
Generation of the Optimal Bit-Width Topology of

the Fast Hybrid Adder in a Parallel Multiplier

Sabyasachi Das
Synplicity Inc

Sunnyvale, CA, USA
sabya@ synplicity.com

Abstract- In state-of-the-art Digital Signal Processing (DSP)
and Graphics applications, multiplication is an important and
computationally intensive operation, consuming a significant
amount of delay. The final carry propagate hybrid adder inside
a multiplier plays an important role in determining the perfor-
mance of the multiplication block. This paper presents an algo-
rithmic approach to generate the optimal bit-width configuration
of each of the sub-adders present inside the hybrid adder. Our
technique is useful in selecting the best configuration (out of a

large number of possible configurations) of the hybrid adder,
thereby improving the overall performance of the chip. Our
experiments involve different combinations of designs, technology
libraries and timing constraints, and the results show that our

algorithm successfully predicts the best hybrid-adder topology
with a very low runtime.

I. INTRODUCTION

The complexity and the performance requirement of the
datapath operations implemented in systems on chips has
increased considerably over the years. This is especially true
in the chips for communication, multimedia and graphic
applications, which have highly parallel implementations of
signal processing algorithms.
The multiplier is one of the most widely used arithmetic

datapath operations in modern digital design. Since multiplier
blocks require intensive computations, they exhibit a signifi-
cant amount of delay, and therefore tend to be typically found
in the timing-critical path of the chip. Developing an efficient
architecture would reduce the delay of the multiplier block and
thereby improve the performance of the chip. Hence there is
great interest in generating the optimal architecture for parallel
multipliers.

Inside the multiplier, a carry propagate adder is typically
used, contributing about 30% to the total delay of the mul-
tiplier. Hence the selection of the optimal architecture of the
adder plays a key role in determining the critical path delay
of the multiplier. In [1], the authors present a very effective
timing-driven strategy to design a fast parallel multiplier. They
divide the adder module into multiple sub-adder blocks and
use different architectures for the different sub-blocks. In this
paper, we propose an algorithmic approach to determine the
optimal topologyl of the fast hybrid adder present inside a

'By topology, we mean the number, bit-width, and type of each of the
sub-adders comprising the hybrid adder.

Sunil P. Khatri
Texas A&M University

College Station, TX, USA
sunilkhatri@tamu.edu

Fig. 1. Verilog RTL of the 2-input multiplication block

multiplier. We use a timing-driven approach to generate the
optimal bit-widths of each of the sub-adder blocks inside the
hybrid adder. To the best of our knowledge, there is no other
published work focusing on automated generation of exact
topologies of the sub-adders inside the hybrid adder.
We have organized the rest of the paper as follows: In

Section II, we present some background information. In the
Section III, we present the definition of the problem we are

addressing in this paper. In Section IV, we discuss our pro-

posed approach in detail. Section V presents the experimental
results. Conclusions are drawn in Section VI.

II. PRELIMINARIES

We briefly explain the concept of multipliers by using the
example of a 2-input multiplier block, and discuss how it is
typically synthesized. Figure 1 represents an RTL depicting
a 2-input multiplier. In this block, there are two 16-bit wide
inputs (a and b), which produce the 32-bit wide output z.

Once the multiplier block is synthesized, the resulting netlist
consists of the following three parts:

. The Partial Product Generator

. Partial Product Reduction Tree

. Final Carry Propagate Adder

The partial products in a multiplier are generated by per-

forming a bit-wise multiplication (2-input AND operation)
between the appropriate bits of the multiplicand and the
multiplier. Each partial product is shifted by one or more bits,

1-4244-0757-5/07/$20.00 ©2007 IEEE

module mult (z, a, b);

parameter N = 16;

input [N-1:0] a, b;
output [2*N-1:0] z;

assign z = a * b;

endmodule

1 ICICDT07

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:34 from IEEE Xplore. Restrictions apply.

depending on the bit number of the multiplicand. If PPi is
the jth partial product of a * b, and b has n bits, then partial
products can be represented by the following expression:

PPi =a*bi*2t for i=0,1,...(n -1)
After the generation of the partial products, all the n partial

products need to be reduced to two vectors. To perform this
operation, a Partial Product Reduction Tree is implemented.
To design the partial product reduction tree, the column-
compression technique is widely used [3], [4]. Column com-
pression reduces the addition operations of any bitslice into a
cascade of full adder operations, finally yielding two addends
per bit-slice in the partial-products.

After the reduction of partial products, the resulting two
vectors (n-bit wide) are fed to a final carry propagate adder
(CPA) which produces the final result of the multiplication
block. Since carry propagation is an expensive operation, this
contributes roughly to 30% of the total delay of the multipli-
cation block [1]. Hence any improvement in the delay of this
addition sub-block becomes quite significant in determining
the performance of the multiplier module.

III. PROBLEM DEFINITION

To design a fast multiplier, it is essential to implement a
fast partial product reduction tree, and a fast special-purpose
hybrid adder.
Due to the inherent tree structure of the column-

compression operation, the partial-product reduction tree [3],
[4], [5] produces a skewed timing profile at the outputs of the
reduction tree. This results in a non-uniform input arrival time
profile for the final carry propagate adder. In the Figure 2,
we plot the timing profile of the inputs to the carry-propagate
adder (in a multiplier block which implements the expression
z = a * b). The tree reduction phase produces the two output
vectors x and y, which become the inputs to the final carry
propagate adder (CPA). Figure-2 shows that the middle bits
of x and y have largest arrival time. The bits which are near
either the most significant bit (MSB) or the least significant
bit (LSB) of x or y have earlier arrival times than the bits in
the middle.
Due to this pattern of arrival-times to the CPA, several

traditional general-purpose stand-alone timing-driven addition
schemes [8] do not work well in the context of multipliers.
That is because most of the high-speed adders are designed
with an assumption that all the input signals arrive at the same
time.

The authors of [1] and [2] have introduced a special-purpose
hybrid adder specifically to be used for the carry propagate
adder in a high-performance multiplier. They split the carry
propagate adder into the following three sub-addition blocks:

* A slow adder for few bits near LSB. In our implemen-
tation, we use the ripple carry architecture for this slow
adder.

. A fast adder for several bits in the middle. In our
implementation, we use Brent-Kung architecture for this
fast adder.

A-r iival Tiiues of riput
Arrival 'I:iines of inptit

()(

800

60

U0(

200
4l 6 8 10 12 14 16()1 8 20

Bi t NurEber

Fig. 2. Arrival time pattern for the two inputs of the CPA (in a multiplier)

A carry-select adder for the remaining bits near MSB. In
our implementation, we use Brent-Kung architecture for
this carry-select adder.

The authors of [1] and [2] have claimed that the improve-
ment in speed of this hybrid adder over the commonly used
carry-look-ahead addition structure is about 12.5%. While this
data is very encouraging, one of the most important tasks
in designing this hybrid addition structure is to effectively
determine the width of each of the sub-adder blocks. Hence,
the topological structure of the hybrid adder plays a key role in
determining the performance gain of this addition technique.

In this paper, we propose an arrival-timing-skew based
algorithmic approach to determine the topology of the hybrid
adder. The topology of the hybrid adder is defined as the
individual bit-widths of all three sub-adder blocks present
within the hybrid adder module. Topologyadd = (wl, w2,
W3), indicates the configuration in which the least significant
w1 bits form the ripple sub-adder, the next w2 bits form
the fast Brent-Kung sub-adder in the middle and the most
significant W3 bits create the carry-select sub-adder. Note that
W1 + W2 + W3 = n. Our experimental data suggests that
using a sub-optimal topology for the hybrid adder can result
in performance which is even worse that the traditional fast
addition techniques [6], [7]. Hence it is critical to identify the
best topology of the hybrid adder.

IV. OUR APPROACH

Throughout the rest of the paper, we would assume that two
inputs (x and y) to the hybrid adder are n-bit wide and the
output (z) of the adder is (n + 1)-bit wide. In addition, let us
assume that the arrival times of the two inputs are denoted as
follows: Let, txi be the arrival time of the ith bit of the input
vector x. Similarly, Let, tyi be the arrival time of the jth bit
of the input vector y.
Our proposed technique has two steps. In the following sub-

sections, we discuss each step in detail.

1-4244-0757-5/07/$20.00 ©2007 IEEE 2 ICICDT07

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:34 from IEEE Xplore. Restrictions apply.

A. Determination of the width of the Ripple Carry Adder
In the hybrid adder, the sub-adder for the least significant

w1 bits can be a slower one since these bits arrive early. Hence
the traditional Ripple Carry adder is the best choice. To decide
the bit-width of the ripple carry adder, we use the approach
presented in Algorithm 1. Detailed comments are provided
below.

The timing-skew pattern of the inputs to the hybrid adder
shows that the arrival times of the bits near LSB are signifi-
cantly less than that of the bits in the middle. The key idea is
to exploit that characteristic and ensure that the ripple adder
sub-block produces the output carry to the faster Brent-Kung
adder sub-block (for the middle bits) before the middle bits
arrive.
To use in our ripple adder, we analyze the technology library

cells and identify a Full-Adder cell having the least amount of
delay from the input to the carryo,,t pin. This Full-Adder cell
and its associated input to carryo,,t delay (denoted as d) is used
throughout the algorithm. We start the timing analysis from the
LSB (Oth bit) and test if the Full-Adder cell would produce
the carryo,,t (which becomes carryi, to the lIt bit) before the
latest arriving signals among xi and Yi arrive. If the result of
the test is true, then we include the Oth bit in the ripple carry
adder. This test is carried out for the ISt, 2nd, 3rd bits and so
on. In addition, if for some bit (let's say, the jth bit), the timing
analysis shows that the carryonit (or the carryin to the (i + 1)th
bit) is generated after the latest arriving signals at bit (i + 1)
arrive, then it is still possible that we need to include the jth bit
in the ripple carry adder. This is because the increase in arrival
time for the xi and yi signals does not have a constant slope
as i increases towards the middle bits (as shown in Figure-2).
Hence we do not terminate our algorithm immediately. If we
terminate our algorithm at this stage and decide that the width
of our ripple carry adder is i-bits (Oth bit to (i-i)th bit), then
there is a risk of accepting a locally optimal solution instead
of a globally optimum one. Hence we perform hill climbing.
Instead of quitting immediately, we analyze upto 2 additional
bits (a total of 3 bits i, i+1 and i+2). If in these 3 bits, the
analysis confirms that the carryo,,t is generated later than the
latest arriving input signal of the next bit, then our algorithm
quits and returns the bit-number i as the width of the ripple
carry adder. On the other hand, if during the 3 bits of hill
climbing, the analysis in any bit j indicates that the carryout
is generated earlier than the latest arriving input signal in the
next bit, then we include bit j in the ripple carry adder block.
In addition, we reset our hill climbing mode and switch back to
the original mode and continue our algorithm from the next
most significant bit. Our experiments with different designs
and timing profiles have proved the usefulness of the hill-
climbing phase to come out of the sub-optimal solution.

B. Determination of widths of the remaining Fast Adders
After determining that the ripple carry adder (near the LSBs)

should be w1 bit wide, the remaining (n-wi) bits need to
be split between the fast adder (in the middle) and the fast
carry-select adder near the most significant bits (MSBs). In

Algorithm 1: Determination of Ripple Carry Adder Width

HillClimbing = false
HillPenalty = 0
HillStep = 0

tmaxm = Max (txo, tyo, tx1, tyl, ..., tXn-1, tYn-1)
HI Hence m is the bit-number having largest arrival-time

for i = 0 to m do
ArrCur = Max(txi, tyi)
ArrNext = Max(txi+±, tyi+i)
if HillClimbing then

HI Hill-climbing mode
if (ArrCur + d + HillPenalty) < ArrNext then

Wi = t

HillClimbing = false
HillPenalty = 0
HillStep = 0

else
HI Try total of three steps of hill-climbing
HillPenalty = (ArrCur + d + HillPenalty)

- ArrNext
HillStep = HillStep + 1

if (HillStep > 3)
return wi1

end if
end if

then
HI No further attempt

else
HI Regular (Non hill-climbing) mode
if (ArrCur + d) < ArrNext then

Wi = t

else
HillClimbing = true
HillPenalty = (ArrCur + d) - ArrNext
HillStep = 1

end if
end if

end for

return wi IH The Bit-width of the Ripple-Carry-Adder

this paper, we use the Brent-Kung (BK) adder architecture
[6] inside the two fast adders. Depending on the timing
characteristics, the width of the fast BK adder in the middle
can also be (n-wj), obviating the need for the carry-select
adder altogether. In the remainder of this section, we refer to
the adder of the middle bits as the middle adder.

This scheme of using the middle adder and the carry-select
adder is very useful in reducing the overall delay of the adder.
However, if the widths of these two adders are small, then it is
better to use a single (n-wj) bit adder. Hence if (n-wj) is less
than 16 bits, we use a single middle adder of the Brent-Kung

1-4244-0757-5/07/$20.00 ©2007 IEEE 3 ICICDT07

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:34 from IEEE Xplore. Restrictions apply.

architecture, having a bit-width of (n-wi) bits. On the other
hand, if (n- w) > 16, then we use the algorithm explained
in the rest of this subsection.
The Brent-Kung (BK) architecture [6] is a widely used

fast architecture and is based on the parallel-prefix network
computation. If a BK adder has k inputs, then there can be
a maximum of (2 * 1og2 k -2) levels in the adder [9]. If the
number k is a power of 2, then the number of levels at the
most significant bit would be (log2 k) only.

In this algorithm, we analyze several configurations of
the hybrid adder (without really building the actual adder
structures) and then select the best topology. Let us first define
a naming convention for the configurations. A configuration
q indicates that the bit-width of the fast Brent-Kung adder in
the middle is q bits and the bit-width of the carry-select adder
near the MSBs is (n-wl-q) bits.

To start the algorithm, we select the configuration cl, where
* Cl = 2m

. m = Llog2(n- wi)
Now, we have to estimate the delay of this configuration.

Since the BK adder extensively uses the well-defined carry
operator [9], we compute the delay of the fastest possible carry
operator generated from the technology components available
in the library. With that delay available, we can estimate the
following two:

1) The time when the sum output will be ready at the most
critical sum pin. We refer to this as TMid,urn

2) The time when the carryout of the middle adder block
will be ready. We refer to this as TMid,0.

We can similarly compute the time when the sum output
will be ready at the most critical sum pin of the carry-select
adder. We refer to this as TCS,urn Note that for a carry-
select adder, we implement two parallel adders whose outputs
are connected to a 2:1 Multiplexer (MUX) cell. Therefore, we
need to account for the delay of the MUX cell. The delay of the
fastest 2:1 Multiplexer (MUX) cell in the provided technology
library is denoted by Delmnxu Now, with all these numbers
computed, the time when the sum output of the most critical
sum pin of the combined adder (middle adder and the carry-
select adder near the MSB) will be ready is:
T =Max (TMid5 um, (TMidco+Delmux), (TCs,uTm+DelmTnx)).
The value (T) represents the time when the most critical

output will be ready if the bit-width of the middle adder is
cl and the carry-select adder is (n-wl-cl). We mark cl as our
best configuration so far. Now, we perform similar analysis for
several other configurations (bit-widths) described in the next
paragraph. Out of all the analyzed configurations, the optimal
configuration is the one which has the lowest value of T.

Next, we have to decide whether exploration should be in
the direction of the increased bit-width or in the direction of
the reduced bit-width of the middle adder. If the width of
the carry-select adder (n-wl-cl) is less than 4 bits, then we
conclude that further exploration should be performed in the
direction of reduced width of the middle adder. On the other
hand, if the width of the carry-select adder is greater than 4

bits, then we choose the two configurations (cl+l) and (cl-1).
After computing the T values for both the configurations, if
T(cl+l) > T(cl-1), then further exploration will be performed
only in the direction of reduced bit-width of the middle adder.
Otherwise, further exploration will be performed only in the
direction of increased bit-width of the middle adder. If further
exploration is performed in the direction of reduced bit-width
of the middle adder, then the middle adder width range is from
0 bits to cl bits. On the other hand, if further exploration is
performed in the direction of increased width of the middle
adder, then the middle adder width range is from cl bits to
(n-wj) bits. In the rest of the section, we only explain the
situation where further exploration happens in the direction of
increased bit-width of the middle adder. The reverse situation
is analogous, hence it is not separately explained.
Once the direction of further exploration (reduced or in-

creased bit-width for the middle adder) is decided, we perform
a bit-width exploration in a fashion which is similar to a binary
search algorithm. Now, to perform further exploration of other
configurations (assuming that further exploration is performed
in the direction of increased bit-width of the middle adder),
we select the mid-point between cl and (n-wj) as the next bit-
width of the middle order. Let us call that the configuration
c2. After analyzing the delay through that configuration, if we
find out that T(c2) < T(cj), then

* We mark c2 as our best configuration so far (and discard
the configuration cl).

* For the exploration of the next configuration, we need
to decide whether to explore further in the direction of
increased bit-width or in the direction of reduced bit-
width of the middle adder. Hence we choose the two
configurations (c2+1) and (c2-1) and continue the process
explained earlier.

On the other hand, if we find that T(c2) > T(cj), then
* Since cl is our best configuration so far, we discard the

configuration c2.
* For the exploration of the next configuration, we select

the mid-point between c2 and cl as the bit-width of the
middle-adder.

* We do not need to explore any configuration of the middle
adder having w2 > c2 bits.

We repeat this process until the algorithm converges to one
configuration. Let us call this configuration cw2. This indicates
that the optimal configuration is to implement a middle adder
having w2 input bits and a carry select adder having (n-wi-w2)
number of input bits.
By using the above-mentioned algorithms, we can very

quickly identify the optimal topology for all three sub-adders
(ripple carry adder, fast BK adder, carry-select adder) inside
the hybrid adder.

V. EXPERIMENTAL RESULTS

We have implemented our proposed algorithm in the C++
programming language. The experiments were performed with
multiplier RTL designs written in the Verilog hardware de-
scription language [10]. For all our runs, we used a Linux

1-4244-0757-5/07/$20.00 ©2007 IEEE 4 ICICDT07

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:34 from IEEE Xplore. Restrictions apply.

workstation with dual-2.2GHz processors and 4GB memory.
The operating system was RedHat 7.1.

To collect different data-points regarding the quality of
results of our algorithm, we used the following variations:

Multiplier designs of different input bit-widths:
In the Table-I, we report the different configurations of
the multiplier designs that have been used in our experi-
ments. The table contains design-name (lst column), the
widths of the two inputs to the multiplier (2nd column),
the width of the output of the multiplier (3rd column) and
the width of each of the two inputs to the hybrid adder
in the multiplier (4th column). We do not restrict the two
inputs of our multiplier designs to have same bit-widths.
If the bit-widths of the two inputs to the multiplier are m
bits and n bits, then the final output is of width (m+n)
bits. In this multiplier, each of two inputs to the hybrid
adder are of width (m+n-2) bits and the output of the
hybrid adder is (m+n-1) bits wide. This is because the
least significant bit (Oth) of the final result is obtained
directly from the partial product generator without going
through the hybrid adder.

Mult Mult Mult Adder
Name i/p Width o/p Width i/p Width
Mult-i 36 x 29 65 63
Mult-2 24 x 24 48 46
Mult-3 41 x 36 77 75
Mult-4 32 x 32 64 62
Mult-5 21 x 16 37 35
Mult-6 27 x 27 54 52

TABLE I

MULTIPLIER DESIGN CHARACTERISTICS

Different technologies and libraries:

- One library (Lib-X) for 0.13,u.
- One library (Lib-Y) for 0.09,u.

These libraries are created by two well-known vendors
of commercial libraries.

Different input arrival time constraints:
To test the effectiveness of our algorithm in different re-
alistic situations, we used the following scenarios, which
generate different input arrival time constraints:

1) One input of the multiplier design comes from the
output of an addition (a+b) block. The other input of
the multiplier design comes from a subtractor (c-d)
block.

2) One input comes from the output of another mul-
tiplier (p*q) and the other input comes from the
output of a divider (ris) block.

3) One input comes from the output of a Sum-of-
Product (a*b+c*d) block and the other input comes
from the output of a Multiply-Accumulator (p*q+r)
block.

4) One input comes from the output of a shifter
(a>>b) and the other input comes from the output

of an incrementor (a+l) block.
5) Both the inputs come from the outputs of register

banks.

In the timing constraints 1, 2, 3 and 4, the different bits
at the inputs of the multiplier arrive at different times.
We believe that these constraints represent most of the
real-life timing situations for multipliers. In the timing
constraint 5, all the inputs of the multiplier arrive at the
same time. With this constraint, we model the situation
when the primary inputs of the design are being fed to a
multiplier or when the multiplier is placed immediately
after a set of register banks.

In our source code, we have two top-level routines. The
code in routine-I implements the approach presented in this
paper and it estimates the optimal widths of three different
adders present in the hybrid adder. In other words, this code
computes (Wlopt, W2opt, W3Upt) The code in routine-2 takes
three width parameters (Wl, W2, W3) as inputs and actually
generates the hybrid adder having ripple adder of width w1
bits, a fast Brent-Kung adder with width w2 bits, and the carry
select adder of width W3 bits.
To measure the effectiveness and correctness of our algo-

rithm, we use the following methodology. Assume that we
are trying to validate our algorithm on a multiplier design
ml, with technology library 11 and timing constraint tl. If
the final carry propagate hybrid adder in the multiplication
module has 2 inputs each having n-bits, then there are (n+2)
different topologies possible for that hybrid adder. We first
execute routine-I of our source code (which is our algorithm
to identify the best topology of the hybrid adder). Suppose
our algorithm suggests that the best topology of the hybrid
adder is Topologyopt = (wlopt, W2opt, w3Upt). Note that, the
topology of (Wlopt, W2opt, W3opt) is one out of the possible
(n+2) configurations. Next, we execute routine-2 of our source
code with each of the possible configurations and note the
delays in each case. From the entire set of implementations,
we identify the fastest implementation and call it Topologyf
= (Wlf, W2f, W3f). If we find that Topologyopt matches with
Topologyf (or in other words, if Wlopt=Wlf, W2opt=W2f and
W3opt=W3f), then we conclude that our algorithm is able to
accurately predict the best possible implementation topology
or configuration for that hybrid adder module inside the
multiplier.

For each combination of design, technology library and
timing constraint, we perform the above-mentioned analysis
to verify the accuracy of our algorithm. In Table-II, we report
the best hybrid-adder topology predicted by our algorithm on
24 different combinations of designs, technology libraries and
timing constraints, which are reported one per row of Table-
II. In each row of the table, we present the topology of the
hybrid adder (widths of all three sub-adder blocks) predicted
by our algorithm. Our algorithm is able to predict the best
hybrid adder topology for each of the 24 different situations
presented in the Table-II. We have experimentally verified that
Topology0pt = Topologyf in each case.

1-4244-0757-5/07/$20.00 ©2007 IEEE 5 ICICDT07

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:34 from IEEE Xplore. Restrictions apply.

Optimal Topology of the Hybrid Adder

TABLE II

OPTIMAL TOPOLOGY OF DIFFERENT HYBRID ADDERS GENERATED BY OUR APPROACH

For a 32-bit hybrid adder, our proposed prediction approach
(routine-I of our source code) and one execution of routine-2
to build the hybrid adder with the predicted optimal configura-
tion totally takes about 6 minutes of runtime. In case of the 32-
bit wide hybrid adder, the total number of possible topologies
is 561. In the exhaustive approach, if we call routine-2 of our

source code 561 times and then select the best topology or

implementation, then the total runtime is over 19 hours. This
shows that to identify the best configuration, it is not practical
to try all possible configurations of the hybrid adder. This
also indicates that our algorithm is able to derive the optimal
configuration of the three adders, with significantly lower
runtime. Hence our algorithm is an accurate and extremely fast
approach to determine the best topology for the hybrid adder
without any necessity to perform an exhaustive exploration.

Our prediction of the topology consistently produces the
optimal result across different types of multipliers, timing
constraints and technology libraries. This exhibits the strength
and wide applicability of our algorithm. Since multiplication
is a very compute intensive operation and the selection of the
hybrid adder topology plays a significant role in determining
the overall performance, we believe that many real-life designs
can significantly benefit from our algorithm.

VI. CONCLUSION

In this paper, we have presented an approach for generat-
ing the optimal topology of the hybrid adder inside a fast
parallel multiplier. This fast technique accurately estimates
the bit-widths of each of the three sub-adder blocks inside

the hybrid adder. This approach is very useful in optimally
synthesizing the computationally intensive and timing-critical
multiplication block within a very short period of time. Our
estimation technique works seamlessly with different sizes of
multipliers, timing constraints and across different technology
domains (0.13,u, 0.09,u etc). The exhaustive analysis over

several testcases indicates that the topology proposed by our

algorithm is always the most optimal one.

REFERENCES

[1] P.F. Stelling, V.G. Oklobdzija, "Design strategies for the final adder in
a parallel multiplier," in 29th Asilomar Conference on Signals, Systems
and Computers, pp. 591-595, Vol. 1, 1995

[2] P.F. Stelling, V.G. Oklobdzija, "Design strategies for optimal hybrid fi-
nal adders in a parallel multiplier," in Journal of VLSI Signal Processing,
14(3):321-31, 1996.

[3] C.S. Wallace, "A suggestion for a fast multiplier," in IEEE Transactions
on Electronic Computers, EC- 13(2):14- 17, 1964.

[4] L. Dadda, "Some schemes for parallel multipliers," in Alta Frequenza,
vol. 34, pp. 349-356, 1965.

[5] K.C. Bickerstaff, E.E. Swartzlander, M.J. Schulte, "Analysis of column
compression multipliers," in Proceedings of 15th IEEE Symposium on

Computer Arithmetic, pp. 33-39, 2001.
[6] R.P. Brent, H.T. Kung, "A regular layout for parallel adders," in IEEE

Transactions on Computers, C-31(3):260-64, 1982.
[7] P.M. Kogge, H.S. Stone, "A parallel algorithm for the efficient solution

of a general class of recurrence equations," in IEEE Transactions on

Computers, C-22(8):783-91, 1973.
[8] M. D. Ercegovac, T. Lang, "Digital Arithmetic," The Morgan Kaufmann

Series in Computer Architecture and Design, 2003
[9] B. Parhami, "Computer Arithmetic, Algorithms and Hardware Designs,"

The Oxford University Press, 2000
[10] S. Palnitkar, "Verilog Hdl: A Guide to Digital Design and Synthesis,"

Prentice Hall, Upper Saddle River, NJ, 2003.

1-4244-0757-5/07/$20.00 ©2007 IEEE

Multiplier Technology Input Arrival Bit-Width of the Bit-Width of the Bit-Width of the
Design Library Timing Ripple Carry Adder Brent-Kung Adder Carry Select Adder
Name Constraint (near the LSB) (in the Middle) (near the MSB)
Mult- Lib-X (0. 13,u) Constraint-1 11 bits 45 bits 7 bits
Mult-2 Lib-X (0. 13,u) Constraint-2 4 bits 32 bits 8 bits
Mult-3 Lib-X (0.13,u) Constraint-3 23 bits 34 bits 18 bits
Mult-4 Lib-X (0.13,u) Constraint-4 7 bits 43 bits 12 bits
Mult-5 Lib-X (0. 13,u) Constraint-5 3 bits 27 bits 5 bits
Mult-6 Lib-X (0.13,u) Constraint- 10 bits 38 bits 6 bits
Mult- Lib-X (0. 13,u) Constraint-2 7 bits 50 bits 6 bits
Mult-2 Lib-X (0.13,u) Constraint-3 13 bits 28 bits 5 bits
Mult-3 Lib-X (0.13,u) Constraint-4 16 bits 41 bits 18 bits
Mult-4 Lib-X (0. 13,u) Constraint-5 8 bits 43 bits 11 bits
Mult-5 Lib-X (0.13,u) Constraint-1 6 bits 22 bits 7 bits
Mult-6 Lib-X (0. 13,u) Constraint-2 5 bits 39 bits 8 bits
Mult- Lib-Y (0.09,u) Constraint-3 10 bits 45 bits 8 bits
Mult-2 Lib-Y (0.09,u) Constraint-4 5 bits 34 bits 7 bits
Mult-3 Lib-Y (0.09,u) Constraint-5 18 bits 44 bits 13 bits
Mult-4 Lib-Y (0.09,u) Constraint-1 18 bits 37 bits 7 bits
Mult-5 Lib-Y (0.09,u) Constraint-2 9 bits 21 bits 5 bits
Mult-6 Lib-Y (0.09,u) Constraint-3 3 bits 44 bits 5 bits
Mult- Lib-Y (0.09,u) Constraint-4 12 bits 42 bits 9 bits
Mult-2 Lib-Y (0.09,u) Constraint-5 6 bits 33 bits 7 bits
Mult-3 Lib-Y (0.09,u) Constraint-1 14 bits 49 bits 12 bits
Mult-4 Lib-Y (0.09,u) Constraint-2 17 bits 34 bits 11 bits
Mult-5 Lib-Y (0.09,u) Constraint-3 2 bits 28 bits 5 bits
Mult-6 Lib-Y (0.09,u) Constraint-4 9 bits 36 bits 7 bits

- '. - - -- . . I . .

6 ICICDT07

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:34 from IEEE Xplore. Restrictions apply.

