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Abstract—Single event upsets (SEUs) have become problematic for
both combinational and sequential circuits in the deep sub-micron era
due to device scaling, lowered supply voltages and higher operating
frequencies. To design radiation tolerant circuits efficiently, techniques
are required to analyze the effects of a radiation particle strike on a
circuit early in the design flow, and hence evaluate the circuit’s resilience
to SEU events. For an accurate estimation of the SEU tolerance of a
circuit, it is important to consider the effects of electrical masking. This
is typically done by performing circuit simulations, which are slow. In
this paper, we present an analytical model for the determination of the
shape of radiation-induced voltage glitches in combinational circuits. The
output of our approach can be propagated to the primary outputs of
the circuit using existing tools, thereby modeling the effects of electrical
masking. This enables an accurate and quick evaluation of the SEU
robustness of a circuit. Experimental results demonstrate that our model
is very accurate, with a very low root mean square percentage error
in the estimation of the shape of the voltage glitch of (4.5%) compared
to SPICE. Our model gains its accuracy by using a non-linear model
for the load current of the gate, and by considering the effect of τβ

on the radiation induced voltage glitch. Our analytical model is very
fast (275× faster than SPICE) and accurate, and can therefore be easily
incorporated in a design flow to estimate the SEU tolerance of circuits
early in the design process.

I. INTRODUCTION

Single event upsets (SEUs) (or single even transients (SETs)) have
become increasingly problematic for both combinational and sequen-
tial VLSI circuits in the deep sub-micron (DSM) era [1], [2], [3], [4].
This is due to continuously decreasing feature sizes, lower supply
voltages and higher operating frequencies which cause a reduction
in the noise margins of VLSI designs. Many critical applications such
as biomedical, space and military electronics demand reliable circuit
functionality. Therefore, the circuits used in these application must be
hardened so that they can provide reliable operation in the presence
of radiation particles.
Circuit hardening approaches [5], [6] often employ selective gate

hardening to reduce the area and delay overhead associated with the
hardening approach. This is achieved by only protecting those gates
in the circuit which are the significant contributers to the soft error
failure rate of the circuit. Such gates in the circuit are identified based
on three masking factors: logical, electrical and temporal masking [3],
[5]. Out of these masking factors, both logical and temporal masking
can be obtained without electrical simulations [3], [5]. However,
electrical masking of a gate G in the circuit heavily depends upon
the electrical properties of all the gates along any sensitized path
from the output of G to a primary output of the circuit. Thus,
electrical (SPICE) simulations are required to determine electrical
masking effects in the circuit. For efficient circuit hardening, it is
important to consider the effects of all these three masking factors and
hence circuit simulations are required. Another reason for the need
of the circuit simulations is that when a voltage glitch propagates
through the circuit, the pulse width of the voltage glitch can increase,
resulting in pulse spreading [7]. With circuit simulations, it will be
possible to accurately obtain the glitch width at the primary output
of the circuit. This is important for system level circuit hardening
approaches [8], [9], [10] which use information about the radiation
induced voltage glitch at the primary output for soft error detection
and tolerance mechanisms. Therefore, techniques are required to
analyze and simulate a circuit early in the design flow, and evaluate
its resilience to SEU/SET events. Based on the results of this analysis,

circuit hardening approaches can be implemented to achieve the
level of protection required (while satisfying area, delay and power
constraints) while taking masking factors into consideration to reduce
overheads. This will help in reducing the number of design iterations.
However, this can be practically achieved only if these analysis
techniques can quickly and accurately simulate the SETs for different
particle energies and for different gates with different input states.
An exhaustive SPICE based simulation of SET events in a circuit

would be accurate; however it would require a large number of
simulations since the circuit can have a large number of gates and a
radiation particle strike can occur at any one of these gates (which
can have any input state). Also, the transient pulse resulting from
an SEU event depends upon the node capacitance and the sizing
characteristics of the gate driving that node, the amount of charge
dumped by a radiation particle strike and the state of the circuit
inputs. Therefore, it is computationally intractable to use SPICE-
like simulators to simulate the effect of SET events at early stages
in the design flow. Thus, there is a need for efficient and accurate
models/simulators for SET events in combinational circuits. These
simulators should quickly estimate the shape of the voltage glitch at
the node where the radiation particle strikes, and then propagate the
effect of voltage glitch to the primary outputs of the circuit.
The current pulse that results from a radiation particle strike is

traditionally described as a double exponential function [11], [12].
The expression for the pulse is

iseu(t) =
Q

(τα − τβ)
(e−t/τα − e−t/τβ ) (1)

Here Q is the amount of charge deposited as a result of the ion
strike, while τα is the collection time constant for the junction and
τβ is the ion track establishment time constant. The time constants
τα and τβ depend upon several process related parameters, and
typically τα is of the order of 200ps and τβ is of the order of tens
of picoseconds [5], [4].
In this paper, we present an analytical model for the radiation

induced transients in combinational circuits. Our model efficiently
estimates the shape of the voltage pulse or glitch that results from a
radiation particle strike. The voltage glitch estimated by our analytical
model can be propagated to the primary outputs of the circuit using
a voltage glitch propagation tool such as [13]1. Since there exists
previous work to address glitch propagation, it is not addressed in
the current work. The properties of the voltage glitch (such as the
magnitude, glitch shape and pulse width) at the primary output can
be used to evaluate the SEU/SET robustness of the circuit. Based
on the result of this analysis, circuit hardening approaches can be
implemented to achieve the level of SET tolerance required.
The main contributions of this paper are:

• We present a closed-form analytical expression to compute the
shape of the voltage glitch induced by a radiation particle strike.
Although not addressed in this paper, this voltage glitch can be
propagated to the primary outputs of the circuit to measure the
SEU robustness of the circuit.

• We use a model for the load current IG
out(Vin, Vout) or the

output terminal current) of the gate G to increase the analysis
accuracy. In contrast, the existing approaches [14], [13] model

1We are currently developing a more accurate voltage glitch propagation
tool
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the electrical behavior of the gate using a linear RC circuit. The
load current model of the gate is also more accurate than the
transistor IDS model used in [15] for the SET analysis.

• Our model can be used for any combinational gate.
• The model can be used for the analysis of SET events on
arbitrarily sized gates with different loading, and for arbitrary
values of deposited charge.

• In contrast to [14], [13], we consider the effect of the ion track
establishment constant (τβ) of the radiation particle induced
current pulse. This improves the accuracy of our method.

It was reported in [15], through SPICE simulations, that ignoring
τβ results in an under-estimation of the pulse width of the voltage
glitch by 10%. Therefore, neglecting the contribution of the τβ term
of the current pulse of Equation 1 diminishes the severity of the
radiation particle strike, and hence leads to an optimistic estimate for
the voltage glitch. In other words, the magnitude and the pulse width
of the voltage glitch that is estimated can be lower than the actual
values. Therefore, ignoring τβ (as done by [14], [13]) for SEU/SET
tolerance analysis and for circuit hardening, can lead to an optimistic
design. Hence, the system can fail in the event of a radiation particle
strike. In this paper, we consider the effect of τβ on the radiation
induced current pulse, and also use a non-linear model for the load
current of a gate, to increase the analysis accuracy. The root mean
square error in the estimation of the shape of the voltage glitch using
our approach is 4.5% (compared to SPICE based simulation).

II. PREVIOUSWORK

The simulation and analysis of SEU-induced transients has been a
topic of interest for many years. Much work has been done on this
topic for combinational and sequential circuit elements [16], [1], [2],
[14], [17], [18], [13]. Most of this work can be classified under three
categories: device-level, circuit-level and logic-level.
Device based simulation approaches [19], [20] perform three-

dimensional numerical simulation to evaluate the effect of a radiation
particle strike by solving device physics equations. Although such
approaches result in a very accurate analysis, they are extremely time-
consuming in nature. Also, these techniques provide very little direct
insight into the problem of circuit hardening.
For circuit-level and logic-level simulation approaches, a double

exponential current pulse (Equation 1) is used to model a particle
strike [11], [18], [6]. Logic-level based approaches [17], [21] are
utilized when the speed of analysis is more critical than the accuracy
of the analysis. In these approaches, the electrical nature of transient
faults are abstracted into logic-level models, which are then used
in gate-level timing simulations to propagate the effects of particle
strikes to the memory elements at the outputs of the circuit. The
large inaccuracy of these approaches makes them unattractive for
robustness evaluation of circuits under SEU transients.
Circuit-level simulation approaches provide accuracy and runtimes

which are intermediate between device and logic based methods. As
mentioned in Section I, SPICE based circuit simulation provides an
accurate analysis, however it is still very time consuming since a
large number of simulations are required to be performed due to
the reasons mentioned in Section I. In [22], the authors presented a
methodology to analyze compound noise effects in circuits by using
look-up tables and a database generated using SPICE simulations of
all the cells in a library. An iterative approach for soft error rate
analysis of combinational circuits (while accounting for electrical
masking) is reported in [23]. As the approach of [23] estimates the
effects of a radiation particle strike iteratively, the speedup obtained
over SPICE simulations is not high. Many approaches [24], [13],
[14] attempt to solve a non-linear differential equation (this equation
is called Ricatti differential equation) of the transistor to obtain a
closed-form expression for SEU-induced transients. However, due to
the non-linear nature of the differential equation, it is not possible to
obtain a closed-form solution. Thus, many approximations have been
proposed to model SEU transients. The authors of [24] presented
an exact solution of the Ricatti equation using a computationally
expensive infinite power series solution. In [13], a switch-level
simulator is presented to simulate faults induced by radiation particle

strikes. The simulator uses a linear RC gate model to simplify the
analysis. In [14], a closed-form model is reported for SEU induced
transient simulation for combinational circuits. Again, a linear RC
gate model is used, which is derived using a SPICE-based calibration
of logic gates for a range of values of fanout, charge deposited
and scale factor. In [14], [13], the circuit simulation approaches
assume a linear RC gate model which is not a valid assumption
as will be explained in Section III. Also, these approaches neglect
the contribution of the ion track establishment constant (τβ) of the
SEU-induced current pulse of Equation 1, which further increases
the inaccuracy in the analysis. Recently, an analytical model for the
estimation of the pulse width of the voltage glitch induced by a
radiation particle strike in combinational circuits was reported in [15].
The approach of [15] is only able to predict the pulse width of the
voltage glitch induced by a radiation particle. The current model
used in [15] is not very accurate due to which the inaccuracy in the
pulse width estimation is sometimes high (as high as 10%). Also,
this approach cannot predict the shape of the voltage glitch which is
required for efficient circuit hardening as explained in Section I. In
contrast to this, we uses a more accurate current model of a gate and
our approach can accurately predict the shape of the voltage glitch
induced by a radiation particle strike. Our model can also compute
the pulse width of the voltage glitch. Also, our model incorporates
the contribution of τβ .
Orthogonal to the analysis of SEU-induced transients, a great

deal of research has been conducted on circuit-level modeling and
simulation for static timing analysis (STA) [25] and static noise
analysis (SNA) [26]. The approaches for STA [25] and SNA [26] are
iterative, and hence sometimes require a large number of iterations
to converge. Thus, the speedup obtained by such iterative approach
is not high (the speedup of [25] is 3-70× and [26] is 20× compared
to SPICE), and also varies in a wide range depending upon the
simulation scenario. In contrast to these iterative approaches, our
analytical approach is at least 275× faster compared to SPICE.

III. OUR APPROACH

In Section III-A, we classify the radiation-induced transient into
4 cases based on the magnitude of the voltage glitch induced by a
radiation particle strike. Our model for a radiation-induced voltage
glitch, based on these cases, is introduced in Section III-B. In
Section III-C, we provide details about our method to determine the
shape of the radiation-induced voltage glitch.

A. Classification of Radiation Particle Strikes

The analysis presented in this paper is for an inverter with its input
at VDD and its output at GND. The radiation particle strike results in
a positive voltage glitch at the output of the gate. However, the same
analysis and the same analytical model can be used for any type of
gate (NAND, NOR, etc), with any logic values applied to its inputs.
The handling of NAND, NOR, etc. gates is achieved by constructing
an equivalent inverter for the gate. The size of this inverter depends on
the given input values of the gate. The applicability of our model to
different gates is verified by applying our model to a 2-input NAND
gate (for all four input combinations) and 3-input NOR gate (for all
eight input combinations). These results are presented in Section IV.
Note that for multiple input gates, we do not consider the radiation
particle strike at intermediate nodes of the gate, because the worst-
case transient occurs when the particle strike occurs at the output
node of the gate. Therefore, the estimate of the voltage glitch at the
output node of the gate due to a particle strike at any intermediate
node will not be useful for circuit hardening. Hence, in our analysis,
we do not consider the cases where the radiation particle strike occurs
at intermediate nodes of multi-input gates.
Consider four identical inverters as shown in Figure 1 (a). These

inverters are implemented using a 65nm PTM [27] model card with
VDD=1V. Let node a be at logic value 0 when a radiation particle
strikes the diffusion of INV1. This is modeled by the injection of
iseu(t) (described by Equation 1) at node a. The voltage glitch that
results from the radiation particle strike is shown in Figure 1 (b) for
four different inverter sizes (1X, 4X, 5X and 6X) and for Q=100fC,
τα = 200ps and τβ = 50ps. From Figure 1 (b), we observe that INV1
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Fig. 1. a) SEU current injected at the output of inverter INV1, b)Voltage
glitch at node a

can operate in 4 different cases during the radiation event transient,
based on the maximum voltage glitch magnitude VGM . Note that
the value of VGM depends upon the sizes of the devices M1 and
M2, the gate loading at the output node a and the value of Q, τα

and τβ . The classification of INV1 operating in different cases is
as follows. If an SEU event results in a maximum voltage glitch of
magnitude VGM ≥ V DD + 0.6V, we refer to this as Case 1. If
V DD + |VTP | ≤ VGM < V DD + 0.6V , then we call this Case 2.
If VGM is greater or equal to V DD/2 and less than V DD+ |VTP |,
this condition is referred to as Case 3. For VGM < V DD/2, we have
Case 4. Out of these 4 cases, Case 4 corresponds to a voltage glitch
of magnitude less than V DD/2 and hence the radiation event does
not result in a logic flip at the node. For other regions, the radiation
event causes a logic flip, and hence we present our analysis for these
cases (i.e. for Cases 1, 2 and 3). The shape of the voltage glitch is
computed differently for different cases, due to the different behavior
of M1 and M2 (Figure 1 (a)) for these cases. The description of Cases
1, 2 and 3 is summarized below:

• Case 1: In this case, with the increasing voltage of node a
(Va), M1 starts conducting in the linear region and enters
the saturation region when the Va becomes more than V N

dsat.
M2 starts conducting in the saturation mode once Va crosses
V DD + |VTP |. Eventually when Va reaches V DD + 0.6V, the
voltage between the source diffusion and the bulk terminal of
the PMOS transistor M2 becomes ≥ 0.6V. Therefore, the diode
between these two terminals get forward biased and it starts
conducting heavily. Thus Va gets clamped to a value around
V DD + 0.6V.

• Case 2: In this case as well, both M1 and M2 conduct similar to
Case 1. However, the diode between the diffusion and the bulk
terminals of M2 remains off.

• Case 3: Only M1 conducts in this case. M1 starts conducting
in the linear region and when Va crosses V N

dsat, M1 enters the
saturation region. M2 remains off in this case.

Based on the above discussion, we note that inverters of four
different sizes operate quite differently during the radiation-induced
transient, and the maximum voltage glitch magnitude (VGM ) deter-
mines their behavior at different times during the transient. Therefore,
it will not be accurate to model INV1 by a linear RC gate model,
as in the case [14], [13]. Also, it will be inaccurate to model the
load current of INV1 (during the radiation induced transient) at the
transistor current of M1 (as modeled by [15]) since M2 also conducts
in Cases 1 and 2.

B. Overview of Our Model for Determining the Pulse Shape of the
Voltage Glitch

Figure 2(a) (shown at the top left portion of Figure 2) schematically
illustrates a voltage glitch that results from a radiation strike at the
output node a of INV1. As shown in Figure 2(a), the node voltage
rises and reaches V N

dsat at time T 1
sat, V DD/2 at time t1, V DD +

|VTP | at time T 1
P (for Cases 1 and 2), and then after reaching a

maximum value of VGM , the node voltage falls to V DD + |VTP | at
time T 2

P (for Cases 1 and 2), V DD/2 at time t2 and finally to V N
dsat

at the time T 2
sat. Hence the shape of the voltage glitch of Figure 2(a)

is defined by the node a voltage equations between the time intervals:
(0, T 1

sat), {(T
1
sat, T

1
P ), (T

1
P , T

2
P ) and (T

2
P , T

2
sat)} for Cases 1 and 2

or (T 1
sat, T

2
sat) for Case 3, and (T

2
sat,∞) for all cases. Our goal is

to compute all the variables which define these time intervals, and
also the node voltage equations of node a corresponding to these
time durations. We can also compute t1 and t2 to obtain the width
of the voltage glitch of Figure 2(a) (the width of the voltage glitch is
t2 − t1). Before we can use our analytical model, we characterize all
the gates in our library using the same approach as reported in [25].
For each gate (for all input combinations), we compute the load
current of the gate (Iout(Vin, Vout)) as a function of its output node
voltage, and store this in a look-up table. We also compute the input
gate capacitance CG (the output node diffusion capacitance CD) as a
function of the input (output) node voltage and store them in a look-
up table. For these look-up table entries, we discretize the voltages
in steps of 0.1V. For example, for INV1 of Figure 1, we compute
Ia(Vin, Va) through output terminal a for different Va voltage values
at a, when the input node in is at V DD and GND (Vin = V DD
and Vin = GND). Thus, the number of current look-up tables for
any gate is equal to 2n (where n is the number of inputs of a gate).
Similarly, CD is also computed depending upon the input state of
the gate. Therefore, for an n-input gate, the total size of the look-up
tables for CG is 23 ·n, CD is 17 ·2

n and load current Iout is 17 ·2n .
This step is performed once for each gate in a library and thus it
does not affect the runtime of our model. Also, n is typically ≤ 3,
hence these lookup tables are quite tractable in size. The saturation
voltage (Vdsat) is obtained using SPICE [28].

YesNo

No

Yes

Yes No

(a)

Use Case 3 equations to
estimate the shape and
width of voltage glitch

Determine the value of VGM

using gate current model for
Va ≥ V DD + |VTP |

If
Case==4

Cell library data
Iout(Vin, Vout), CG and CD

No voltage
glitch

If
Case==3

If
Case==2

Use Case 2 equations to
estimate the shape and
width of voltage glitch

Use Case 1 equations to
estimate the shape and
width of voltage glitch

Q, τα and τβ

Given a gate G, its input state,
the gates in the fanout of G and

Determine the value of VGM

using gate current model for
V N

dsat ≤ Va < V DD + |VTP |

T 2

sat

time
T 1

P T 2

P
T 1

sat t1 t2

V N
dsat

V DD
2

VGM

v

VTP

V DD+

Fig. 2. Flowchart of our model for Pulse Width Calculation

Figure 2(b) shows the flowchart of our algorithm to compute the
shape and the width of the voltage glitch. The input to our model is
a gate G (the radiation event is to be simulated at the output node of
gate G), its input state, the list of gates which are driven by the gate
G, and the values ofQ, τα and τβ . Our algorithm first computes VGM

using the gate current model for V N
dsat < Va < V DD + |VTP | and

then determines the case that is applicable. If VGM < V DD/2 (i.e.
Case 4 applies), then there is no voltage glitch reported. Otherwise
if VGM < V DD + |VTP | then Case 3 applies and we use Case
3 equations to obtain the shape and the width of the voltage glitch
else we again compute VGM using gate current model for Va >
V DD + |VTP |. Based on this new value of VGM , the operating
case of gate G can be found (either Case 1 or Case 2) and then the
corresponding case equations are used to compute the shape and the
width of the voltage glitch. The steps of our algorithm are explained
in the following sub-sections.

C. Derivation of Our Model for Determining the Shape of the Voltage
Glitch
As mentioned earlier, the analysis presented in this paper is for

INV1 (Figure 1) with its input node in at VDD and the output node
a at GND. A radiation particle strike results in a positive voltage
glitch at node a. To ensure that the model for radiation events in
combinational circuit elements is manageable, we simplify the load
current model IINV 1

a (Vin, Va) of INV1. Note that in the following
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analysis we use IINV 1
a (Va) instead of IINV 1

a (Vin, Va) since the
analysis is presented for Vin = V DD. With the input terminal of
INV1 at V DD, IINV 1

a (Va) can be written as:

I
INV 1

a (Va) =

{
Va/Rn Va < V N

dsat

K3 + K4 · Va V N
dsat ≤ Va < V DD + |VT P |

K5 + K6 · Va V DD + |VTP | ≤ Va < V DD + 0.6V

Here, Rn is the linear region resistance of M1 (since M2 is off
in this region), which is calculated using the IINV 1

a (Va) versus Va

lookup table for Va values less than V N
dsat. The constants K3 and

K4 are obtained by using a linear equation for the points IINV 1
a (Va)

versus Va from the lookup table for Va values greater than V N
dsat and

less than V DD + |VTP |. When Va > V DD + |VTP |, IINV 1
a (Va)

increases super-linearly with Va because both M1 and M2 are ON.
Thus, the constants K5 and K6 are obtained by fitting a least square
line to the points (Va, IINV 1

a (Va) ) from the lookup table for Va

values greater than V DD + |VTP | and less than V DD + 0.6V .
To determine the applicable case, we first need to find VGM . The

method of finding VGM is described next.
1) Voltage glitch magnitude VGM : A radiation event can result in

a node voltage flip only if Imax
seu > IINV 1

a (V DD/2), where Imax
seu is

the maximum value of SEU-induced current pulse of Equation 1. This
is a necessary condition which is used to check whether a radiation
event will result in a significant voltage glitch or not. The differential
equation for the radiation-induced voltage transient at the output of
INV1 of Figure 1 is given by:

C
dVa(t)

dt
+ IINV 1

a (Va) = iseu(t) (2)

where, C is the capacitance2 at node a. The above equation can be
integrated with the initial condition Va(t) = 0 at t = 0 to obtain
Va(t). For deep sub-micron processes, Vdsat is much lower than
VGS − VT due to short channel effects. For the 65nm PTM [27]
model card used in this paper, Vdsat for both NMOS and PMOS
transistors is lower than V DD/2. Therefore, to obtain the VGM

value, we first integrate Equation 2 from the initial condition and
using IINV 1

a = Va/Rn till Va reaches the V N
dsat value. Then we

again integrate Equation 2 using IINV 1
a (Va) = K3 + K4 · Va to

obtain the Va(t) expression. Then, we find the maximum value
VGM attained by this Va(t) expression. If VGM < V DD + |VTP |
then INV1 is operating in Case 3. Otherwise, INV1 in operating
in either Case 1 or Case 23. The methodology to decide between
Cases 1 and 2 is explained later. Now integrating Equation 2 using
IINV 1

a (Va) = Va/Rn and with the initial condition Va(t) = 0 at
t = 0, we get:

Va(t) =
In

C
(
e−t/τα

X
−

e−t/τβ

Y
− Ze−t/RnC) (3)

where X =
1

RnC
−

1

τα
, Y =

1

RnC
−

1

τβ
,

In =
Q

τα − τβ
& Z =

1

X
−

1

Y

To obtain the time T 1
sat when Va(t) reaches the V N

dsat value from
Equation 3, we linearly expand Equation 3 around the initial guess
T 1a

sat. The expression for T 1
sat thus obtained is:

T
1

sat = T
1a
sat +

V N
dsat − In

C ( e
−T1a

sat
/τα

X − e
−T1a

sat
/τβ

Y − Ze−T1a
sat

/RnC)

In
C (− e

−T1a
sat

/τα

ταX + e
−T1a

sat
/τβ

τβY + Z
RnC e

−T1a
sat

/RnC
)

(4)

To obtain the initial guess T 1a
sat, we approximate the rising part

of the SEU-induced current by a line between the origin and the
point where iseu(t) of Equation 1 reaches its maximum value Imax

seu .
The SEU-induced current iseu(t) reaches Imax

seu at T max
seu . Then we

substitute this approximated SEU current in the RHS of Equation 2
and integrate it from the initial condition Va(t) = 0 at t = 0 to

2The value of C is obtained by the addition of the average value of n ·CG

and CD over the operating voltage range. The factor of n occurs due to the
fact that we assume a fanout of n.
3In Cases 1 and 2, both M1 and M2 conduct and hence INV1 load current

model K5 + K6 · Va is used to accurate value of VGM . This new value of
VGM is used to decide between Cases 1 and 2.

Va(t) = V N
dsat at t = T 1a

sat using IINV 1
a (Va) = Va/Rn. After this we

solve for T 1a
sat by performing a quadratic expansion of the resulting

equation around the origin. The expression we get for T 1a
sat is not

reported for brevity.
So far we know T 1

sat, the time when Va(t) reaches V N
dsat, or the

time when M1 enters the saturation mode. Now we again integrate
Equation 2 with the initial condition Va(t) = V N

dsat at t = T 1
sat, and

using IINV 1
a (Va) = K3 +K4 · Va. The expression we get for Va(t)

is:

Va(t) =
In

C
(
e−t/τα

X ′
−

e−t/τβ

Y ′
) −

K3

K4
+ Z′e−K4t/C

(5)

where X ′ =
K4

C
−

1

τα
, Y ′ =

K4

C
−

1

τβ

Z′ = V N
dsate

K4T1

sat/C −
In

C
eK4T1

sat/C(
e−T1

sat/τα

X ′

−
e−T1

sat/τβ

Y ′
) +

K3

K4
eK4T1

sat/C

To calculate the value of VGM , first we differentiate Equation 5
and equate dVa(t)/dt to zero and solve for TVGM (the time
at which Va(t) reaches its maximum value). Since the equation
dVa(t)/dt = 0 is also transcendental equation, hence we linearly
expand dVa(t)/dt = 0 around T a

VGM
and solve for TVGM . We get:

TVGM = T a
VGM

+

e
−T a

VGM
/τα

ταX′ − e
−T a

VGM
/τβ

τβY ′ + K4Z′

C
e
−K4Ta

VGM
/C

e
−T a

VGM
/τα

τ2
αX′

− e
−T a

VGM
/τβ

τ2

β
Y ′

+
K2

4
Z′

C2 e
−K4Ta

VGM
/C

(6)
Now, we calculate VGM by substituting TVGM obtained from

Equation 6, in to Equation 5. If VGM < V DD/2 then Case 4
applies and the radiation event does not flip the logic level of the
affected node. If V DD/2 ≤ VGM < V DD + |VTP |, then Case 3 is
applicable. Otherwise, either Case 1 or Case 2 is applicable. Before
we describe the methodology to decide between Case 1 and Case 2,
we will first discuss the method to obtain the value of T a

VGM
.

Note that the output node voltage of INV1 i.e. Va(t) of Equation 5
always attains its maximum value after T max

seu (the time iseu(t)
of Equation 1 reaches its maximum value Imax

seu ). Therefore, we
integrate Equation 2 using a linear model (imseu(t)) for radiation-
induced current for time t > T max

seu and with the initial condition
Va(t) = V sm

a at t = T max
seu obtained from Equation 5. The radiation-

induced linear current model imseu(t) has one of its end-points Imax
seu at

a time value of T max
seu . The other end-point has its current value as 0,

and its time value t∗ is obtained by equating the charge deposited by
the actual SEU current iseu(t) from time T max

seu to∞ and the charge
deposited by the linearized radiation-induced current equation. Hence
the expression for the radiation-induced linear current model is:

imseu(t) = Imax
seu (1 −

t − T max
seu

t∗ − T max
seu

) = P + Mt (7)

Now we substitute imseu(t) for iseu(t) in Equation 2, use
IINV 1

a (Va) = K3 + K4 · Va and then integrate. After this we
differentiate the resulting equation for Va(t) and equate dVa(t)/dt
to zero and solve for T a

VGM
.

Deciding between Case 1 and Case 2: Before we can decide
whether INV1 is operating in Case 1 or Case 2, first we need to
compute the time t1 when Va(t) reaches V DD/2 and then we have
to compute T 1

P (the time when Va(t) reaches V DD + |VTP |) using
t1. After this, we will integrate Equation 2 using the initial condition
Va(t) = V DD + |VTP | at t = T 1

P and IINV 1
a (Va) = K5 + K6 ·Va

to obtain the expression for Va(t). Then this expression of Va(t) will
be used to decide between Cases 1 and 2 using the VGM value. As
shown in the flowchart of our algorithm in Figure 2, the method to
compute t1 is identical for cases 1, 2 or 3. Therefore, the value of
t1 will also be useful for the estimation of the pulse width of the
voltage glitch induced. To obtain the expression for t1, we substitute
t = t1 and Va(t1) = V DD/2 in Equation 5 and then solve for t1
after expanding it linearly around the point ta

1 (which is an initial
guess for t1). Here ta

1 = T 1
satV DD/(2V N

dsat). The expression for t1
is therefore:
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t1 = ta
1 +

e
−ta

1
/τα

X′ − e
−ta

1
/τβ

Y ′ + C
In

(Z′e−K4ta
1

/C − K3

K4
− V DD

2
)

e
−ta

1
/τα

X′τα
− e

−ta
1

/τβ

Y ′τβ
+ K4Z′

In
e−K4ta

1
/C

(8)
Then we compute the time t = T 1

P when Va(t) reaches V DD +
|VTP | since the load current model of INV1 changes at this time
instant. To obtain T 1

P , we repeat the same steps as we followed for the
derivation of the t1 expression with the condition Va(t) = V DD +
|VTP | at t = T 1

P in Equation 5 and with the initial guess T 1a
P =

t1 + (V DD + |VTP | − V N
dsat)/(V DD/2 − V N

dsat). The expression
for T 1

P is therefore similar to Equation 8 with ta
1 replaced by T 1a

P ,
t1 by T 1

P and V DD/2 by V DD + |VTP |.
Now we integrate Equation 2 with the initial condition Va(t) =

V DD + |VTP | at t = T 1
sat, and using IINV 1

a (Va) = K5 + K6 · Va.
The expression we get for Va(t) is:

Va(t) =
In

C
(
e−t/τα

X ′′
−

e−t/τβ

Y ′′
) −

K5

K6
+ Z′′e−K6t/C

(9)

where X ′′ =
K6

C
−

1

τα
, Y ′′ =

K6

C
−

1

τβ

Z′′ = V N
dsate

K6T1

P
/C −

In

C
eK6T1

P
/C(

e−T1

P
/τα

X ′′
−

e−T1

P
/τβ

Y ′′
) +

K5

K6
eK6T1

P
/C

To calculate the value of the maximum value of Va(t) of Equa-
tion 9 i.e. VGM (maximum glitch magnitude for Case 1 or Case 2),
we have to repeat the same steps as we followed while calculating the
maximum value of Va(t) of Equation 5. After we obtain the value
of VGM , we can decide whether the INV1 is operating in Case 1
or Case 2. Note that by using this method, VGM can be evaluated
to be greater than V DD + 0.6V , because the diode is not modeled
in Equation 2. Therefore, if VGM > V DD + 0.6V then we set
VGM = V DD + 0.6V .
So far, we have obtained the expression for VGM which can be

used to determine the operating case of INV1. We also derived
expressions for T 1

sat, t1, T 1
P and the INV1 output node voltage

equations for different time durations (Equations 3, 5, 9).

2) Derivation of the expressions for Case 3: The derivation of the
expressions for the shape and the pulse width of the voltage glitch is
as follows. First, we derive the expression for t2 i.e. the time when
Va(t) falls to V DD/2 value. Note that in this case, only M1 of
Figure 1 (a) conducts because the magnitude of the glitch voltage is
less than V DD+ |VTP |. Therefore, Equation 5 describes the voltage
of node a for all times t such that T 1

sat ≤ t ≤ T 2
sat. The expression

for t2 can be obtained in similar manner as t1 with the substitution
t = t2 and Va(t2) = V DD/2 in Equation 5 and with the initial
guess point ta

2 . Based on our observation, we find that t
a
2 (the time

when iseu(t) falls to I
V DD/2
DS after reaching Imax

seu ) can be used as
an initial guess for t2 since the node voltage at that time will be
close to V DD/2. We ignore the contribution of the e−t/τβ term of
iseu(t) when calculating ta

2 . This is reasonable since τα is usually 3-

4 times of τβ and therefore e−t/τβ approaches 0 much faster than the
e−t/τα term. Thus the value of e−t/τβ around ta

2 (which is greater
than T max

seu ) will be approximately equal to 0. The expression for ta
2

is −τα log I
V DD/2
DS /In.

Now, we again substitute t = T 2
sat and Va(T 2

sat) = V N
dsat in

Equation 5 and solve for T 2
sat in a similar manner as solved for t1

(Equation 8) using the initial guess T 2a
sat. The expression for T 2a

sat is
t2 + V N

dsat − 0.5 · V DD/(dVa(t)/dt|t=t2).
To obtain the node a voltage equation for t > T 2

sat, we integrate
Equation 2 with the initial condition Va(T 2

sat) = V N
dsat and using

IINV 1
a (Va) = Va/Rn. The expression we get is:

Va(t) =
In

C
(
e−t/τα

X
−

e−t/τβ

Y
− Ape

(Tsat−t)/RnC) (10)

where Ap = V N
dsat −

In

C
(
e−T2

sat/τα

X
−

e−T2

sat/τβ

Y
)

Now we can write the analytical expression of the voltage glitch
induced by a radiation particle strike. The voltage glitch is described
by a set of 3 equations (Equations 3, 5 and 10) as summarized below:

Va(t) =

{
Eqn. 3 t < T 1

sat

Eqn. 5 T 1
sat ≤ t ≤ T 2

sat

Eqn. 10 t > T 2
sat

3) Derivation of the expressions for Case 2: In this case, the
magnitude of the voltage glitch VGM is between V DD + |VTP |
and V DD + 0.6V . Therefore, both M1 and M2 of INV1 conducts
for the time t such that T 1

P ≤ t ≤ T 2
P and hence the node a voltage

is described by Equation 9 (this equation was used to calculate VGM

value for cases 1 and 2). To obtain the value of T 2
P , substitute

Va(T 2
P ) = V DD + |VTP | for t = T 2

P in Equation 9 and then solve
for T 2

P by using T 2a
P as the initial guess. The expression for T 2

P that
we get is:

T
2

P = T
2a
P +

e
−T2a

P
/τα

X′′
− e

−T2a
P

/τβ

Y ′′
+ C

In
B

e
−T2a

P
/τα

X′′τα
− e

−T2a
P

/τβ

Y ′′τβ
+

K6Z′′

In
e
−K6T2a

P
/C

(11)

where B = Z′′e
−K6T2a

P
/C

−
K5

K6

− (V DD + |VTP |)

The value of T 2a
P is obtained using the following observation. We

observed that when iseu(t) becomes equal to the drain to source
current (IDS) of M1 of Figure 1 (a), then at that instant, the IDS of
M2 is approximately equal to 0 and the voltage at node a is V DD+
|VTP |. Thus, the value of T 2a

P is obtained by solving IINV 1
a (V DD+

|VTP |) = iseu(T 2a
P ) (since at this instant IDS of M2 is zero therefore

IDS of M1 is equal to IINV 1
a (V DD+|VTP |)). In this derivation, we

ignore the contribution of the e−t/τβ term of iseu(t). The expression
for T 2a

P is −τα log (IINV 1
a (V DD + |VTP |)/In).

Now we calculate the node a voltage equation for time duration
T 2

P ≤ t ≤ T 2
sat. For this, we integrate Equation 2 with the

initial condition Va(t) = V DD + |VTP | at t = T 2
P , and using

IINV 1
a (Va) = K3 +K4 ·Va. The resulting expression for Va(t) that
we get is:

Va(t) =
In

C
(
e−t/τα

X ′
−

e−t/τβ

Y ′
) −

K3

K4
+ Z∗e−K4t/C

(12)

whereZ∗ = (V DD + |VTP |)eK4T1

sat/C −
In

C
eK4T2

P
/C(

e−T2

P /τα

X ′

−
e−T2

P
/τβ

Y ′
) +

K3

K4
eK4T2

P
/C

Using Equation 12, we can obtain the values of t2 and T 2
sat for

Case 2 in the same manner as t2 and T 2
sat were derived for Case3.

After we obtained the values for t2 and T 2
sat, the node a voltage

equation for t > T 2
sat is same as Equation 10 (with the values of

t2 and T 2
sat calculated for this case). Now that we have derived all

variables for this case, we can write the equation for the radiation
induced voltage glitch at node a as shown below:

Va(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Eqn. 3 t < T 1
sat

Eqn. 5 T 1
sat ≤ t < T 1

P

Eqn. 9 T 1
P ≤ t < T 2

P

Eqn. 12 T 2
P ≤ t ≤ T 2

sat

Eqn. 10 t > T 2
sat

4) Derivation of the expressions for Case 1: In this case, both M1
and M2 of Figure 1 (a) conduct similar to Case 2. However, when
the voltage at node a reaches V DD + 0.6V value, the diffusion
diode between the node a and the bulk terminal of M2 gets forward
biased and start conducting heavily. Thus Va(t) get clamped to a
value around V DD + 0.6V . Therefore, all expressions derived for
Case 2 are also applicable to this case with a slight modification
to incorporate the effect of this clamping action. In this case, when
Equation 9 computes a value greater than V DD+0.6V for any time
t then we set the node a voltage value to V DD + 0.6V . Thus, the
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resulting equations for the voltage glitch for this case are:

Va(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Eqn. 3 t < T 1
sat

Eqn. 5 T 1
sat ≤ t < T 1

P

min(Eqn. 9, V DD + 0.6V ) T 1
P ≤ t < T 2

P

Eqn. 12 T 2
P ≤ t ≤ T 2

sat

Eqn. 10 t > T 2
sat

Using the equations for the radiation-induced voltage glitch ob-
tained in this Section (for Cases 1, 2 and 3), we can determine the
shape of the glitch. For all three cases, we can also find the pulse
width of the voltage glitch at node a using the values of t1 and t2.
Note that we do not ignore τβ in the derivation of the voltage glitch
equations and in the calculation of all time variables of our model
such as T 1

sat, t1, T
1
P , etc. Sometimes, we ignored the contribution of

the e−t/τβ term of iseu(t) only during the calculation of the initial
guess for these time variables.

IV. EXPERIMENTAL RESULTS

We compared the accuracy of our model for determining the shape
of the voltage glitch induced by a radiation particle strike with
SPICE [28]. Our method is implemented in perl and is 275× faster
than SPICE simulation for the estimation of the radiation-induced
voltage glitch at the output of an inverter. For other gates such as
NAND, NOR, etc, SPICE takes more time to simulate a radiation
particle strike due to more number of transistors in these gates than
inverter. However, the runtime of our approach does not change
significantly with different gate types due to the usage of a model for
the load current of the gate. Therefore, the speedup of our approach
compared to SPICE simulation will be higher for NAND, NOR and
any complex gates 4. We implemented a cell library using a 65nm
PTM [27] model card with V DD = 1V . Our cell library contains
INV, NAND and NOR gates of 5 different sizes (1× to 5×) and
different numbers of inputs. As mentioned in Section III-B, before
we can use our model to compute the shape and the pulse width,
we need to obtain look-up tables for the load current model of the
gate, the input gate capacitance CG and the output node diffusion
capacitance CD (for all input combinations) for all the gates in our
library. The method to obtain the load current, CG and CD look-up
tables was explained in Section III-B.
To validate the applicability of our model to different types of

gates, we simulated radiation particle strikes at the output of INVs, 2-
input NANDs and 3-input NORs using our model. For each gate type
we considered 5 different sizes (1× to 5×) with all possible input
states. We also validated the applicability of our model to different
scenarios by loading the gates with different loads and by varying the
values Q, τα and τβ . All gates were loaded with 1 and 3 inverters of
the same size as the equivalent inverter of G. We simulated radiation
particle strikes corresponding to Q = 150fC, τα = 150ps and
τβ = 50ps and Q = 100fC, τα = 200ps and τβ = 50ps.
The radiation-induced voltage glitches obtained using our model

and SPICE are shown in Figure 3 for INV, NAND2 and NOR3
gates with different scenarios (as mentioned in the figure). Figure 3
also reports the operating case of the gate with the gate size and
the input state. From Figure 3, we observe that the voltage glitch
waveforms obtained using our model match very closely with the
voltage glitch obtained from SPICE. Note that we simulated these
gates of different sizes with all possible input states and with different
radiation induced current pulses. However, due to the lack of space,
we are showing only a few waveforms. The voltage glitches shown
in Figure 3 were chosen to demonstrate applicability of our model
to different scenarios. Figure 3(b) corresponds to Case 3 in which a
4× INV has its input at GND value and is driving 3-4× INVs. In
this case, the voltage glitch predicted by our model deviates from
SPICE when the affected node voltage drops to 0.2V. This is due to
the Miller-feedback from the switching of the output of the loading
inverters (3-4× INVs) to the node affected by radiation strike. The
effect of the Miller-feedback is more dominant for the gates operating

4For 2-input NAND gate, our approach is 330× faster than SPICE
simulations

Input State Avg.

Load Gate 0 1 2 3 4 5 6 7 RMSP Err.

1 INV 2.86 2.62 2.74

1 NAND2 3.75 3.05 3.3 4.0 3.52

1 NOR3 3.45 2.43 7.06 3.65 10.85 5.38 7.40 8.76 6.12

3 INV 3.46 4.94 4.2

3 NAND2 3.72 3.36 3.57 5.89 4.13

3 NOR3 3.29 4.24 5.13 4.51 9.40 5.72 5.64 10.41 6.04

Avg. 5.06

TABLE I

RMSP ERROR OF OUR MODEL FOR 3× GATES AND Q = 150fC ,

τα = 150ps AND τβ = 50ps

Gate Size

Load Gate 1× 2× 3× 4× 5× Avg. RMSP Err.

1 INV 2.72 2.66 2.74 3.08 3.49 2.94

1 NAND2 3.45 3.27 3.52 3.93 3.80 3.6

1 NOR3 4.43 4.76 6.04 6.96 6.02 5.64

3 INV 3.66 3.95 4.20 4.61 5.15 4.3

3 NAND2 3.81 3.83 4.14 4.69 4.53 4.2

3 NOR3 4.77 4.99 6.12 6.98 7.12 6.00

Avg. 4.45

TABLE II

RMSP ERROR OF OUR MODEL FOR DIFFERENT GATES SIZES AND
Q = 150fC , τα = 150ps AND τβ = 50ps

in Case 3 than in Case 1 and 2. This is because in Case 3, the
effect of a radiation particle strike is lower than in Case 1 or 2 and
hence the Miller-feedback has a significant impact on the voltage
glitch. We also observe slight mis-matches in some of the voltage
glitch waveforms of Figure 3. We conjecture that this is due to the
modeling error which is introduced by the gate characterization at a
coarser voltage step of 0.1V.
We evaluate the performance of our model by calculating the root-

mean-square percentage (rmsp) error of the voltage glitches obtained
using our model compared to the glitch waveforms obtained using
SPICE. We computed the rmsp error over a time period for which the
affected node voltage value is greater (lesser) than VTN (V DD −
|VTP |) for a positive (negative) glitch. Table I reports the rmsp
error of our model for 3× gates and with a radiation particle strike
corresponding to Q = 150fC, τα = 150ps and τβ = 50ps for all
possible input states. Column 1 reports the number of inverters driven
by the gate reported in Column 2. Note that the loading inverters are
of the same size as the equivalent inverter of the corresponding gate.
Columns 3 through 10 reports the rmsp error of the voltage glitch
estimated by our model compared to SPICE for all possible input
states. Column 11 reports the average rmsp error for a 3× gate
averaged over its all possible states. A blank entry in Table I implies
that the input state of the corresponding column is not applicable to
the corresponding gate. From Table I, we conclude that our model
is able to predict the radiation-induced voltage glitch for 3× gates
with a very small rmsp error of 5.06% (as reported by the last row
of Table I) averaged over all gates for all input states. We obtained
similar results for Q = 100fC, τα = 200ps and τβ = 50ps (which
are omitted for brevity).

Fig. 4. SEU induced voltage glitch at 2X-INV1

Tables II reports the rmsp error of our model for different gate
sizes from 1× to 5× with Q = 150fC, τα = 150ps and τβ = 50ps
and averaged over all possible input states for a gate. From Tables II,
we observe that our model to estimate radiation induced voltage
glitch is very accurate and the average rmsp error is 4.45% averaged
over all simulated scenarios (different gate types, gate loading and
gate sizes). Also, our approach is at least 275× faster than SPICE
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Fig. 3. Radiation-induced voltage glitches obtained using our model and SPICE for different gates

simulations. Note that the best known previous analytical approach
to predict the radiation-induced voltage glitch is reported in [14]
which is just 100× faster than SPICE. Also in [14], the authors
report that their approach sometimes yields 15% error in the SEU
induced glitch, compared to SPICE. Moreover, the authors ignore
the effect of the ion track establishment constant (τβ) by setting
it to zero for both their model as well as SPICE simulations. To
evaluate the impact of ignoring τβ on the radiation-induced voltage
glitch, we simulated radiation particle strikes (with and without the
inclusion of τβ) at the output of inverters of different sizes (1× -
5×) in SPICE. We performed these simulations for two different
radiation strike parameter values (Q = 150fC, τα = 150ps, and
τβ = 50ps) and (Q = 100fC, τα = 200ps and τβ = 50ps) and for
different loads on the inverters. For Q = 150fC, τα = 150ps, and
τβ = 50ps (Q = 100fC, τα = 200ps and τβ = 50ps), we found
that ignoring τβ results in an underestimation of the pulse width of
the voltage glitch by 10% (8%). The voltage waveforms at the output
of a 2X inverter under a radiation particle strike with and without
the inclusion of the τβ term (for Q = 150fC, τα = 150ps, and
τβ = 50ps) are shown in Figure 4. The rmsp error of the voltage
glitch without τβ shown in Figure 4 is 40% which is much higher
than the error of our approach. Thus, for an accurate analysis, it is
crucial to include the contribution of τβ . As mentioned earlier, the
authors of [14] ignore τβ and therefore, the error of their approach
can be much higher than reported in [14] when compared with the
shape of the radiation-induced voltage glitch obtained by considering
the contributions of τβ . To the best of our knowledge, our paper is
the first to model the effect of both τα and τβ for the estimation of
the shape of the radiation-induced voltage glitch. Thus, our approach
is more accurate than the best known previous approach [14].

V. CONCLUSIONS

In this paper, we present an analytical model for the determination
of the shape of radiation-induced voltage glitches in combinational
circuits. The radiation-induced voltage glitch at an internal node of a
circuit can be propagated to the primary outputs of the circuit (using
existing tools) to account for the effects of electrical masking. This
enables an accurate and quick evaluation of the SEU robustness of
a circuit. Experimental results demonstrate that our model is very
accurate, with a very low root mean square percentage error in the
estimation of the shape of the voltage glitch (of 4.5%) compared to
SPICE. Our model gains its accuracy by using a non-linear model for
the load current of the gate, and by considering the effect of τβ of

the radiation induced current pulse. Our analytical model is very fast
(275× faster than SPICE) and accurate, and can therefore be easily
incorporated in a design flow to implement SEU tolerant circuits.
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