
A Regularity-Driven Fast Gridless Detailed Router for High
Frequency Datapath Designs

Sabyasachi Das
Design Technology
Intel Corporation

Santa Clara, CA 95054.

sabyasachi.das@intel.com

Sunil P. Khatri
Department of Electrical and Computer Engg

University of Colorado,
Boulder, CO 80309.

spkhatri@colorado.edu

ABSTRACT
We present a new detailed routing methodology specifically de-

signed for datapath layouts. In typical state-of-the-art microproces-
sor designs, datapaths comprise about 70% of the logic (excluding
caches). Although research on datapath placement and global rout-
ing has been reported, very little research has been reported in the
area of detailed routing for datapaths.

Datapaths typically comprise regular bit-slices which are repli-
cated. We define a net-cluster, which is collection of similarly
structured nets present across different bit-slices. We introduce
two clustering schemes (Footprint-driven clustering and Instance-
driven clustering) to extract such net-clusters. Then, we perform a
strap-based routing on exactly one member net of each net-cluster
(in a single representative bit-slice). Next, for each net, we prop-
agate its route to all other nets in its net-cluster. Our algorithm is
unique in that it performs the detailed routing on a single bit-slice,
and infers the routing for all bit-slices using the notion of net clus-
ters.

We demonstrate at least 6� speed gains for industrial 32 and
64-bit datapath designs. The regularity of the routes across the bit-
slices results in more predictable timing characteristics for the re-
sulting datapath layout.

1. INTRODUCTION
As we migrate toward ultra deep sub-micron feature sizes, de-

signs are becoming increasingly complex with very aggressive goals.
Datapaths are one of the more critical parts of the design. It is well
understood that traditional design automation methodologies are
not well suited for the design of high-performance datapaths. As a
result, datapath blocks are usually manually designed, resulting in
a significantly larger design time and cost.

To solve this problem, researchers are actively trying to develop
design automation methodologies which are suitable for the design
of datapath circuits. For example, several datapath placement [1],
[2] and synthesis [3] techniques have been reported. In [4], the au-
thors introduce a datapath routing methodology. Their work differs
from ours in that it uses probabilistic measures of congestion to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’01, April 1-4, 2001, Sonoma, California, USA.
Copyright 2001 ACM 1-58113-347-2/01/0004 ...$5.00.

guide the routing which is performed simultaneously for all nets.
Results are reported on small designs, while our goal is to tackle
very large industrial datapaths. To the best of our knowledge, there
has been no other research on detailed routing for datapaths.

In this paper, we propose a new detailed routing methodology
that exploits the regularity of connections in a datapath circuit. In
our scheme, we route all the regular nets in a similar fashion so
as to ensure good quality, regular routes. This results in highly
predictable timing characteristics of the resulting design and the
routing process is much faster than other conventional routers.

We have organized the rest of the paper as follows: Section 2
presents general characteristics and some definitions of a datapath.
In Section 3, we discuss our proposed flow. Section 4 presents the
advantages of our approach. Experimental results are provided in
Section 5 and conclusions are drawn in Section 6.

2. CHARACTERISTICS OF DATAPATHS
Datapaths are commonly found in microprocessors, DSP and

graphics ICs. In datapaths, same logic is repeated multiple times.
We define a bit-slice as the logic corresponding to a particular bit.
In practice, N bit-slices are abutted to obtain the design of an N-bit
datapath. The layout width of all bit-slices is identical, and we call
this the bit-pitch or pitch. The convention we follow for this paper
is that the data flows vertically and control flows horizontally. In
most standard-cell based datapath styles, each bit-slice is composed
of multiple instances of standard cells (or larger master-cells).

3. OUR APPROACH
Figure 1 describes our overall flow. In following sub-sections,

we discuss each step in detail.

3.1 Reading the Schematic Netlist
First, we read the schematic (logic) netlist of the whole block,

which consists of several instances of library cells. Currently, our
tool can handle only two levels of hierarchy. In the top of hierarchy,
all the connections between the instances are specified. In the lower
level, logical details of the library cells are specified.

3.2 Generating the Placement
Next, we place instances of the master-cells of the datapath block

in a structured manner. In this work, we used an industrial datapath
placement tool to produce a regular placement.

3.3 Reading the Layout Information of Cells
In this step, we read the layout information of the library cells

that make up the datapath. In this step, we obtain details about the
blockages present in the datapath block.

130

Read Schematic Netlist

Run Datapath placer to generate regular placement

Determine the set of Net-Clusters

Select a representative bit-slice for routing

Read the layout information for each cell in block

Begin

Perform strap-based routing on unrouted nets in
that selected bit-slice

Select one net and propagate the similar route to all
members in the same net-cluster (in other bit-slices)

Are all nets in that bit-slice
already considered for

route propagation?

Yes

Are all nets in whole datapath
routed?

No

Yes

Select one bit-slice
having unrouted net

End

No

Figure 1: Overall Datapath Routing Flow

3.4 Extracting Net-Clusters
In a datapath block, several regular structures are present across

multiple bit-slices. Techniques to extract regular instance structures
have been proposed by Arikati et. al. [5] and Hassoun et. al [6].

In this paper, we extract regular net structures present in different
bit-slices. We define a net-cluster as a collection of nets (spread
over different bit-slices), in which all nets have similar connections.
In particular if two nets net1 and net2 belong to same net-cluster,
then net1 and net2 contain the same number of pins and for each
pin p of net1 with co-ordinates (xp;yp), there exists a pin q of net2
with co-ordinates (xq;yq), such that

� yp = yq
� jxp � xqj = k �bit pitch (1 � k � N�1)

To denote a net-cluster NC-1 with nets N0;N1;N2;N3;N4, we
use the following notation: NC-1 = fN0, N1, N2, N3, N4g We have
developed different algorithms to identify the net-clusters. The
footprint-driven clustering algorithm creates net-clusters based on
the names of pins, master-cells and nets in the datapath. This is
supplemented by a powerful instance-driven clustering algorithm,
which extracts clusters based on position information of the pins of
nets. These techniques are described below:

3.4.1 Footprint-driven clustering (FDC)
In general, datapath designers follow a very regular naming style,

in order to effectively manage and debug the datapath design. The
Footprint-driven clustering exploits this naming regularity. Fig-
ure 2 shows a 4-bit datapath which follows a regular naming scheme.

We define the global footprint of a net as a string which is created
by lexicographically concatenating the names of the net pins (of the
connecting instances) and names of master-cells of those instances.
The detailed footprint of a net is defined as a string that is created
by lexicographically concatenating the names of all the connecting
instances and the name of the net. Footprint-driven clustering is
described in Algorithm 1. Detailed comments are provided below.

Algorithm 1 : Footprint-Driven Clustering
NetNames = findAllNetNames(designName)
GFs = findGlobalFootPrints(NetNames)
AllGroupsOfNets = NULL
for each unique global footprint (ugf) do

NewGroups = getGroupsOfNets(ugf)
AllGroupsOfNets = AllGroupsOfNets + NewGroups

end for
AllNetClusters = NULL
for each Group in AllGroupsOfNets do

NetsInGroup = findNetsInGroup(Group)
DFs = findDetailedFootPrints(NetsInGroup)
NewNetClusters = CreateNetCluster(DFs, NetsInGroup)
AllNetClusters = AllNetCluster + NewNetClusters

end for
Return AllNetClusters

� In the first part, we calculate global footprints for all nets.
We form a number of groups of nets, such that all nets in a
single group have the same global footprint and no two nets
belonging to different groups have same global footprint.

� In the next part, our target is to create one or more net-
clusters from each group. We generate detailed footprints
for each member net in a group. If the indices of the names
in the detailed footprints of two nets differ by a constant k,
then these two nets belong to a single net-cluster. Otherwise
these two nets belong to different net-clusters.

A3

B3

C3

D3

s

s

p

p
x

x

SM[3]

LB[3]

SB[3]

A2

B2

C2

D2

s

s

p

p
x

x

SM[2]

LB[2]

SB[2]

A1

B1

C1

D1

s

s

p

p
x

x

SM[1]

LB[1]

SB[1]

A0

B0

C0

D0

s

s

p

p
x

x

SM[0]

LB[0]

SB[0]

B
it 0

B
it 1

B
it 2

B
it 3

Figure 2: Footprint-Driven Clustering

We illustrate FDC by applying Algorithm 1 on the design shown
in Figure 2. We assume that A3;A2;A1;A0 belong to same master-
cell (say M 1). B3;B2;B1;B0 also belong to the master-cell M 1.

131

Let C3;C2;C1;C0 and D3;D2;D1;D0 all belong to master-cell M 2.
The nets in bit-slice 3 are as follows. Net LB[3] connects pin s of
A3 to pin p of D3, net SB[3] connects pin s of B3 to pin p of C3 and
net SM[3] connects pin x of C3 to pin x of D3.

� After running the first step of FDC algorithm on the design
of Figure 2, we get two groups. Group-1 has nets LB[3],
LB[2], LB[1], LB[0], SB[3], SB[2], SB[1], SB[0]. Group-2
has nets SM[3], SM[2], SM[1], SM[0]

� In second step, we consider one group at a time to create net-
clusters. At the end of this step, we get total three net-clusters
(two from Group-1 and one from Group-2). These are:
NC-1 = fLB[3], LB[2], LB[1], LB[0]g;
NC-2 = fSB[3], SB[2], SB[1], SB[0]g and
NC-3 = fSM[3], SM[2], SM[1], SM[0]g.

3.4.2 Instance-driven Clustering (IDC)
While designing the datapath, if some nets were not named using

a uniform naming scheme, then FDC algorithm would not identify
their corresponding net-clusters. This problem often occurs when
a logic synthesis tool is utilized to create the schematic. Synthesis
tools usually assign randomly generated names for unnamed nets.
To identify such nets and create the appropriate net-clusters, we
apply instance-driven clustering. This is also a two-step technique.
The IDC algorithm is as follows:

� For each un-clustered net, we first compute the global foot-
prints to form candidate groups, just as in the FDC algorithm.

� Next we consider one group at a time and create net-clusters
from that group by using the following definition: Let us
assume that we have two nets netA and netB which are con-
nected to P pins each. After sorting the pin co-ordinates by
Y -coordinate value, assume that the pins of netA are at loca-
tions (x1

a;y
1
a);(x

2
a;y

2
a); � � � ;(x

P
a ;y

P
a) and the pins of netB are at

(x1
b;y

1
b);(x

2
b;y

2
b); � � � ;(x

P
b ;y

P
b). Then two nets belong to same

net-cluster if the following 2 �P conditions are satisfied:

1. y j
a = y j

b (for j = 1;2; � � � ;P)

2. jx j
a � x j

bj = k � bit pitch (for j = 1;2; � � � ;P
and 1 � k � N�1)

The above algorithm can be illustrated by using a slightly modi-
fied version of the design shown in Figure 2. Let us assume that in
Figure 2, the logic synthesis tool specified names AB, CD, EF, GH,
KL, MN, RS and TV for nets LB[3], LB[2], LB[1], LB[0], SB[3],
SB[2], SB[1] and SB[0] respectively.

After running IDC algorithm, we get two net-clusters. These are
NC-1 = fAB, CD, EF, GHg and NC-2 = fKL, MN, RS, TVg.

3.4.3 Cluster merging
After running both FDC and IDC, we attempt to merge clusters.

This is useful in designs where some nets in a cluster have regular
names while others do not. We illustrate this algorithm with the
help of a slightly modified version of Figure 2. Let us assume that
net SM[3] was named as ABC and net SM[2] was named as DEF .

First, we invoke FDC algorithm to get following 3 net-clusters.
NC-1 = fLB[3], LB[2], LB[1], LB[0]g; NC-2 = fSM[1], SM[0]g
and NC-3 = fSB[3], SB[2], SB[1], SB[0]g. Then, IDC identifies
an additional cluster: NC-4 = fABC, DEFg.

Now, we apply our cluster merging technique. We only consider
those clusters which have less than N member nets, where N is the
number of bits in the datapath. Now, after selecting one representa-
tive net from each net-cluster, we check whether the 2 �P conditions
described in the IDC algorithm are satisfied. If they are satisfied,
then we merge the two net-clusters. After each merging operation,
if the number of nets in a merged cluster becomes equal to N, then

it is not considered as a candidate for further merging. We con-
tinue this process on all candidate clusters until no further merging
is possible. In our example, clusters NC-2 and NC-4 get merged to
form a new cluster: NC-New = fABC, DEF, SM[1], SM[0]g.

3.5 Selecting a Representative Bit-slice
One of the powerful features of our router is that we explicitly

route a single bit-slice and then propagate the routes to other bit-
slices. Therefore, all other nets in a net-cluster are routed implicitly.
To use this routing approach, we need to select a representative bit-
slice on which to perform explicit routing.

A net is said to have same-bit connections if all the pins con-
nected to that net belong to a single bit-slice. Such a net is called
a same-bit net. On the other hand, if all the pins of a net do not
belong to the same single bit-slice, we define that connection as a
cross-bit connection, and call the net a cross-bit net. If a net X has
a cross-bit connection from bit-slice SX (source) to bit-slice DX
(destination), we denote that connection as fX : SX ;DXg; where
SX 6= DX . There are two types of cross-bit connections.

� Forward cross-bit connection of degree l: fX : SX ;DXg, if
(DX �SX) = l (where l > 0).

� Backward cross-bit connection of degree l: fX : SX ;DXg, if
(SX �DX) = l (where l > 0).

To determine the representative bit-slice, we conceptually con-
sider the datapath to have an infinite number of bit-slices on the left
of the (N � 1)th bit-slice, and on the right of the 0th bit-slice. In
this way, each of the N bit-slices has an identical number of nets.
In such a structure, any of the N bit-slices can be used as the repre-
sentative bit-slice for explicit routing.

3.6 Routing the Nets in the Selected Bit-slice
Our next task is to route the nets present in the representative bit-

slice. As we can see in the Figure 2, the datapath cells are placed
in a row-like fashion. After placement, most of the connections are
found to be confined within nearby rows.

Our routing approach is a combination of pattern-based routing
and maze routing. Lee. et. al. [7] originally proposed the maze
routing algorithm. Pattern routing was introduced by L. S. Pugh
et. al. [8] and subsequently modified by J. Soukup et. al [9] and T.
Asano [10].

We call our main approach as strap-based routing. We define
a strap as a straight segment, which can be either vertical or hor-
izontal. We denote a strap between points (xi;y j) to (xk;y j) as:
(xi;y j) ! (xk;y j). Strap-based routing is a gridless routing ap-
proach. In our router, if strap-based routing fails, a maze router
is invoked as a fall-back. We first discuss the routing strategy for
same-bit nets and then consider cross-bit nets.

3.6.1 Routing Same-Bit Nets
Initially, we have the list of nets that need to be routed. For each

net, we have the list of end-points (which will be some pins). We
first sort the nets in decreasing order of the largest Y co-ordinate
value of their pins. In case of a tie, we select the longest net first,
with the intuition that longer nets are expected to be harder to route
later. We also have a mechanism by which the user can assign
precedence to a particular net by assigning a large weight to that
net. Algorithm 2 describes our net ordering scheme.

If two end points of a net are (x1;y1) and (x2;y2), then we define
a direct route as a path which has one the following strap patterns:

� Case 1: if (x1 = x2) AND (y1 6= y2)
Only strap (vertical): (x1;y1)! (x1;y2)

� Case 2: i f (x1 6= x2) AND (y1 = y2)
Only strap (horizontal): (x1;y1)! (x2;y1)

132

Algorithm 2 : Net Ordering Process
if (special weights present) then

WtNets = findWeightedNets(allNets)
SortedWtNets = sortNetsByWeightDescend(WtNets)
OtherNets = allNets - WtNets

else
OtherNets = allNets

end if
SortedOtherNets = sortNetsByPinYCoordsDescend(OtherNets)
if (same Y for multiple nets among SortedOtherNets) then

SameYNets = GetSameYNets(SortedOtherNets)
SortedConflictedNets = SortByLongestLength(sameYNets)
SortedOtherNets = ModifySortedNets(SortedConflictedNets,
SortedOtherNets)

end if
SortedAllNets = SortedWtNets + SortedOtherNets
Return SortedAllNets

B

V

A

E

C

U

P5

P6

P4

P3

P2P1

D

S

F

P
re

vi
o

u
s

B
it

N
ex

t
B

it

T

H

G

M

J

L

P7
P8

Figure 3: Routing in Single Bit-Slice

� Case 3: if (x1 6= x2) AND (y1 6= y2)

1. Vertical-Then-Horizontal (VTH)
First strap (vertical): (x1;y1)! (x1;y2)
Second strap (horizontal): (x1;y2)! (x2;y2)

2. Horizontal-Then-Vertical (HTV)
First strap (horizontal): (x1;y1)! (x2;y1)
Second strap (vertical): (x2;y1)! (x2;y2)

We illustrate our routing algorithm using representative bit-slice
of Figure 3. Case 1 of direct route is shown between pins D and C.
Case 2 is shown between pins E and F (this case occurs only for
cross-bit nets). Case 3 is shown in between pins A and B. Examples
of case 3 are shown in path P5 (HTV) and path P6 (VTH).

After sorting all nets with respect to the largest Y co-ordinate of
their pins, we note that the topmost two pins are pins V and S. We
select the net associated with pin V as our first routing candidate,
since it would have a longer vertical strap (assuming we can find a
direct route for the net associated with pin S). We first try to find a
direct route (this minimizes the via count). We attempt both V TH
and HTV direct routes, and check whether either of these routes
intersect with any other pin/blockage. In this example, path P2
(V TH direct route) intersects with pin G. So we choose path P1 as
the route between pins V and U . If there was no blockage in path
P2, then we could have taken any of those two paths as the final
route.

Another scenario that often occurs is that both the V TH and
HTV direct routes intersect some pin/blockage. In Figure 3, we
note that the connection between pins S and T illustrates this case.
Pins J and H block both the direct paths (P3 and P4 respectively).
Therefore, we try to form a 3-strap path from both the direct paths.
To denote the co-ordinates of any pin, we use following conven-
tion: pin A is located at (xA;yA), pin B is at (xB;yB) and so on. To
tackle the problem of forming a 3-strap path from 2 direct paths
(when we have only 2 pin-blockages), we do the following:

� if (yH < yJ) and there exists two legal straps (xS;yS)! (xH ;yH)
and (xJ ;yJ)! (xT ;yT); then we check if there exists a legal
strap from (xH ;yH)! (xJ ;yH). If it exists, we have got one
3-strap route. Otherwise, we search for the existence of a
strap (xH ;y�)! (xJ ;y�), for yH � y� � yJ . If such a strap is
not found, we search for 5-strap routes.

� if (yH > yJ) and there exists two legal straps (xS;yS)! (xJ ;yS).
and (xT ;yT)! (xH ;yT); then we try to find a vertical strap
(x�;yT)! (x�;yS); where xT � x� � xS. If we are success-
ful, then we get a 3-strap route. Otherwise, we extend the
bounding box of our vertical strap finder to (xT �width) <
xI < (xT +2 �width), where width = xS � xT .

Once we are done routing the nets originating from the topmost
row (i.e. the nets between V - U , S - T , and A - B, we route the nets
originating from the next row from the top. So we next select the
net connecting pin L and pin M. By routing nets one row at a time,
we minimize the possibility of conflict with routes in lower rows.
Unfortunately, we cannot guarantee that there will be no conflicts.
To handle conflicts between an existing route and a new route, we
sometimes need to rip-up existing routes.

3.6.2 Routing Cross-Bit Nets
Consider a design in which the maximum degree of forward or

backward cross-connectivity is k. One method to route this design
is to route k+1 consecutive bit-slices as a single unit. Such an ap-
proach would result in longer run-times and may generate irregular
routes for different nets in a net-cluster. In our method, we route a
single representative bit-slice and infer cross-bit connections while
performing the route.

In our approach, we model a single net, spread over multiple bit-
slices, as a combination of multiple sub-nets, each confined within
a single bit-slice. As a result, only one such sub-net explicitly be-
longs to the representative bit-slice. Other sub-nets belong to other
bit-slices. We virtually instantiate the sub-nets of other bit-slices
into the representative bit-slice. Virtual instantiation of a sub-net
implies treating the sub-net as a part of the representative bit-slice
while routing. After routing, we reinstate the actual sub-net route
back to its original bit-slice. This method of modeling cross-bit
nets saves run-time, memory and ensures regularity of the resulting
design.

Figure 4 shows 4 bit-slices of a larger design, with a forward
cross-connectivity of degree 2. Let us assume that our represen-
tative bit-slice is the bit-slice k. Net-1 connects pin S of instance
A5 (in bit-slice k) to pin X of instance D7 (in bit-slice K +2). We
assume that Net-1 belongs to a net-cluster which has other member
nets as well. In order to maintain the readability of Figure 4, only
one other net (Net-2) of this net-cluster is shown.

Our aim is to route all cross-bit nets with just the data of the
representative bit-slice (bit-slice k) loaded in memory. The core al-
gorithm for finding routes is the same as that for same-bit nets, with
a few modifications to handling cross-bit nets. To obtain the route
for Net-1, we actually need to traverse through 3 bit-slices (because
the degree of cross-bit connectivity is 2). Therefore, whenever we

133

D7
x

B
it k

B
it (k+

1)

B
it (k+

2)

C7

B7

A7

s

D6
x

p

C6

B6

A6

s

D5
x

C5

B5

A5

s

P

GJ H

B
it (k+

3)

p D5
x

C5

B5

A8

s

Net-2 Net-1

Q

Figure 4: Routing of Cross-Bit nets

B
it k

p D5
x

C5

B5

A5

s

Q

GJ'
H H'

P'
Q''

Figure 5: Representative bit-slice with virtual instantiations of
sub-nets

try to extend a horizontal strap to some location in the adjacent bit,
we split the strap into two straps such that each strap is confined to
a single bit-slice. In the case of Net-1, we first obtain a strap from
point S (in instance A5) to point G (in A5). Next, we attempt to
create a horizontal strap from point G (in A5) to point J (in A6).
In order to illustrate the mechanism by which we model this strap
using a single representative bit-slice, we do following splitting:

(xG;yG)! (xJ ;yJ) = (xG;yG)! (xH ;yH) + (xH ;yH)! (xJ ;yJ),
where H is a point on the bit-slice boundary and yH = yG = yJ .

Now we virtually instantiate the pins of other bit-slices into the
representative bit-slice. Figure 5 shows the representative bit-slice
for the datapath of Figure 4, with all virtual instantiations per-
formed. First, we virtually instantiate the point J within the rep-
resentative bit-slice k by incrementing the X co-ordinate of point J
by a bit-pitch.

In Figure 5, we denote the virtual point as J0. Similarly, we vir-
tually instantiate the point H as the point H0 in the bit-slice k. Once
these points have been instantiated, we instantiate the (xH ;yH)!
(xJ ;yJ) strap of bit-slice k + 1 within the kth bit-slice as a strap
(x0

H ;y
0

H) ! (x0

J ;y
0

J). Depending on the location of points J and
G, we may get an overlap between the straps (xG;yG)! (xH ;yH)
and (x0H ;y

0

H)! (x0

J ;y
0

J). This virtual overlap is not a problem, be-
cause the overlapping straps belong to the same net. After routing,
the virtual straps will be reinstated to their actual bit-slices, solv-

ing the overlap problem. Once we reach the virtual destination
pin, then we simply perform the reverse mapping of all virtual lo-
cations to their original locations to get the legal straps. We take
the same virtual instantiation approach for vertical straps such as
(xJ ;yJ)! (xP;yP).

If we follow the above approach, then we may get overlaps in the
horizontal straps of cross-bit nets belonging to same net-cluster. To
avoid this problem, we use the following approach: in any net-
cluster, if the horizontal span between the source and destination
pins is p, then we generate p different routes for that net-cluster.

3.7 Propagating the Routes and Completing
Having performed the routing in a representative bit-slice, we

propagate the routes to other bit-slices. For this, we use the net-
cluster information. Our route propagation schemes are described
in Algorithm 3 (for same-bit nets) and in Algorithm 4 (for cross-bit
nets).

Algorithm 3 : Route Propagation (for Same-Bit nets)
AllNets = getAllNets(k)
for each net (MasterNet) in AllNets do

MasterRoute = getRouteForNet(MasterNet)
NetCluster = getNetClusterForNet(MasterNet)
OtherSisterNets = getSisterNets(NetCluster, MasterNet)
for each net (SisterNet) in OtherSisterNets do

SisterRoute = ModifyRoute(MasterRoute, SisterNet, Mas-
terNet)
AssignRoute(SisterNet, SisterRoute)

end for
end for

Algorithm 4 : Route Propagation (for Cross-Bit nets)
AllCrossBitNets = getAllCrossBitNetsWithSourceInBit(k)
for each net (MasterNet) in AllCrossBitNets do

MasterRoutes = getMasterRoutes(MasterNet, p) /* Master-
Routes is an array of p distinct routes */
MasterRoute = MasterRoutes[0]
NetCluster = getNetClusterForNet(MasterNet)
OtherSisterNets = getSisterNets(NetCluster, MasterNet)
for each net (SisterNet) in OtherSisterNets do

NewSourceBit = getSourceBit(SisterNet)
PositiveBitDiff = NewSourceBit-k+N /* k is the index of
SisterNet */
ModValue = (PositiveBitDiff modulus p)
SisterRoute = ModifyRoute(MasterRoutes[Modvalue], Sis-
terNet, MasterNet)
AssignRoute(SisterNet, SisterRoute)

end for
end for

At this stage, we check whether there are any unrouted nets
present in the design. Usually, there are no nets left unrouted at
this stage. If some nets have not been routed, we invoke the strap-
based routing scheme to route these nets.

Circuit # Instances # Connections # Bits

Industry-1 1056 5504 32
Industry-2 2368 12672 32
Industry-3 4672 29184 64
Industry-4 6208 48128 64

Table 1: Characteristics of Example Circuits

134

Run-time (minutes) Wire- length (µm) Via-count
Example Ind. Router Our Router Ratio Ind. Router Our Router Ratio Ind. Router Our Router Ratio

Industry-1 70 12 0.17 47458 46790 1.41 6856 5678 17.18
Industry-2 145 26 0.18 97453 99476 -2.07 25876 22336 13.68
Industry-3 264 36 0.14 276456 282569 -2.21 39568 39452 0.28
Industry-4 394 42 0.11 589679 564568 4.25 44568 42976 3.57

AVERAGE 0.15 0.35 8.68

Table 2: Run-time, Wire-length and Via-count comparison between an Industrial Router and Our Router

4. ADVANTAGES OF OUR APPROACH
Our routing approach has several advantages over traditional rout-

ing schemes utilized in the datapath context. Some of these are:

� Speed of Routing:
By exploiting datapath regularity, our routing technique is
able to route an entire datapath while explicitly routing only
a small subset of the nets. This approach makes it possible
to route large industrial datapaths with significantly shorter
run-times compared to a traditional router.

� Easy incremental routing:
Before a design is taped out, several iterations of routing and
timing checks are performed. In these iterations, designers
often modify the design slightly. In such a scenario, the
router needs to perform efficient incremental routing. Be-
cause of the inherent speed and the regular nature of our
router, it is very much suitable for incremental routing.

� Predictable Routes :
The routes obtained by our router are highly regular across
bit-slices. So, the wiring parasitics for different nets in a net-
cluster are very similar, resulting in a predictable design.

� Better Debuggability and Timing:
If a datapath, routed using conventional routers, does not
meet timing requirements, the designer usually spends a sig-
nificant amount of time trying to find the badly routed nets
and then re-routes those nets. However, the potential irreg-
ularity of the routed nets can cause a ripple effect, mak-
ing some other nets critical. In our flow, all nets in a net-
cluster have substantially similar delays. This allows better
and more predictable timing characteristics of the design, and
eases the debugging task.

5. EXPERIMENTAL RESULTS
We implemented our router in the C++ programming language.

The code for our datapath router consists of about 7000 lines of
C++. Experiments were run on a 440 MHz HP machine with 512
MB memory, running the HP-UX 10.20 operating system.

To compare our results, we used datapath blocks from state-of-
the-art 32-bit or 64-bit microprocessors. Table 1 describes the char-
acteristics of our benchmark circuits. We compared our algorithm
against a commercially available router. In Table 2, we report run-
time, wire-length and via-count results from both our router and
industrial router.

On an average, our router is about 6� faster for 32-bit datapaths,
and 8� faster for 64-bit designs. This is expected since we only
route a single representative bit-slice in our approach. After our
current prototype router is optimized for speed, we expect our run-
time numbers to improve further.

We note that the average wire-length gain of our method is mini-
mal. Finally, we notice that our technique reduces the total number

of vias by about 8%. We conjecture that the our router utilizes
fewer vias because of its strap-based nature.

6. CONCLUSION
In this paper, we have presented a new style of detailed rout-

ing for datapath designs, which fully utilizes the regular structures
present in a datapath. In our technique, we first extract interconnec-
tion regularity within the datapath by creating “net-clusters”. Next,
we route a single representative bit-slice of the datapath, and from
the routes thus obtained, we infer routes for the rest of the nets in
its net-cluster. Experimental results demonstrate a significant im-
provement in run-time over a commercial router. Also, our router
produces highly predictable timing results and allows easy incre-
mental routing.

7. REFERENCES
[1] N. Buddi, M. Chrzanowska-Jeske, and C. Saxe, “Layout

synthesis for datapath designs,” in Proceedings of European
Design Automation Confererence, pp. 86–90, 1995.

[2] T. Ye and G. D. Micheli, “Data path placement with
regularity,” in Proceedings of IEEE/ACM International
Conference on Computer-Aided Design, pp. 264–270, 2000.

[3] J. King and S. M. Kang, “A timing-driven data path layout
synthesis with integer programming,” in Proceedings of
IEEE/ACM International Conference on Computer-Aided
Design, pp. 716–719, 1995.

[4] S. Raman, S. Sapatnekar, and C. Alpert, “Datapath routing
based on a decongestion metric,” in Proceedings of the ACM
International Symposium on Physical Design, pp. 122–127,
2000.

[5] S. Arikati and R. Varadarajan, “A signature based approach
to regularity extraction,” in Proceedings of IEEE/ACM
International Conference on Computer-Aided Design,
pp. 542–545, 1997.

[6] S. Hassoun and C. McCreary, “Regularity extraction via
clan-based structural circuit decomposition,” in Proceedings
of IEEE/ACM International Conference on Computer-Aided
Design, pp. 414–418, 1999.

[7] C. Lee, “An algorithm for path connections and its
applications,” IRE Transactions on Electronic Computing,
pp. 346–365, 1961.

[8] L. Pugh, “An improvement in printed circuit board
routability using a maze-running algorithm,” Electronic
Letters, vol. 14(1):8-9, Jan 1991.

[9] J. Soukup and S. Fournier, “Pattern router,” in Proceedings of
the International Symposium on Circuits and Systems,
pp. 486–489, 1979.

[10] T. Asano, “Parametric pattern router,” in Proceedings of
ACM/IEEE Nineteenth Design Automation Conference,
pp. 411–417, 1982.

135

