1) carry-in signals (c1 to cn) based on the 2n input bits
(a0; a1; . . . ; an�1 and b0; b1; . . . ; bn�1). For any given bit-position,
the generate (gi) and propagate (pi) signals are defined as follows:

gi = ai ^ bi (2)

pi = ai � bi: (3)

The key idea behind the parallel prefix computation is as follows.
Let Bi;j+1 and Bj;k be two adjacent blocks in an adder module.

These two blocks consist of (i� j) and (j � k+ 1) bits, respectively,
and Bi;j+1 consists of more significant bits than Bj;k . The concept of

Fig. 1. Block-diagrams of “o” (carry) and “o3” (triple-carry) operators.

propagate and generate of individual bits is applicable to blocks of ad-
jacent bits also. The propagate and generate value-pairs of these two
blocks are referred to as (gi;j+1; pi;j+1) and (gj;k; pj;k), respectively.
In this paper, we denote these pairs of generate and propagate values as
GPi;j+1 and GPj;k . If the block consists of only one bit, then to rep-
resent the value pair of (gi; pi), we use the notation of GPi (instead of
GPi;i). Now, if we combine these two adjacent blocks to form a single
continuous block having (i� k+1) bits, the equations for computing
the generate and propagate values of the combined block is as follows:

gi;k = gi;j+1 _ (pi;j+1 ^ gj;k) (4)

pi;k = pi;j+1 ^ pj;k: (5)

The final output of a parallel prefix computation tree is the set of
all the (gi;0; pi;0) value pairs (for i = 0; 1; . . . ; (n � 1)). For a two-
operand addition block, the value of the signal gi;0 at every bit is equal
to the value of the signal carryi+1 (for i = 0; 1; . . . ; (n� 1)).

The Brent and Kung adder and [2] the Kogge and Stone adder [3] use
the “o” operator, which performs the computation described in (4) and
(5) (for any given generate and propagate value pairs (gi;j+1; pi;j+1)
and (gj;k; pj;k)). The block diagram of the “o” operator is shown in
Fig. 1(a).

III. OUR APPROACH

Throughout the rest of this paper, we assume two operands (a and b)
of the adder are n-bit wide, and the output (sum) of the adder is (n+
1)-bit wide. In our approach, we compute the generate and propagate
signals for each of the individual bits by using the logic presented in
(2) and (3). After computing all the GPi values (gi; pi) for each of
the individual bits (i = 0; 1; 2; . . . ; (n � 1)), these get transmitted to
the proposed parallel-prefix carry computation tree, described in the
following.

We define the notion of computing the generate and propagate sig-
nals for a merged block comprising three adjacent blocks. Let Bi;j+1,
Bj;k+1, and Bk;l be three adjacent blocks in an adder module. These
blocks consist of (i � j), (j � k), and (k � l + 1) bits, respec-
tively. In addition, suppose that Bi;j+1 consists of more significant
bits than Bj;k+1, and Bj;k+1 consists of more significant bits than
Bk;l. The propagate and generate value pairs of these three blocks are
(gi;j+1; pi;j+1), (gj;k+1; pj;k+1), and (gk;l; pk;l), respectively. Now,
if we combine these three adjacent blocks to form a single continuous
block having (i�l+1) bits, then the combined block (Bi;l) propagates
the carry only if each of the three blocks (Bi;j+1, Bj;k+1, and Bk;l)
propagates the carry. On the other hand, the combined block (Bi;l)
generates carry in the following three situations.

• If the block Bi;j+1 generates a carry. In other words, if (gi;j+1 =
1).

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

328 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 3, MARCH 2008

Fig. 2. Our proposed parallel prefix network (for input width of 16 bits).

• If the block Bj;k+1 generates a carry and the block Bi;j+1 propa-
gates that carry. In other words, if (gj;k+1 = 1) and (pi;j+1 = 1).

• If the block Bk;l generates a carry and the blocks Bi;j+1, Bj;k+1

propagates that carry. In other words, if (gk;l = 1), (pi;j+1 = 1),
and (pj;k+1 = 1).

The equations for computing the generate and propagate values of
the combined block are as follows:

gi;l = gi;j+1_(pi;j+1^gj;k+1)_(pi;j+1^pj;k+1^gk;l) (6)

pi;l = pi;j+1^pj;k+1^pk;l: (7)

We denote the previous expressions [in (6) and (7)] as the “o3” oper-
ator (or the triple-carry operator), which takes three pairs of generate
and propagate values as inputs and produces the generate and propa-
gate values of the combined large block. The block diagram of the “o3”
operator (triple-carry-operator) is shown in Fig. 1(b).

We use this in conjunction with the classic approach of computing
generate and propagate signals for a merged block by combining two
adjacent blocks [as explained in the (4) and (5)]. This is called the “o”
operator. The block diagram of the “o” operator is shown in Fig. 1(a).

The key idea in our approach is to find opportunities to use the
triple-carry-operator (“o3” operator). By analyzing several technology
libraries provided by commercial vendors, we have found that the worst
delay through a triple-carry operator is between 110% and 130% of the
traditional carry operator. Since the “o3” operator produces the gen-
erate and propagate value pair by combining three blocks as opposed
to two blocks in the traditional carry operator, the additional 10% to
30% of delay is well justified. Since the “o3” operator processes one
additional block compared to the “o” operator, it reduces the depth
of the parallel-prefix network. The area of the “o3” operator is 50% to
80% more than the area of the “o” operator, hence, we only use the
“o3” operator in the timing critical portion of the parallel prefix tree.
This delay characteristic makes triple-carry operator an efficient choice
in the parallel prefix network.

The block diagram of a 16-bit wide proposed parallel prefix graph
(of an adder block) is shown in Fig. 2. In addition, Fig. 3 represents
the block-diagram of a 24-bit wide proposed parallel prefix computa-
tion network. Since the carryi+1 is equal to gi;0, we label all the out-
puts in Figs. 2 and 3 as Ci (for each value of i). Due to the lack of
space in the diagrams, Ci is used as an abbreviation instead of carryi.
Both the diagrams are drawn in a levelized fashion. Let us assume that
the inputs to the parallel prefix tree (GPi) are at level (or depth) 0,
shown at the top of Figs. 2 and 3. As we proceed downwards in Figs. 2
and 3, the level (or depth) increases by one. In these designs, at level
1, we initially use a large number of “o3” operators. We instantiate
triple-carry operators to combine every GP3p, GP3p+1, and GP3p+2
(until each GPi participates in an operator). Then, in the second level,

Fig. 3. Our proposed parallel prefix network (for input width of 24 bits).

we mostly perform the traditional carry operation with the “o” operator
(with some “o3” operators as well). In levels lower than 1, we perform
timing-driven optimization and use a combination of the two types of
operators. To avoid problems due to high fanout nets, we restrict the
maximum fanout of any net to 5. To maintain this strict limit on fanouts,
we use the triple-carry operators quite aggressively in the bits near the
most significant bit. We note that, in most of the parallel prefix compu-
tation tree designs, the critical paths primarily go through the outputs,
which are placed near the most significant bit (n � 1). Hence, we try
to instantiate triple-carry operators in the paths which go through the
critical pins. This reduces the depth along those paths (at the expense
of additional hardware) and improves the performance of the parallel
prefix block. On the other hand, we also note that bits near the least
significant bit typically have positive slack. To exploit this fact and to
perform area reduction, we use a ripple type structure in that part of the
design (without impacting the overall performance of the block). As a
result, we claim that our design is timing driven in the timing critical
paths and area driven in the nontiming critical (and area critical) paths.

Note that we do not extend the concept of “o3” operators to com-
bine four adjacent blocks to form a single block (“o4” block). This is
because an “o4” operator is a combination of two levels of “o” opera-
tors (total of three “o” operators) arranged in a tree-like fashion. Hence,
unlike the usage of “o3” operator, usage of “o4” operator is not an ar-
chitectural optimization. Depending on the availability of the cells in
the technology library, a high-quality technology mapping algorithm in
commercial logic synthesis tools should be able to efficiently use the
cells required for the “o4” operator.

IV. EXPERIMENTAL RESULTS

To collect different data points regarding the quality of results for the
adder blocks, we used the following variations.

• Adder blocks of different input widths:
— We have used adders having different input widths. In Table I,

we have shown the final results for adders having input bit-
widths (n) equal to 16, 24, 32, 48, and 64 bits. We refer to
these blocks as Adder-16, Adder-24, Adder-32, Adder-48, and
Adder-64, respectively.

• Different technologies and libraries:
— two commercial libraries (L1 and L2) for 0.13 �;
— two commercial libraries (L3 and L4) for 0.09 �.

• Different input arrival time constraints:
We used the following input arrival time constraints.
— Different input bits of signals a and b arrive at different times.

The motivation for this is as follows. There exists an adder
sub-block inside every arithmetic sum-of-product (SOP) and
multiplier block. Due to the wide usage of SOP and multipliers
in the modern digital designs, the performance of this adder
block is crucial to determine the performance of the design.
Thus, we model this timing constraint [15]. Since an adder
is an internal part of a SOP and multiplier block, the arrival
times of different inputs of the adder block are not identical.

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 3, MARCH 2008 329

TABLE I
DELAY AND AREA COMPARISON OF ADDER BLOCKS GENERATED BY BK, KS, AND OUR APPROACH

Hence, we cannot directly write timing constraints to control
the arrival times for the inputs of the adder. As a result, we
specified the arrival time constraints for the inputs of the SOP
and the multiplier. Once the input arrival times are specified
for SOPs and multipliers, the synthesis tool propagates the ar-
rival times through each sub-block inside the SOP and mul-
tiplier. We then report the actual arrival-time numbers to the
input of the adder sub-block inside SOP and multiplier. In
this manner, we collected significant amount of data on the ar-
rival-times of the adder inputs. From this arrival-time data, we
derived the following equation. We believe that this equation
closely represents the actual arrival timing-constraint for the
adder sub-blocks inside real-life SOPs and multiplier blocks.
We refer to this category of timing constraints as Arr(late).
Let us denote Arr(ai) as the arrival time of the signal ai. As-
suming that k is a constant and � is the delay of the fastest
two-input AND gate in the technology library, the following is
the Arr(late) timing constraint (n is the width of the adder in-
puts):

Arr(ai) = ik�; 0 � i � d3n=5e

Arr(ai) = d3n=5ek� � (i� d3n=5e) k�; d(3n=5)e < i < n

Arr(bi) = ik�; 0 � i � d3n=5e

Arr(bi) = d3n=5ek� � (i� d3n=5e) k�; d(3n=5)e < i < n:

— All input bits of the signals a and b arrive at the same time. We
refer to this constraint as Arr(same). If k is a constant number,
then the Arr(same) constraint can be represented as

Arr(ai) = k; 0 � i < n

Arr(bi) = k; 0 � i < n:

We have implemented the BK adder [2], the KS adder [3], and our
proposed adder for different operand widths. We optimized each of
the architectures by using a best-in-class commercially available data-
path synthesis tool (run on a workstation with dual 2.2-GHz proces-
sors, 4 GB memory, and RedHat 7.1 Linux). The synthesis tool per-
formed the operations like technology-independent optimizations, con-
stant propagation, redundancy removal, technology mapping, timing-
driven optimization, area-driven optimization, incremental optimiza-
tion, etc. Due to the licensing agreements, we are unable to mention
the name of the commercial tool we used. In Table I, we present the
post-synthesis worst-case delay and the total area results for the adder
block for each of the three architectures (as reported by the synthesis
tool). To compute worst-case delay, the static timing computation en-
gine inside the datapath synthesis tool was used. To compute total area,
the technology library cell information was used.

In Table I, we report 25 sets of data points for adders of different
widths, timing constraints, and technology libraries. On an average,
our proposed approach results in a 23.96% faster adder (column 7 of
Table I), with 9.39% area penalty (colum 12). When comparing with the
KS adder, then our proposed approach results in a marginally (0.77%)
faster implementation (column 8), with a significant (29.71%) area im-
provement (column 13). Note that like the BK and KS approaches, our
approach generates the same structure irrespective of the input arrival
timing constraints. Then, depending on the arrival timing constraint,
the technology mapping algorithms will choose different technology
cells to yield different final worst delay (and area) numbers.

To verify the correlation of post-synthesis experimental data with
the post place-and-route data, we performed placement and routing on
one Adder-32 and one Adder-64 design. For these two testcases, the
average post-routing worst delay of BK adder, KS adder, and our pro-
posed adder are (normalized to the worst delay of the BK adder): 1.0,
0.78, and 0.76, respectively. Similarly, the post-routing total area of
the BK adder, KS adder, and our proposed adder are (normalized to
the area of the BK adder): 1.0, 1.34, and 1.07, respectively. The indi-

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

330 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 3, MARCH 2008

TABLE II
LEAKAGE AND DYNAMIC POWER COMPARISON OF ADDER BLOCKS GENERATED BY BK, KS, AND OUR APPROACH

vidual results for the Adder-32 and Adder-64 designs correlate closely
with the post-synthesis numbers reported in Table I. These results after
place and route confirm our conclusion about the efficient timing area
characteristic of our approach.

For the reference purposes, we implemented the ripple adder and
measured its delay and area numbers across all our adder designs, li-
braries, and timing constraints. The experimental data showed that, on
an average, our proposed adder is about 62% faster and 239% larger
than the ripple adder.

We also performed some additional experimentation by using dif-
ferent values of � in the equation for Arr(late). The modified values
of � we tried are equal to: 1) a two-input XOR gate delay from the tech-
nology library; 2) a two-input OR gate delay; 3) an inverter gate delay;
4) 1 (constant number). In each of these cases, the resulting delay and
area numbers of our adders exhibit substantially same timing area char-
acteristics as reported in Table I.

In Table II, we present the post-synthesis leakage and dynamic power
results for the adder block for each of the three architectures (as re-
ported by the synthesis tool). By analyzing the result, we note that the
power consumption of our adder is more than that of the BK adders,
but significantly less than that of the KS adder.

State-of-the-art designs need to be designed while considering dif-
ferent cost metrics (timing, area, power, etc.). The efficient timing-area
characteristics of our proposed adder design (over the well-known BK
and KS adders) is consistent across multiple sizes of adders, timing
constraints and technology libraries. This underscores the utility and
scalability of our design. Since addition is a frequently used part of
many critical operations in an IC, we believe that many real-life de-
signs can significantly benefit from our proposed architecture.

To achieve the proposed architecture’s benefit, the designer does not
require to perform any extra task. Typically a state of the art datapath
synthesis tool has multiple architectures available for adder and it se-
lects the appropriate one depending on the timing constraint, library,
the design, etc. As a result, when this architecture is the best in the

given situation for the given adder block, the synthesis tool will auto-
matically select this architecture without the designer doing anything
special.

V. CONCLUSION

In this paper, we have presented a hybrid approach of implementing
an adder block based on the fast parallel prefix architecture. The pro-
posed adder exhibits very efficient timing area tradeoff characteristics.
Our hybrid architecture is based on the triple-carry operator (“o3”)
and the classical carry-operator (“o”). It works seamlessly with adder
blocks of different widths and across different technology domains
(0.13 �, 0.09 �, etc.). The experimental results indicate that our pro-
posed adder is significantly faster than the popular BK adder with some
area overhead. On the adder hand, the proposed adder also shows mar-
ginally faster performance than the fast KS adder with significant area
savings.

REFERENCES

[1] J. Sklansky, “Conditional sum addition logic,” IRE Trans. Electron.
Comput., vol. EC-9, no. 6, pp. 226–231, 1960.

[2] R. P. Brent and H. T. Kung, “A regular layout for parallel adders,” IEEE
Trans. Comput., vol. 31, no. 3, pp. 260–264, Mar. 1982.

[3] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient
solution of a general class of recurrence equations,” IEEE Trans.
Comput., vol. C-22, no. 8, pp. 783–791, Aug. 1973.

[4] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM,
vol. 27, no. 4, pp. 831–838, 1980.

[5] T. Han and D. A. Carlson, “Fast area-efficient VLSI adders,” in Proc.
8th Symp. Comput. Arithmetic, 1987, pp. 49–56.

[6] H. Zhu, C. K. Cheng, and R. Graham, “On the construction of zero-
deficiency parallel prefix circuits with minimum depth,” ACM Trans.
Des. Autom. Electron. Syst., vol. 11, no. 2, pp. 387–409, 2006.

[7] Y. C. Lin and C. C. Shih, “A new class of depth-size optimal parallel
prefix circuits,” J. Supercomput., vol. 14, no. 1, pp. 39–52, 1999.

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 3, MARCH 2008 331

[8] Y. C. Lin and C. Y. Su, “Faster optimal parallel prefix circuits: New
algorithmic construction,” J. Parallel Distrib. Comput., vol. 65, no. 12,
pp. 1585–1595, 2005.

[9] T. Matsunaga and Y. Matsunaga, “Area minimization algorithm for
parallel prefix adders under bitwise delay constraints,” in Proc. 17th
Great Lakes Symp. VLSI, 2007, pp. 435–440.

[10] Y. Choi and E. E. Swartzlander, Jr, “Parallel prefix adder design with
matrix representation,” in Proc. 17th IEEE Symp. Comput. Arithmetic
(ARITH), 2005, pp. 90–98.

[11] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix VLSI
ling adders,” IEEE Trans. Comput., vol. 54, no. 2, pp. 225–231, Feb.
2005.

[12] V. Dave, E. Oruklu, and J. Saniie, “Performance evaluation of flagged
prefix adders for constant addition,” in Proc. IEEE Int. Conf. Electro/
inf. Technol., 2006, pp. 415–420.

[13] J. Liu, S. Zhou, H. Zhu, and C. K. Cheng, “An algorithmic approach for
generic parallel adders,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Des., 2003, pp. 734–740.

[14] R. Lin, K. Nakano, S. Olariu, and A. Y. Zomaya, “An efficient parallel
prefix sums architecture with domino logic,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 14, no. 9, pp. 922–931, Sep. 2003.

[15] P. F. Stelling and V. G. Oklobdzija, “Design strategies for optimal hy-
brid final adders in a parallel multiplier,” J. VLSI Signal Process., vol.
14, no. 3, pp. 321–331, 1996.

Low Power Design of Precomputation-Based
Content-Addressable Memory

Shanq-Jang Ruan, Chi-Yu Wu, and Jui-Yuan Hsieh

Abstract—Content-addressable memory (CAM) is frequently used in ap-
plications, such as lookup tables, databases, associative computing, and net-
working, that require high-speed searches due to its ability to improve ap-
plication performance by using parallel comparison to reduce search time.
Although the use of parallel comparison results in reduced search time, it
also significantly increases power consumption. In this paper, we propose
a Block-XOR approach to improve the efficiency of low power precompu-
tation-based CAM (PB-CAM). Through mathematical analysis, we found
that our approach can effectively reduce the number of comparison oper-
ations by 50% on average as compared with the ones-count approach for
32-bit-long inputs. In our experiment, we used Synopsys Nanosim to esti-
mate the power consumption in TSMC 0.35- m CMOS technology. Com-
pared with the ones-count PB-CAM system, the experimental results show
that our proposed approach can achieve on average 30% in power reduc-
tion and 32% in power performance reduction. The major contribution of
this paper is that it presents theoretical and practical proofs to verify that
our proposed Block-XOR PB-CAM system can achieve greater power re-
duction without the need for a special CAM cell design. This implies that
our approach is more flexible and adaptive for general designs.

Index Terms—Content-addressable memory (CAM), low-power, pre-
computation.

I. INTRODUCTION

A content-addressable memory (CAM) is a critical device for appli-
cations involving asynchronous transfer mode (ATM), communication
networks, LAN bridges/switches, databases, lookup tables, and tag di-
rectories, due to its high-speed data search capability. A CAM is a func-
tional memory with a large amount of stored data that simultaneously

Manuscript received March 27, 2006; revised March 12, 2007, April 9, 2007,
and June 14, 2007.

The authors are with the Department of Electronic Engineering, National
Taiwan University of Science and Technology, Taipei 106, Taiwan, R.O.C.
(e-mail: sjruan@mail.ntust.edu.tw).

Digital Object Identifier 10.1109/TVLSI.2007.915514

Fig. 1. Conventional CAM architecture.

compares the input search data with the stored data. Once matching
data are found, their addresses are returned as output as shown in Fig. 1.
The vast number of comparison operations required by CAMs con-
sumes a large amount of power.

In the past decade, much research on energy reduction has focused
on the circuit and technology domains ([1] provides a comprehensive
survey on CAM designs from circuit to architectural levels). Several
works on reducing CAM power consumption have focused on reducing
match-line power [2]–[4]. Although there has been progress in this area
in recent years, the power consumption of CAMs is still high compared
with RAMs of similar size. At the same time, research in associative
cache system design for power efficiency at the architectural level con-
tinues to increase. The filter cache [5], [6] and location cache tech-
niques [7] can effectively reduce the power dissipation by adding a very
small cache. However, the use of these caches requires major modifica-
tions to the memory structure and hierarchy to fit the design. Pagiamtzis
et al. proposed a cache-CAM (C-CAM) that reduces power consump-
tion relative to the cache hit rate [8]. Lin et al. presented a ones-count
precomputation-based CAM (PB-CAM) that achieves low-power, low-
cost, low-voltage, and high-reliability features [9]. Although Cheng
[10] further improved the efficiency of PB-CAMs, the approach pro-
posed requires considerable modification to the memory architecture
to achieve high performance. Therefore, it is beyond the scope of the
general CAM design. Moreover, the disadvantage of the ones count
PB-CAM system [9] is that it adopts a special memory cell design
for reducing power consumption, which is only applicable to the ones-
count parameter extractor.

In this paper, we present a Block-XOR approach for reducing com-
parison operations in the second part for the PB-CAM. Our approach
employs a brand new parameter extractor, which can better reduce the
comparison operations required than the ones-count approach [9]. Our
approach reduces power consumption by reducing comparison opera-
tions.

The remainder of this paper is organized as follows. In Section II,
we briefly describe the PB-CAM architecture. Our new architecture is
described in Section III, where the design of our Block-XOR parameter
extractor is provided and we exploit mathematical analysis to prove the
effectiveness of our proposed architecture. In Section IV, the experi-
mental results are provided to further verify our mathematical analysis.
In addition, we also give a comprehensive comparison between [9] and
our approach. Finally, we give a conclusion in Section V.

II. PREVIOUS WORK AND OBSERVATION

To understand our approach more clearly, we need to briefly describe
the architecture of the PB-CAM proposed in [9].

1063-8210/$25.00 © 2008 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:45 from IEEE Xplore. Restrictions apply.

