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Abstract

Pass Transistor Logic (PTL) is a well known approach for implement-
ing digital circuits. In order to handle larger designs, and also to en-
sure that the total number of series devices in the resulting circuit
is bounded, partitioned Reduced Ordered Binary Decision Diagrams
(ROBDDs) can be used to generate the PTL circuit. The output sig-
nals of each partitioned block typically needs to be buffered. In this
paper, we present a methodology to perform generalized buffering of
the outputs of PTL blocks. By performing the Boolean division of
each PTL block using different gates in a library, we select the gate
that results in the largest reduction in the height of the PTL block. In
this manner, these gates serve the function of buffering the outputs of
the PTL blocks, while also reducing the height and delay of the PTL
block. Over a number of examples, we demonstrate that our approach
results in a 26% reduction in circuit delay and number of MUXes re-
quired, with a modest improvement in circuit area, compared to a
traditional buffered PTL implementation of the circuit.

1. Introduction

Pass Transistor Logic (PTL) is a circuit implementation style that
has typically been used for many specific circuit implementations,
like barrel shifters. Although PTL offers great benefits for such de-
signs, there has been no widely accepted PTL design methodology
that could be used to make PTL more broadly acceptable. There have
however been several efforts, at the research level, to make this a re-
ality.

Synthesis approaches for PTL structures typically leverage the fact
that there is a direct mapping between the ROBDD [1, 2] and the
PTL implementation of a circuit. In fact, each ROBDD node can
be mapped to a MUX (which can be implemented using NMOS or
CMOS devices). Figure 1 illusirates the mapping between an ROBDD
node and a MUX. For the PTL implementation of the ROBDD of
any function, there is an isomorphism between the connectivity of the
ROBDD nodes and the MUXes in the PTL implementation. This el-
egant and easy mapping between ROBDDs and PTL structures is not
without attendant problems, however.

Fo v

Figure 1: ROBDD Node and its MUX based Implementation

o For one, in a bulk MOS implementation of any circuit, it is
not practical to connect more than 4-5 devices in series, due to
the phenomenon called body effect, which effectively increases
the threshold voltage Vp of most of the series-connected MOS-
FETs. This results in a slower design. Body effect is governed
by the equation
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Ve =V 4+ Vg

Here V7 is the threshold voltage of the device, V}) is the thresh-
old voltage of the device at zero body bias, 7 is the body effect
coefficient, and Vy; is the source to bulk voltage of the MOS-
FET. When several MOSFETs are connected in series in a PTL
circuit, all but one of them is affected by body effect. For this
reason, in practice, VLST designers do not stack more than 4-5
devices in series.

This results in a problem for the traditional PTL implementa-
tions, which attempted to build monolithic ROBDDs. To solve
this problem, we need to build ROBDDs in a partitioned [3]
manner, such that if an intermediate ROBDD has a depth greater
than 4 or 5, a new variable is created. In circuit terms, a buffer
is implemented at the output of the new variable, ensuring that
the circuit drive capability is regenerated every few levels in the
final PTL design.

e The second problem is that ROBDDs, if built monolithically,
can exhibit unpredictable memory explosion. This precludes
the applicability of the PTL methodology for large designs, as
long as the ROBDDs are build monolithically (since it is very
hard to build monolithic ROBDDs of large functions). Again,
this suggests the use of partitioned ROBDDs to avert this prob-
lem.

In summary, partitioned ROBDD construction helps tackle both the
above problems associated with PTL synthesis. In such a partitioned
PTL design, the outputs of each PTL structure is buffered, to regen-
erate the electrical drive capability every 4 or 5 levels.

This work describes a new PTL synthesis approach which performs
better than buffered partitioned ROBDD based PTL synthesis. In
principle, it still employs partitioned ROBDDs, however, the buffer-
ing between PTL stages is done using generalized buffers. These
could be arbitrary gates in the cell library. We achieve this by cast-
ing the problem of generalized buffering as an instance of Boolean
division. By using more complex gates for the buffering logic, our
method is able to significantly simplify the logic in the PTL structure,
resulting in a significant improvement (about 26% on average) in to-
tal circuit delay, which is achieved by significantly reducing the total
number of MUXes. Even after accounting for the increased area of
the generalized buffers, our method comes out slightly ahead (about
2.3% on average). The above comparisons are against traditionally
buffered partitioned ROBDD-based PTL structures.

The remainder of this paper is organized as follows: Section 2 dis-
cusses some previous work in this area. In Section 3 we describe our
method of generalized buffering of PTL structures, based on Boolean
division. In Section 4 we present experimental results comparing
our idea with traditional buffered partitioned ROBDD-based PTL de-
signs. Conclusions and future work are discussed in Section 5.

2. Previous Work

There has been a significant amount of work in the area of pass
transistor logic synthesis. In addition, there have been several re-
ported design variations on the PTL circuit concept. A good reference
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source for published work in this area is [4]. The focus of our paper
being logic synthesis for PTL design, we will not discuss circuit-level
variations of the PTL approach. Given the generality of our synthesis
methodology, it is orthogonal to the circuit issues and ideas that are
discussed in the papers referred to in [4].

In [5], the authors present a synthesis tool, which works with their
PTL library of cells, macrocells etc. The philosophy of [6] is that
while PTL based synthesis is well researched, layout and back-end
tools for PTL are not found as readily. They describe a layout gen-
erator, to help develop more complete tools for PTL design. The ap-
proach of [7] is motivated by the need to develop high density, low
power, high performance circuits using PTL. The authors report a syn-
thesis method, using two approaches — a modified Karnaugh map [8]
approach for small circuits, and a Quine-McCluskey [9, 10] based ap-
proach for larger designs. In [11], the authors study regenerative pass
transistor logic (RPL), a dual rail PTL family. Their interest stems
from the compact area of these circuits. In [12], the authors present a
layout and logic synthesis approach, with the input being a logic func-
tion, while the output is a PTL netlist, using MUXes and inverters.
After synthesizing the logic, the methodology adds inverters, in order
to ensure that the longest series path of MUXes has a bounded depth.
In this approach, the buffering is simple (using inverters) as opposed
to the generalized buffering (using arbitrary library gates) in our work.
The work of [13] builds ROBDDs [1, 2] in a partitioned manner [3],
thereby avoiding the memory blow-up that often occurs while using
ROBDDs. The resulting small ROBDDs are directly mapped to PTL
structures, resulting in an efficient synthesis methodology. The down-
side of this approach is once again, the absence of generalized buffer-
ing. The authors allude to performing PTL synthesis in a manner that
maps some nodes to CMOS gates while others are mapped into PTL
blocks. However, this leaves the designer little control of the depth of
these sections. In contrast, our generalized buffering approach guar-
antees a fixed bound on the depth of the PTL block, and also ensures
just one level of generalized buffers between PTL blocks.

In [14], an approach using multilevel gates along with PTL and
transmission gates is reported, producing a regular and dense layout.
This approach permits buffer inclusion. It can be viewed as an ap-
proach that combines synthesis and layout in the PTL design flow,
and is as such orthogonal to our approach. The work of [15] reports
synthesis algorithms for PTL. Minimization is performed by using in-
complete transmission gates. The results of synthesis using their tool
PAVOS demonstrate good quality results when compared with man-
ually tuned PTL circuits. The work of [16] reports on PTL synthesis
for Complementary Pass Transistor Logic (CPL), Dual Pass Transis-
tor Logic (DPL) and Dual Voltage Logic (DVL). Finally, the work
of [17] reports on a novel method to minimize power in a PTL struc-
ture, by transforming the problem into one of ROBDD decomposition
and solving it with a max-flow min-cut approach.

In [18], a mixed PTL-CMOS approach was presented. The de-
composition process simply extracted unate variables from a sum-
of-products (SOP) representation of a function and recursively co-
factored these variables (creating MUZXes in the process) until unate
leaves were reached. Unate leaves were realized using library gates
alone. The weakness of this approach is that it starts with a SOP rep-
resentation, limiting its effectiveness for large designs. Further, if a
function is unate, then the entire circuit realization is purely standard-
cell based. Our approach, in confrast, can handle arbitrarily large
designs since it starts with a partitioned ROBDD consfruction as the
first step. Also, it works equally effectively for unate designs.

Another mixed PTL-CMOS approach was presented in [19]. In
this paper, the circuit structure was a AND gate followed by a MUX.
In contrast to our approach, this scheme did not selectively divide a
library of standard cells into the PTL structure, thereby not exploiting
the flexibility available in the Boolean division process.

Our approach of performing partitioned ROBDD construction, with
generalized buffers (library gates) doing the task of buffering the out-

puts of PTL structures (and also performing computation) is a novel
contribution in this space. It is orthogonal to much of the work on
new PTL circuit design ideas, and yields impressive improvements
(about 25% on average) in terms of circuit speed, with a nominal
area improvement (about 2.5% on average) compared to the tradi-
tional buffering that is performed in a partitioned ROBDD based PTL
design approach.

3. Our Approach

In order to implement generalized buffering, we employ Boolean
division. Consider a Boolean network m, which is initially decom-
posed using 2-input gates and inverfers only. We require that the
ROBDDs (which will eventually be utilized to construct the PTL cir-
cuit) have a depth of no more than 5 variables.

In our approach, we first build ROBDDs of the nodes of 11, topolog-
ically from the inputs to the outputs. When we encounter a new node
n for which we want to construct a ROBDD, the ROBDD of each of
its fanins must have a depth of at most 4 ROBDD variables. When
constructing the ROBDD of &, it can initially have at most 8 ROBDD
variables.

The key idea is that we will take the ROBDD of n, and attempt
to divide it with the gates in a library. If such a Boolean division is
possible and it is strictly height-reducing, we select it. The test for
whether a library gate g, with an associated variable G, divides the
ROBDD f of n is described next. A pictorial view of the process is
shown in Figure 2.

a) Before dividing AND gate b) After dividing AND gate

(note height reduced
otherwise the gate is rejected

Figure 2: Dividing a Generalized Buffer into a PTL Structure

3.1 Boolean Division with Library Gates

DEFINITION 1. g is a Boolean divisor of f if h and r exist such
that f =gh+r ,gh # 0.

g is said to be a Boolean factor of f if, in addition, r =0, i.e.,
f=gh

In this case, & is called the quotient and r is called the remainder.
Note that / and r are not unique.

THEOREM 3.1. If fg # 0, then g is a Boolean divisor of f.

PROOF. If fg ## 0, we can write
f=res+re

f=8(f+x)+ /g wherexC g
which is of the form f =gh+r. O

5616

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 07:37 from IEEE Xplore. Restrictions apply.



However, if f is an Incompletely Specified Function (ISF), with
don’t care d, then

f=G(f+d+3)+(f+d)3.

Therefore, the upper and lower bounds (U and L) for f are:

U=G(f+d+32)+(f+d)Z
and
L= (fG+f3)

As a consequence, the test that we perform when we want to try to
divide a gate g (having a variable () into the ROBDD f is shown in
Algorithm 1. The computations in Algorithm 1 assume that there are
no don’t cares d.

Algorithm 1 Pseudocode for Division of f by g =G

test division(f,g,G){

if fg #~ 0 then
L= (fG+ f3)(g®G)
U=(fG+Gg+ [2)(8BG)
Z = bdd_between(L,U)
Z* = bdd_smooth(Z, gvars)
R = bdd_compose(Z*,G, g)
if R = f then

return(success, Z*)

end if

else
return fail

end if

}

In Algorithm 1, the functions L and U are ANDed with (gBG)
to express the fact that g and G are not independent variables, but
rather are related as G = g. We next find a small ROBDD Z (using
the function bdd_between(), which returns the heuristically smallest
ROBDD Z such that L C Z C L+ U), which is a Boolean divisor of
f. Next, we smooth out! the variables of g. If the resulting ROBDD
Z*, with g composed back into G, is identical to f, we return Z* as
the quotient.

When we perform ROBDD construction, the maximum height of
the ROBDD of a node » before division can be 8, as discussed earlier.
Our division routines systematically reduce this height to below 5,
by using several generalized buffers. If an ROBDD is not able to be
divided (and the resulting height after division is greater than 5), then
we back-track, and make one of the fanins of n a new variable. The
fanin which is made a new variable is the one whose topological level
is one less than that of n. The reason for this is illustrated in Figure 3.

Figure 3: Back-tracking during Division

Consider node a, at topological level n. Suppose it has two fanins
c and d, with levels n — 1 and n — 2 respectively. Since partitioned

1Smoothing is also referred to as Existential Quantification. The ex-
istential quantification of f with respect to a variable x is expressed as
Jxf = fx+ fr- Smoothing a set of variables is achieved by performing
existential quantification, one variable at a time

ROBDD construction occurs in topological order from inputs to out-
puts, it is possible that node b has already been processed, and di-
vided. Tts ROBDD therefore has a depth less than 5 nodes. Now
suppose the ROBDD depths of d and ¢ are 4 each, and the ROBDD
of a has depth 8. Suppose all divisions for node ¢ fail. In that case,
we need to back-track and make either ¢ or d a new variable. This
would guarantee that a has a new depth 5. We select ¢ (with level
n— 1) as the new variable, since it is more likely that d (which is at a
lower topological level) has more fanouts at level n or n — 1. When ¢
is made a new variable, all its fanouts are checked. If any of them has
already been processed (such fanouts must have level n), then their
ROBDDs are re-computed, and division is re-done. In this way, the
PTL network is kept as small as possible. If this re-computation were
not performed, then the logic of the node ¢ would be implemented
twice as a PTL structure (once for the node b and then again for the
variable corresponding to node c itself).

If, after a back-track, the depth of the node n is less than 5, then we
continue to grow the corresponding ROBDD further, up to a depth 8.

After attempting division (regardless of whether the division suc-
ceeded or failed), the depth of n is guaranteed to be less than or equal
to 5, allowing for an elegant exit in case division fails. In general,
however, this division strategy yields a number of good generalized
buffers, so this occurrence is rare.

4. Experimental Results

We implemented the generalized buffering algorithm in SIS [20].
Our code consisted of reading a circuit (which was decomposed before-
hand into 2-input gates and inverters), and then building ROBDDs of
its nodes in a topological manner from inputs to outputs. When the
height of the ROBDD of any node grew beyond 5, division was in-
voked, as described in Section 3. The resulting gates that were di-
vided, and the new ROBDD after division were stored within each
node’s data structures. Since the ROBDDs in question were small
(with a maximum height of 8), we performed division exhaustively.
Our library consisted of the gates AND2, AND3, AND4, OR2, OR3
and OR4. Since any divided gate becomes a new variable, it is re-
quired in both its polarities. Therefore, by DeMorgan’s law, we only
have non-inverting gates in our library.

Table 1 reports the results we obtained using our algorithm. In this
table, column 1 lists the example under consideration. Column 2 lists
the number of inverters required by partitioned ROBDD based de-
composition of the circuit, using traditional buffering. The traditional
method used for comparison was similar to that reported in [13]. The
remaining columns report the number of library gates invoked by our
algorithm. Note that in general, a healthy number of library gates are
utilized for each example.

Table 2 compares the results of traditionally buffered partitioned
ROBDD based PTL implementations, with our generalized buffering
methodology. Columns 2, 3 and 4 report the circuit delay, area and
number of MUXes utilized for the traditional method. Columns 5, 6
and 7 report these numbers for our method (as a fraction of the cor-
responding numbers for the traditional method). Finally, Column 8
reports the runtime for our division based generalized buffering based
synthesis algorithm.

In each case, delays were extracted by finding the longest delay
path from any output to any input. The MUX structures and all gates
in the library were characterized for delay in SPICE [21], using a
100nm BPTM [22] process technology. The area computation was
performed by determining the active area of the MUXes and all the
library cells. The number of MUXes is simply the sum of the sizes of
each of the partitioned ROBDDs in the design.

We observe that our method results in a speed-up of about 26%
on average, compared to the traditional method. Also, our method
utilizes about 24% fewer MUZXes. However, since the generalized
buffers occupy greater area than the traditional buffers, the overall
area improvement of our method is not as high (2.3% on average).
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These results indicate that generalized buffering offers significantly
faster designs, with a small area benefit as well, compared to tradi-
tionally buffered PTL. The run-time of our partitioning algorithm is
slightly less than 90 seconds for the largest example in our benchmark
suite.

The effectiveness of our method can be augmented by invoking dy-
namic variable re-ordering while performing ROBDD construction.
This will allow further reduction in circuit size for both the traditional
and generalized buffering methodologies. Generalized buffering can
benefit yet further by utilizing multi-level don’t-cares, as described in
Section 3, something that the traditional method cannot benefit from.

utilizes partitioned ROBDDs to construct the PTL circuit, with the
interfaces between these PTL structures buffered using library gates.
Our technique of generalized buffering requires Boolean division of
the PTL block using different gates in a library. In this way, we can
select the gate that results in the largest reduction in the height of
the PTL block. In this manner, we can have these gates serve the
function of buffering the outputs of PTL blocks, and also perform cir-
cuit computations at the same time. Over a number of examples, we
demonstrate that on average, our approach results in a 26% reduc-
tion in delay, and a 2.3% improvement in circuit area, compared to a
traditional buffered PTL implementation.
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