1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.18

21st International Conference on VLSI Design

An Inversion-Based Synthesis Approach for Area
and Power efficient Arithmetic Sum-of-Products

Sabyasachi Das
Synplicity Inc
Sunnyvale, CA, USA
Email: sabya@synplicity.com

Abstract— In state-of-the-art Digital Signal Processing (DSP)
and Graphics applications, the arithmetic Sum-of-Product (SOP)
is an important and computationally intensive operation, con-
suming a significant amount of area, delay and power. This
paper presents a new algorithmic approach to synthesize a
non-timing critical SOP block in an area-efficient and power-
efficient way, which can be very useful to reduce the size and
power consumption of the non timing-critical portion in the
design. We have divided the problem of generating the SOP into
three parts: inversion-based creation of the BitClusters (sets of
individual partial-product bits, which belong to the i'" bitslice),
propagation-based reduction of the BitClusters and selective-
inversion based computation of the final sum result. Techniques
used in these three steps help to reduce the implementation area
and power consumption for the SOP block. Our experimental
data shows that the SOP block generated by our approach
is significantly smaller (8.59% on average) and marginally
faster (0.42% on average) than the SOP block generated by a
commercially available best-in-class datapath synthesis tool. In
addition, our proposed SOP netlist consumes significantly less
dynamic power (7.92% on average) and leakage power (5.65%
on average) than the netlist generated by the synthesis tool. These
improvements were verified on placed-and-routed designs as well.

I. INTRODUCTION

As we migrate toward ultra deep sub-micron feature sizes,
designs are becoming increasingly complex, with very aggres-
sive optimization goals. In all circuits, some portions of the
design are timing-critical and other portions are not timing-
critical. It is very important to use area-efficient and power-
efficient architectures in the non timing-critical portion of the
chip. This would reduce the overall size and power consump-
tion of the design, with secondary improvement in circuit delay
as well. In addition, it would also provide more options to the
placement and routing of the timing-critical portions of the
circuit, potentially leading to improved performance.

Sum-of-Product (SOP) blocks have been extensively used
in DSP and Graphics algorithms. Some of the specific ap-
plications of SOP are Multiply-Accumulation (MAC), vector
quantization, computation of the euclidean distance between
two points, adaptive filtering, pattern recognition, image com-
pression, decoding, etc. Hence, an area-efficient and power-
efficient SOP architecture is becoming increasingly important.

There have been several techniques proposed, which can
be used to improve the area of a Sum-of-Product block. In
[1]1, [2], [3], [4], [5]; the authors have presented different
ways to use carrysave arithmetic on multiple arithmetic blocks

653

Sunil P. Khatri
Texas A&M University
College Station, TX, USA
Email: sunilkhatri@tamu.edu

z=p+q+r+g+h

-

z

Fig. 1. Block Diagram of an 8-input Sum-of-Product (SOP) block

to design large SOP blocks. These techniques emphasizes
the usefulness of SOP blocks over a collection of cascaded
arithmetic blocks performing unit operations (like additions,
subtractions, multiplications etc). There are several papers
focusing on the generation of multiplication and addition units,
which can be applied to the design of the SOP blocks also.
In [6], a modified Wallace tree construction is discussed, to
save most of the wasted area in the multiplier layout. In [7],
a dependence graph and modified Booth algorithm is used to
design a merged multiply-accumulate (MAC) hardware unit.
The authors in [8] describe a split array multiplier organized
in a left-to-right leapfrog structure, leading to less power
consumption. In [9], [10], [11], different techniques have been
proposed to reduce the partial products in multiplication and
SOP units. Competitive analysis between different reduction
approaches are presented in [12] and [13]. Among the adder
architectures, Ripple carry adder is the smallest and it is widely
used in non timing-critical path [14]. A mix of the above-
mentioned architectures can be used to generate an SOP block.

In this paper, we propose a new scheme to synthesize SOP
blocks in an area and power efficient manner. In our approach,
we define the notion of a BitCluster for every bit in the SOP
block. To generate the BitClusters for all bits, we use an
inversion-based scheme. After the BitClusters are created, we
perform a tree-reduction operation to reduce the BitClusters

@) CO‘ pute
1(!) I
& SOCIety

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:42 from |IEEE Xplore. Restrictions apply.

to two addends. In the third step, we add the two addends by
using a selective-inversion based adder to produce the output.
We have organized the rest of the paper as follows: In
Section II, we present some background information. We
discuss our proposed approach in Section III. The experimental
setup is explained in Section IV. Section V presents the
experimental results. Conclusions are drawn in Section VI.

II. PRELIMINARIES

In this section, we briefly explain the concept of a gener-
alized Sum-of-Product (SOP) block. The block diagram of an
8-input Sum-of-Product block is shown in the Figure 1. In
this block, there are eight inputs (a, b, ¢, d, e, f, g and h),
which produce the output z. In this SOP block, there are three
product terms or multiplicative terms (a*b, cxd and ex* f) and
two input sum terms or additive terms (g and h). A generalized
Sum-of-Product block can be used to implement the addition
of an arbitrary number of (including zero) product terms and
sum terms. As a consequence, an SOP block is quite general.

Since a multiplier has only one product term (a * b) and
no sum term, it can be considered as a special case of the
Sum-of-Product block. On the other hand, a 2-input adder has
only one sum term (a + b) and no product term, it can also
be considered as a special case of the Sum-of-Product block.
In addition to the multiplier and adder blocks, a generalized
Sum-of-Product block can be used to implement the multiply-
accumulator (MAC), subtractor, squarer, comparator, shared
multiplier-adder, tree-of-adders or combinations thereof.

III. OUR APPROACH

Figure 2 describes our overall flow, which consists of three
steps. In the following sub-sections, we discuss each step in

detail.

Creation of BitClusters

(Inversion—Based)

Reduction of BitClusters

(Propagation—Based)

Computation of Final Sum
(Selective Inversion—Based)

Our Flow to Synthesize an Area and Power Efficient SOP Block

Fig. 2.

A. Creation of BitClusters

We define the BitCluster for the it* bit as the set of
individual partial-product bits, which belong to the i*" bitslice.
To explain the creation of BitClusters, let us consider the

following Sum-of-Product (SOP) block: Z = (a *b) + (¢ * d)
where a, b are 4-bit wide and ¢, d are 2 bit-wide each. If we
denote signal a by (as, as, a1, ag); signal b by (bs, ba, by,
bo); signal ¢ by (ci1, cg) and signal d by (di, dy) then, the
BitClusters are:
o BitClusterg = {ag A by,
e BitCluster; = {a1 A by,

Co A do}

ag N\ bl, C1 /\do, co N\ dl}

e BitClusters = {a2 Abg, a1 Nby, ag Aba, c1 A dl}
o BitClusters = {az A b, a2 Ab1, a1 Aba, ag Abs}
. BitC’lustem = {a3 N bl, as N bg, ai A bg}

o BitClusters = {az A ba, a2 A bs}

o BitClusters = {az A bs}

For any given (m-bitxn-bit) + (p-bitxg-bit) Sum-of-Product,
we can compute all the BitClusters by performing 2-input
NAND operations between the appropriate bits of the mul-
tiplicand and multiplier in each product expression. In such
an approach, we need (m x n + p * ¢) number of 2-input
NAND gates to generate max(m+n-1, p+q-1) BitClusters. In
practice, due to the use of NAND gates, all the elements in the
BitClusters contain a logical inversion. In CMOS technology,
inverting functions (like NAND, NOR etc.) are typically more
efficient in terms of area, delay and power than non-inverting
functions (like AND, OR etc). We have found that all of the
commercially available 0.13x and 0.094 technology libraries
(that we have explored) have smaller and faster 2-input NAND
gates than 2-input AND gates. Throughout the rest of this
section, we denote the total number of BitClusters as N. In
Algorithm 1, we present the way to create the BitClusters.

B. Reduction of BitClusters

After generating the BitClusters, most of the BitClusters
contain more than two elements. For an SOP which imple-
ments the expression a xb+c*d+ex* f+ g+ h (and a,
b, ¢, d, e, f, g and h all have the same bit-width); all the
N BitClusters have more than two elements. In this step, we
reduce each BitCluster to a maximum of two elements.

For the reduction of partial products, two techniques pro-
posed in the context of multipliers are Wallace Tree [9] and
Dadda Tree [10] reduction schemes. In these approaches, an
n-input Wallace Tree or Dadda Tree reduces its k-bit inputs to
two (k+logen-1)-bit outputs. In the Wallace Tree, the number
of operands are reduced at the earliest opportunity. On the
other hand, in the Dadda Tree, the number of operands are
reduced in a more area-efficient way without any significant
impact in the delay of the reduction tree. The authors of [12],
[13] present a comparative study between different reduction
techniques.

All these techniques use different types of counters. A (p:q)
counter is defined as a functional block, which adds its p
single-bit inputs and produces g single-bit outputs; where p
and q satisfy the following equation:

q = [logap + 1]

In our approach for area and power efficient SOP block, we
use the Dadda-tree reduction scheme with a modified (3:2)
and (2:2) counters. In the Reduction of BitClusters phase,
each BitCluster would possibly need multiple modified (3:2)

654

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:42 from |IEEE Xplore. Restrictions apply.

Algorithm 1 :Creation of all the BitClusters
N = Total number of BitClusters in SOP

/I Loop-1: Initialize All BitClusters to NULL
for i =0to (N —1) do

BitCluster; = {NULL}
end for

/I Loop-2: Compute All BitClusters
1 (for each multiplicative-term or product-term)
for (Each Multiplicative term in the SOP expression) do
/I (assume that the expression is m1 * m2.)
wl = Width(m1)
w2 = Width(m2)
for k =0to (wl—1) do
for { =0to (w2—1) do
BitCluster 4y = {BitClustery
vV (mly Am2;)}
end for
end for
end for

/I Loop-3: Update All BitClusters
1 (for each additive-term or sum-term)
for (Each Additive term in the SOP expression) do
/I (assume that the additive expression is m3.)
w3 = Width(m3)
for Kk =0to (w3 —1) do
BitCluster(yy = {BitClustery V m3y}
end for
end for

return all (V) BitClusters

and (2:2) counters. After generating the BitClusters, all the
elements in the BitClusters contain a logical inversion (due
to the presence of the NAND gate in the BitCluster Creation
phase). To ensure that the outputs at the end of the reduction of
BitClusters also contain the logical inversion, we modify the
functionality of the (3:2) and (2:2) counters. A modified (3:2)
counter accepts 3 inputs signals (z;, y; and carry;) belonging
to *" column (BitCluster) in the partial-products and produces
1 output signal (sum;) for the i*" column (BitCluster) and 1
more output signal (carry;, 1) for the (i41)*" BitCluster. The
functionality of the sum; and carry;y+; of our modified (3:2)
counter is written as:

o sSumM; = T; ®y; © carry;
where © represents a 2-input XNOR gate

o carryir1 = (x; V y) Ay V. carry;) A (carry; Vo x;)

Similarly, a modified (2:2) counter accepts 2 inputs signals
(z; and y;) belonging to i*" column (BitCluster) in the partial-
products and produces 1 output signal (sum;) for the "
column (BitCluster) and 1 more output signal (carry;41) for
the (i + 1)** BitCluster. The functionality of the sum; and

carry;4+1 of our modified (2:2) counter is written as:

o sum; = x; ©Y;

o carryiry = (2 V y;)

In each BitCluster of the reduction-tree, we are able to use
instantiations of the same counter structure. The sum; output
of each counter in BitCluster; gets fed to either another
counter in the same BitCluster; or to the final adder stage
(described in the next section of this paper). The carry;i1
output of each counter in BitCluster; gets fed to either
another counter in BitCluster;41, or to the final adder stage.
At the output of the final level in each BitCluster, the inverted
result is produced, and would get fed to the final adder stage. In
this way, the reduction-tree structure propagates the inversion
property to the final stage of the SOP block.

C. Computation of Final Sum

Since the Sum-of-Product circuit needs to present the final
result in the single binary vector format, all the BitClusters
have to be added (with the inversion property taken care of)
by a final carry propagation adder circuit. After performing the
reduction of the BitClusters, each BitCluster consists of < 2
elements. Hence, we can view the N vertical BitClusters as
two horizontal vectors or operands, each having N elements.
Therefore, the problem of final addition of BitClusters gets
converted to the problem of a specialized 2-operand addition.
In this addition, the inputs are two inverted vectors of width N
bits and the output is one non inverted vector of width (N +1)
bits. In this section, we refer to these two operands as

e vector z (zy—1, TN—2, ..., 1, To) and

o vector y (YnN—1, YN—2, - Y1, Yo)

To have an area and power efficient SOP implementation
in the non-timing-critical path of a design, we definitely need
to use a low-area architecture for the final carry propagate
addition. In datapath designs, the ripple-carry architecture is
very useful in non-timing-critical portions of the design (if it
can satisfy the timing requirement of the off-critical path). Our
final adder is a modified version of the ripple-carry addition
scheme. In our final adder, every bit (i) has a modified-full-
adder cell; which takes 3 inputs (x;, y; and carry;) and
produces two outputs (sum; and carry;y1). The sum; output
from every modified-full-adder cell would have the correct
polarity (non-inverted) and is the final result for the ** bit
position. On the other hand, carry;+1 remains in the inverted
state. The Boolean expressions for the functionality of the
modified-full-adder cell is the following:

e sum; = x; Dy; D carry;

o carryir1 = (x; Ayi) A (yi A carry;) A (carry; A x;)

Based on the De Morgan’s law, we note that the above-
mentioned equation for carry;y; is identical to the carry; 41
output of a traditional (3:2) counter.

If a particular bit has less than three elements to be fed
to the modified-full-adder cell, then the remaining input pins
of the modified-full-adder cell need to be tied to the global
logic-1 signal. This is due to the fact that all the inputs of the

655

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:42 from |IEEE Xplore. Restrictions apply.

modified-full-adder are in inverted state. This situation could
happen frequently in the least significant bit of the SOP.

The algorithm for the Computation of the Final Sum is
presented in Algorithm 2.

Algorithm 2 :Computation of Final Sum
fori=0to (N —1) do
// Handle all the non-existent elements
if x; does not exist then

r;, = 1,()1
end if
if y; does not exist then
end if

if carry; does not exist then
carry; = 1'b1
end if

// Perform the addition in the 7*" bit
Instantiate modified-full-adder cell with three inputs
Ti, Yi, carry; and two outputs sum; and carry;ii
end for
Sumy = carryn

return the (IV + 1)-bit wide sum vector

IV. EXPERIMENTAL SETUP

We implemented our proposed approach in the C++ pro-
gramming language. The experiments were performed with
different Sum-of-Product RTL designs written in the Verilog
hardware description language.

To collect different data-points regarding the quality of
results for the Sum-of-Product blocks in the non timing-critical
portion of the design, we used the following variations:

o Multiple types of Sum-of-Product designs of different
expressions and input bit-widths:
In the Table I, we report different configurations of the
designs that are used in our experiments. Following is a
brief description of the different SOP blocks presented in
the Table 1.

— Two multiplier blocks (Z = (a * b)) having different
bit-widths. We refer to these as Mult-1 and Mult-2.

— Two Multiply-Accumulate blocks (Z = (a * b) + ¢).
We refer to these designs as Mac-1 and Mac-2.

— Two general SOP blocks. The block Sop-1 represents
the functionality of Z = (axb)+ (c*d) and the block
Sop-2 represents the functionality of Z = (a % b) +
(cxd)+e.

— Two Squarer blocks (Z = (a*a)). We refer to these
blocks as Sqr-1 and Sqr-2.

o The different technologies and libraries, we used are:

— Two libraries (L; and Lg) for 0.134 technology.
— Two libraries (L3 and L4) for 0.094 technology.

656

Name of the Widths of the Width of the
Sum-of-Product Input Signals Output Signal
(SOP) Block of the SOP Block of the SOP
Mult-1 16 , 16 32
Mult-2 24, 31 55
Mac-1 32, 32, 32 64
Mac-2 28, 24, 32 52
Sop-1 34, 35, 23, 28 69
Sop-2 16, 23, 21, 17, 31 39
Sqr-1 25 50
Sqr-2 18 36
TABLE I

CHARACTERISTICS OF DIFFERENT SUM-OF-PRODUCT BLOCKS

« Different input arrival time constraints:
To facilitate the explanation, let us assume that the
expression of the SOP is Z = (a * b) + (c * d) and each
of the four input signals is n-bit wide. We have used the
following types of input arrival time constraints:

— All input bits of all the signals arrive at the same

time. We refer to this constraint as Type-A. If we
denote Arr(a;) as the arrival time of the bit a; and
if k is a constant number, then this Type-A constraint
can be represented as:

Arr(a;) = k; 0<i<n
Arr(b;) = k; 0<i<n
Arr(e;) = k; 0<i<n
Arr(d;) = k; 0<i<n

This category represents the actual timing situations
if the SOP block is placed immediately after a
register-bank or the primary inputs of the design are
fed to the SOP block.

Different input bits arrive at different times. We refer
to this category of timing constraints as Type-B. We
believe that this category represents the actual timing
situations in most of the Sum-of-Product blocks
in real-life designs. Assuming that k is a constant
number and § is the delay of the fastest 2-input AND-
gate in the given technology library, the following
are some specific examples of the Type-B timing
constraints. Here we have explained the arrival times
for signal a;. Similar expressions for arrival times
applies to all the bits of signals b, ¢ and d as well.

1) Arr(ai):i*k’*d; 0<i<n

2) Arr(a;) = 0<i<n

3) A (al):() 0<i<[n/2]
r(al):k [n/2] <i<mn

4) Arr(a;) = 0; 0<i<[n/4]
Arr(a;) = kd; [n/4] <i< [n/2]
Arr(a;) = 2k6; [n/2] <i< [3n/4]
Arr(a;) = 3k6; [3n/4] <i<n

5) A r(al):() 0<i<[n/4]
Arr(a;) = ik [n/4] <i< [n/2]
Arr(a;) = zké [n/2] <1i< [3n/4]

Arr(a;) = 3iko; [Bn/4] <i<n

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:42 from |IEEE Xplore. Restrictions apply.

Area (;1,2) Worst-case Delay (ps)
Design Technology Timing Commercial Our (%) Commercial Our (%)
Name Library Constraint Tool ‘ Approach ‘ Improvement Tool Approach ‘ Improvement
Mult-1 Ly Type-A 2697 2472 8.34% 2148 2137 0.51%
Mult-2 L Type-A 4619 4268 7.59% 2671 2646 0.94%
Mac-1 Ly Type-A 5281 4983 5.63% 2836 2860 -0.84%
Mac-2 Ly Type-A 4306 3959 8.07% 2792 2761 1.11%
Sop-1 Ly Type-A 10743 9892 7.92% 3018 2982 1.19%
Sop-2 Ly Type-A 6937 6343 8.56% 2675 2651 0.89%
Sqr-1 L Type-A 2368 2151 9.16% 1864 1849 0.81%
Sqr-2 Ly Type-A 1873 1710 8.65% 1753 1738 0.86%
Mult-1 Ls Type-A 2953 2683 9.14% 1582 1573 0.69%
Mult-2 L3 Type-A 5816 5372 7.62% 1739 1758 -1.09%
Mac-1 L3 Type-A 6372 5826 8.57% 1951 1934 0.87%
Mac-2 Ls Type-A 4901 4421 9.81% 1814 1829 -0.83%
Sop-1 L3 Type-A 11694 10493 10.26% 2139 2126 0.61%
Sop-2 L3 Type-A 8165 7401 9.36% 1863 1882 -1.02%
Sqr-1 L3 Type-A 2687 2419 9.94% 1481 1453 1.89%
Sqr-2 L3 Type-A 2342 2092 10.68% 1107 1084 2.07%
Mult-1 Ly Type-B1 2103 1959 6.82% 2762 2735 0.97%
Mult-2 L Type-B1 4592 4248 7.49% 2918 2874 1.51%
Mac-1 Ly Type-B1 5286 4915 7.03% 3859 3841 0.46%
Mac-2 L Type-B1 3741 3421 8.56% 3724 3759 -0.94%
Sop-1 L Type-B1 9837 9036 8.14% 4206 4238 -0.76%
Sop-2 Ly Type-B1 6372 5897 7.45% 3562 3540 0.61%
Sqr-1 Ly Type-B1 1983 1812 8.62% 2844 2829 0.53%
Sqr-2 Ly Type-B1 1562 1448 7.28% 2181 2164 0.78%
Mult-1 L3 Type-B1 2972 2664 10.41% 1702 1737 -2.06%
Mult-2 L3 Type-B1 4619 4213 8.79% 1867 1851 0.86%
Mac-1 Ls Type-B1 5384 4937 8.30% 2914 2896 0.69%
Mac-2 L3 Type-B1 4063 3652 10.12% 2876 2829 1.63%
Sop-1 L3 Type-B1 8745 7946 9.14% 3285 3258 0.82%
Sop-2 L3 Type-B1 5691 5209 8.47% 2973 2961 0.40%
Sqr-1 L3 Type-B1 2284 2048 10.28% 2049 2084 -1.71%
Sqr-2 L3 Type-B1 1956 1781 8.92% 1631 1612 1.16%
[Average]| I I [[859% | | [o2%]
TABLE II

AREA AND DELAY COMPARISON OF SUM-OF-PRODUCT BLOCKS GENERATED BY A COMMERCIAL SYNTHESIS TOOL AND BY OUR APPROACH

V. EXPERIMENTAL RESULTS

We compared the netlist produced by our approach against
the output netlist of a commercially available best-in-class dat-
apath synthesis tool. The synthesis tool generates arithmetic-
optimized architectures for all the arithmetic blocks (like sum-
of-products) and then it performs general-purpose operations
like technology-independent optimizations, constant propaga-
tion, redundancy removal, technology mapping, timing-driven
optimization, area-driven optimization, low-power optimiza-
tion etc. While running the synthesis tool, we turned on all the
above-mentioned optimizations. In the Table II and Table III,
we report 32 sets of data-points (worst-case delay, total area,
dynamic and leakage power consumption) involving SOPs
having different widths and expressions, timing constraints
and technology libraries. If we compute the average of all the
32 data-points in the Table II and compare our results with
the results produced by the implementation of the commercial
datapath synthesis tool, we see a 8.59% area savings in the
SOP block (column 6 of Table IT) with a marginal 0.42% speed
improvement (column 9 of Table II). Similarly, the average
dynamic and leakage power consumption of our SOP block
is significantly less (7.92% for dynamic power and 5.65% for
leakage power) than that of the SOP produced by the synthesis
tool (columns 6 and 9 in the Table III).

We observe that in 8 cases, the delay of our SOP is slightly
worse than the baseline. As expected, in each of these cases,
the area and the power of our SOP is much better than the
baseline. Since our approach is designed to be used in the

657

area-critical portions of the design, savings in area and power
are considered to be the primary goal and the blocks do not
go though rigorous timing optimization phase. As a result, a
marginal degradation in timing is not considered significant.
Similarly, the slight improvement in timing in all the other 24
cases are also considered insignificant.

To keep the sizes of the Table II and Table III relatively
brief, we did not report the results for all possible combina-
tions of designs, timing constraints and technology libraries.
Note that the results in each of the combinations, which are not
reported here also supported our conclusion that, the proposed
approach produces area and power efficient SOP blocks.

To verify the correlation of post-synthesis experimental data
with the post place-and-route data, we performed placement
and routing on Mult-1 and Mac-1. For these two testcases, the
average post-routing total area of the SOP block generated
by our proposed approach is 0.89 (normalized to the total
area of the SOP generated by the commercial synthesis tool).
Similarly, the post-routing total power consumption of the SOP
block generated by our technique is 0.91 (normalized to the
total power of the SOP generated by the synthesis tool). In
addition, the post-routing worst delay of the SOP generated
by the synthesis tool and our techniques are comparable. The
individual results for the Mult-1 and Mac-1 designs correlate
with the post-synthesis numbers reported in the Table II and
Table III. These post-routing data confirm our conclusion
about the area and power efficiency of our approach.

With this observation, we conclude that our area and power
improvement is consistent across multiple types of SOPs,

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:42 from |IEEE Xplore. Restrictions apply.

Dynamic Power (uW) Leakage Power (uW)
Design Technology Timing Commercial Our (%) Commercial Our (%)
Name Library Constraint Tool Approach ‘ Improvement Tool Approach | Improvement
Mult-1 Ly Type-A 42 38 9.52% 9 9 0.00%
Mult-2 L1 Type-A 76 71 6.57% 18 17 5.55%
Mac-1 Ly Type-A 83 80 3.61% 19 17 10.53%
Mac-2 L Type-A 68 64 5.88% 15 15 0.00%
Sop-1 Ly Type-A 164 157 4.27% 34 32 5.89%
Sop-2 Ly Type-A 107 99 7.48% 26 23 11.54%
Sqr-1 L1 Type-A 30 30 0.00% 6 6 0.00%
Sqr-2 Ly Type-A 29 27 6.90% 6 5 16.66%
Mult-1 L3 Type-A 69 61 11.60% 21 20 4.76%
Mult-2 L3 Type-A 114 103 9.65% 34 31 8.82%
Mac-1 L3 Type-A 136 122 10.29% 40 37 7.50%
Mac-2 L3 Type-A 97 94 3.08% 29 28 3.44%
Sop-1 L3 Type-A 213 197 7.51% 63 63 0.00%
Sop-2 L3 Type-A 165 146 11.52% 52 49 5.77%
Sqr-1 L3 Type-A 51 45 11.76% 16 15 6.25%
Sqr-2 L3 Type-A 42 39 7.14% 11 11 0.00%
Mult-1 L; Type-B1 37 34 8.11% 8 7 12.50%
Mult-2 L1 Type-B1 68 63 7.35% 14 13 7.14%
Mac-1 Ly Type-B1 71 66 7.04% 15 15 0.00%
Mac-2 L1 Type-B1 67 59 11.94% 15 13 13.33%
Sop-1 Ly Type-B1 146 138 5.48% 29 28 3.45%
Sop-2 Ly Type-B1 95 90 5.26% 18 16 11.11%
Sqr-1 L Type-B1 26 25 3.84% 5 5 0.00%
Sqr-2 Ly Type-B1 21 19 9.52% 3 3 0.00%
Mult-1 L3 Type-B1 62 55 11.29% 19 17 10.52%
Mult-2 L3 Type-B1 99 91 8.08% 28 25 10.71%
Mac-1 L3 Type-B1 138 121 12.32% 41 39 4.87%
Mac-2 L3 Type-B1 94 85 9.57% 27 26 3.70%
Sop-1 L3 Type-B1 205 187 8.78% 63 60 4.76%
Sop-2 L3 Type-B1 147 136 7.53% 46 45 2.17%
Sqr-1 L3 Type-B1 48 43 10.42% 11 11 0.00%
Sqr-2 L3 Type-B1 39 35 10.25% 10 9 10.00%
[Average | I I | 7% | | [se% |
TABLE III

POWER COMPARISON OF SUM-OF-PRODUCT BLOCKS GENERATED BY A COMMERCIAL SYNTHESIS TOOL AND BY OUR APPROACH

timing constraints and technology libraries. This underscores
the strength of our approach. Since the SOP is a very area and
power intensive block, we believe that the non-timing critical
portions of many real-life datapath designs can significantly
benefit from our approach.

VI. CONCLUSION

In this paper, we have presented a new approach for im-
plementing an area and power efficient sum-of-product (SOP)
block, which would be very useful in the non timing-critical
portion of the design. Our inversion and propagation based
approach works seamlessly with different types of SOP blocks,
and across different technology libraries (0.13u, 0.09u). Our
experimental data shows that the SOP block generated by
our approach is significantly smaller (8.59% on average) and
marginally faster (0.42% on average) than the Sum-of-Product
block generated by a commercially available best-in-class
datapath synthesis tool. In addition, our proposed Sum-of-
Product netlist consumes significantly less dynamic power
(7.92% on average) and leakage power (5.65% on average)
than the netlist generated by the datapath synthesis tool.

REFERENCES

[1]1 T. Kim, W. Jao, S. Jjiang. “Circuit optimization using carry-save-adder
cells,” in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems CAD-17, pp. 974-984, 1998.

[2] A. Mathur, S. Saluja, “Improved merging of datapath operators using
information content and required precision analysis,” in Proceedings
of IEEE 38" Conference on Design Automation, pp. 462—467, 2001.

658

[3] A.K. Verma, P. Ienne. “Improved Use of the Carry-Save Representation
for the Synthesis of Complex Arithmetic Circuits,” in Proceedings
of the 2004 IEEE/ACM International conference on Computer-aided
design, pp.791-798, 2004.

A. Fayed, W. Elgharbawy, M. Bayoumi. ”A data merging technique

for high-speed low-power multiply accumulate units,” in Proceedings

of IEEE Internation Conference on Acoustics, Speech, and Signal

Processing, vol. 5, pp. 145-148, 2004.

P. F. Stelling, V. G. Oklobdzija, “Implementing Multiply-Accumulate

Operation in Multiplication Time,” in Proceedings of 13" IEEE

Symposium on Computer Arithmetic pp. 99, 1997.

N. Itoh, Y. Tsukamoto, T. Shibagaki, K. Nii, H. Takata, H. Makino, "A

32/spl times/24-bit multiplier-accumulator with advanced rectangular

styled Wallace-tree structure,” in [EEE International Symposium on

Circuits and Systems, pp. 73-76 vol. 1, 2005.

F. Elguibaly, A fast parallel multiplier-accumulator using the modified

Booth Algorithm,” in IEEE Transactions on Circuits and Systems II:

Analog and Digital Signal Processing, vol: 47(9), pp. 902-908, 2000.

Z. Huang, M. D. Ercegovac, “High-performance low-power left-to-right

array multiplier design,” in IEEE Transactions on Computers, vol: 54,

issue: 3, pp. 272-283, 2005

[9] C. S. Wallace, “A suggestion for a fast multiplier,” in IEEE Transac-
tions on Electronic Computers, EC-13(2):14-17, 1964.

[10] L. Dadda, “Some schemes for parallel multipliers,” in Alta Frequenza,
vol. 34, pp. 349-356, 1965.

[11] V. G. Oklobdzija, D. Villeger, “Improving multiplier design by using
improved column compressiontree and optimized final adder in CMOS
technology,” in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 3, issue. 2, pp. 292-301, 1995.

[12] T. Whitney, S. Earl, A. Jacob, “A comparison of Dadda and Wal-
lace multiplier delays,” in Advanced Signal Processing Algorithms,
Architectures, and Implementations XIII. Edited by Luk, Franklin T.
Proceedings of the SPIE, vol. 5205, pp. 552-560, 2003.

[13] K. C. Bickerstaff, E. E. Swartzlander, M. J. Schulte, “Analysis of
column compression multipliers,” in Proceedings of 15" IEEE Sym-
posium on Computer Arithmetic, pp. 33-39, 2001.

[14] M. D. Ercegovac, T. Lang. "Digital Arithmetic,” Morgan Kaufmann
Publishers, San Francisco, 2004.

=
o

[5

—

[6

[7

(8

—

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 03:42 from |IEEE Xplore. Restrictions apply.

