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Abstract VT = VT° +YVV7sb
Pass Transistor Logic (PTL) is a well known approach for implement- Here VT is the threshold voltage of the device, V0 is the thresh-
ing digital circuits. In order to handle larger designs, and also to en- old voltage of the device at zero body bias, y is the body effect
sure that the total number of series devices in the resulting circuit coefficient, and Vsb is the source to bulk voltage of the MOS-
is bounded, partitioned Reduced Ordered Binary Decision Diagrams FET. When several MOSFETs are connected in series in a PTL
(ROBDDs) can be used to generate the PTL circuit. The output sig- circuit, all but one of them is affected by body effect. For this
nals of each partitioned block typically needs to be buffered. In this reason, in practice, VLSI designers do not stack more than 4-5
paper, we present a methodology to perform generalized buffering of devices in series.
the outputs of PTL blocks. By performing the Boolean division of This results in a problem for the traditional PTL implementa-
each PTL block using different gates in a library, we select the gate
that results in the largest reduction in the height of the PTL block. In this which aempted to buildmOnolit R to sov
this manner, these gates serve the function of buffering the outputs of thiero, we an itorbuid ROBDDshin a dpationedt[3' ~~~~~~~~~~~~~~~~manner,such that if an intermediate ROBDD has a depth greater
the PTL blocks, while also reducing the height and delay of the PTL than 4 or 5, a new variable is created. In circuit terms, a buffer
block. Over a number of examples, we demonstrate that our approach is implemented at the output of the new variable, ensuring that
results in a 26% reduction in circuit delay and number of MUXes re- the circuit drive capability is regenerated every few levels in the
quired, with a modest improvement in circuit area, compared to a final PTL design.
traditional buffered PTL implementation of the circuit.

. The second problem is that ROBDDs, if built monolithically,
1. Introduction can exhibit unpredictable memory explosion. This precludes

Pass Transistor Logic (PTL) is a circuit implementation style that the applicability of the PTL methodology for large designs, as
has typically been used for many specific circuit implementations, long as the ROBDDs are build monolithically (since it is very
like barrel shifters. Although PTL offers great benefits for such de- hard to build monolithic ROBDDs of large functions). Again,
signs, there has been no widely accepted PTL design methodology this suggests the use of partitioned ROBDDs to avert this prob-
that could be used to make PTL more broadly acceptable. There have lem.
however been several efforts, at the research level, to make this a re-
ality. In summary, partitioned ROBDD construction helps tackle both theSlityne aabove problems associated with PTL synthesis. In such a partitioned

thatntheresis apdroahet marPpin beructwree theiROBD [randthef PTL design, the outputs of each PTL structure is buffered, to regen-that there iS a direct mapping between the ROBDD [1, 2] and the
ert th lcrcldiecpbiiyeey4o ees

PTL implementation of a circuit. In fact, each ROBDD node can erate the electrical drive capability every 4 or 5 levels.PTL imapplementatio noaMU hircu.cnbe tileeahROd DusinoeN S o This work describes a new PTL synthesis approach which performsbe mapped to a MUX (which can be implemented using NMOS or p p
InCMOS devices). Figure 1 illustrates the mapping between an ROBDD betterthan buffere partitoned ROBDDse PTLesynthesis.fIn

node and a MUX. For the PTL implementation of the ROBDD of incipe,wit sTLemplos itione ROBDDs,ihowever,thebuffer-
an fucin thr is an ismophs bewe th conctvt of the ing between PTL stages is done using generalized buffers. These

ROBDD nodes and the MUXes in the PTL implementation. This el- could be arbitrary gates in the cell library. We achieve this by cast-
egant nodes apnbhetwUXee inRODD andimplemsntrtursTis not ing the problem of generalized buffering as an instance of Boolean
wihot andant probem weer division. By using more complex gates for the buffering logic, our

method is able to significantly simplify the logic in the PTL structure,
f resulting in a significant improvement (about 26% on average) in to-

f tal circuit delay, which is achieved by significantly reducing the total
4;> / \ v number of MUXes. Even after accounting for the increased area of

V
/ 1 o0 the generalized buffers, our method comes out slightly ahead (about

f \ ' 2.3% on average). The above comparisons are against traditionally
,fv fv buffered partitioned ROBDD-based PTL structures.

The remainder of this paper is organized as follows: Section 2 dis-
cusses some previous work in this area. In Section 3 we describe our

Figure 1: ROBDD Node and its MUX based Implementation method of generalized buffering of PTL structures, based on Boolean
division. In Section 4 we present experimental results comparing

* Fo on, inablkMS ipleentaionof ay crcui, i is our idea with traditional buffered partitioned ROBDD-based PTL de-
noprcia to conc moetaa- eie nsre,det signs. Conclusions and future work are discussed in Section 5.

the phenomenon called body effect, which effectively increases
the threshold voltage VT of most of the series-connected MOS- 2. Previous Work
FETs. This results in a slower design. Body effect is governed There has been a significant amount of work in the area of pass
by the equation transistor logic synthesis. In addition, there have been several re-

ported design variations on the PTL circuit concept. A good reference
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source for published work in this area is [4]. The focus of our paper puts of PTL structures (and also performing computation) is a novel
being logic synthesis for PTL design, we will not discuss circuit-level contribution in this space. It is orthogonal to much of the work on
variations of the PTL approach. Given the generality of our synthesis new PTL circuit design ideas, and yields impressive improvements
methodology, it is orthogonal to the circuit issues and ideas that are (about 25% on average) in terms of circuit speed, with a nominal
discussed in the papers referred to in [4]. area improvement (about 2.5% on average) compared to the tradi-

In [5], the authors present a synthesis tool, which works with their tional buffering that is performed in a partitioned ROBDD based PTL
PTL library of cells, macrocells etc. The philosophy of [6] is that design approach.
while PTL based synthesis is well researched, layout and back-end
tools for PTL are not found as readily. They describe a layout gen- 3. Our Approach
erator, to help develop more complete tools for PTL design. The ap- In order to implement generalized buffering, we employ Boolean
proach of [7] is motivated by the need to develop high density, low division. Consider a Boolean network ri, which is initially decom-
power, high performance circuits using PTL. The authors report a syn-

p. ' . ~~~~~~~~~~~~posedusing 2-input gates and inverters only. We require that thethesis method, using two approaches - a modified Karnaugh map[8] ROBDDs (which will eventually be utilized to construct the PTL cir-approach for small circuits, and a Quine-McCluskey [9, 10] based ap-
proach for larger designs. In [ 11 ], the authors study regenerative pass cuIt) have a depth of no more than 5 variables.

tranisto loic(PL) a dal ril TL fmil. Thir iterst sems In our approach, we first build ROBDDs of the nodes of ri, topolog-transistor logic (RPL), a dual rail PTL family. Their interest stems ically from the inputs to the outputs. When we encounter a new node
from the compact area of these circuits. In [12], the authors present a

n

yfprwheint to trutp a

we
th e r a ew of

layout and logic synthesis approach, with the input being a logic func- its fanins must have a depth of at most 4 ROBDD variables. When
tion, while the output is a PTL netlist, using MUXes and inverters. itructing theaOdD of at most4 r OBDD

After synthesizing the logic, the methodology adds inverters, in order constructing the ROBDD of n, it can initially have at most 8 ROBDD
to ensure that the longest series path of MUXes has a bounded depth. variables.; The key idea is that we will take the ROBDD of n, and attemptIn this approach, the buffering is simple (using inverters) as opposed to divide it with the gates in a library. If such a Boolean division is
to the generalized buffering (using arbitrary library gates) in our work. possible and it is strictly height-reducing we select it. The test for
The work of [13] builds ROBDDs [1, 2] in a partitioned manner [3], p ayg g,
thrbavidn th meor blwu thtotnocr'hl whether a library gate g, with an associated variable G, divides thet ywusing ROBDD f of n is described next. A pictorial view of the process isROBDDs. The resulting small ROBDDs are directly mapped to PTL shown in Figure 2.

structures, resulting in an efficient synthesis methodology. The down- g
side of this approach is once again, the absence of generalized buffer-
ing. The authors allude to performing PTL synthesis in a manner that
maps some nodes to CMOS gates while others are mapped into PTL
blocks. However, this leaves the designer little control of the depth of
these sections. In contrast, our generalized buffering approach guar-
antees a fixed bound on the depth of the PTL block, and also ensures
just one level of generalized buffers between PTL blocks.

In [14], an approach using multilevel gates along with PTL and
transmission gates is reported, producing a regular and dense layout.
This approach permits buffer inclusion. It can be viewed as an ap-
proach that combines synthesis and layout in the PTL design flow,
and is as such orthogonal to our approach. The work of [15] reports
synthesis algorithms for PTL. Minimization is performed by using in-
complete transmission gates. The results of synthesis using their tool
PAVOS demonstrate good quality results when compared with man-
ually tuned PTL circuits. The work of [16] reports on PTL synthesis a) Before dividing AND gate b) After dividing AND gate
for Complementary Pass Transistor Logic (CPL), Dual Pass Transis- (note height reduced
tor Logic (DPL) and Dual Voltage Logic (DVL). Finally, the work otherwise the gate is rejected
of [17] reports on a novel method to minimize power in a PTL struc-
ture, by transforming the problem into one of ROBDD decomposition
and solving it with a max-flow min-cut approach. Figure 2: Dividing a Generalized Buffer into a PTL Structure

In [18], a mixed PTL-CMOS approach was presented. The de-
composition process simply extracted unate variables from a sum-
of-products (SOP) representation of a function and recursively co- 3.1 Boolean Division with Library Gates
factored these variables (creating MUXes in the process) until unate
leaves were reached. Unate leaves were realized using library gates DEFINITION 1. g is a Boolean divisor off if h and r exist such
alone. The weakness of this approach is that it starts with a SOP rep- that f gh + r, gh ) 0.
resentation, limiting its effectiveness for large designs. Further, if a g is said to be a Boolean factor of f if, in addition, r 0, i.e.,
function is unate, then the entire circuit realization is purely standard- f gh.
cell based. Our approach, in contrast, can handle arbitrarily large
designs since it starts with a partitioned ROBDD construction as the In this case, h is called the quotient and r is called the remainder.
first step. Also, it works equally effectively for unate designs. Note that h and r are not unique.

Another mixed PTL-CMOS approach was presented in [19]. In
this paper, the circuit structure was a AND gate followed by a MUX. THEOREM 3.1. Iffg f 0, then g is a Boolean divisor off.
In contrast to our approach, this scheme did not selectively divide a
library of standard cells into the PTL structure, thereby not exploiting PROOF. If fg f 0, we can write
the flexibility available in the Boolean division process. f fg+j

Our approach of performing partitioned ROBDD construction, with f=g( + x)+fg whrxCg
generalized buffers (library gates) doing the task of buffering the out- whcg( f+th)+forw=he+rex [1
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However, if f is an Incompletely Specified Function (ISF), with ROBDD construction occurs in topological order from inputs to out-
don't care d, then puts, it is possible that node b has already been processed, and di-
f = G(f+ d + g) + (f + d)g. vided. Its ROBDD therefore has a depth less than 5 nodes. Now
Therefore, the upper and lower bounds (U and L) for f are: suppose the ROBDD depths of d and c are 4 each, and the ROBDD
U = G(f+ d + g) + (f + d)g of a has depth 8. Suppose all divisions for node a fail. In that case,
and we need to back-track and make either c or d a new variable. This
L (fG+ fg) would guarantee that a has a new depth 5. We select c (with level
As a consequence, the test that we perform when we want to try to n - 1) as the new variable, since it is more likely that d (which is at a

divide a gate g (having a variable G) into the ROBDD f is shown in lower topological level) has more fanouts at level n or n - 1. When c
Algorithm 1. The computations in Algorithm 1 assume that there are is made a new variable, all its fanouts are checked. If any of them has
no don't cares d. already been processed (such fanouts must have level n), then their

ROBDDs are re-computed, and division is re-done. In this way, the
Algorithm 1 Pseudocode for Division of f by g G PTL network is kept as small as possible. If this re-computation were

test division(f, g, G){ not performed, then the logic of the node c would be implemented
if fg # 0 then twice as a PTL structure (once for the node b and then again for the
L (fG+ fg) (gTG) variable corresponding to node c itself).
U (fG+ Gg + fg) (gTG) If, after a back-track, the depth of the node n is less than 5, then we
Z bdd-between(L, U) continue to grow the corresponding ROBDD further, up to a depth 8.
Z* = bdd-smooth(Z, gvars) After attempting division (regardless of whether the division suc-
R = bddxcompose(Z*, G, g) ceeded or failed), the depth of n is guaranteed to be less than or equal
ifR = f then to 5, allowing for an elegant exit in case division fails. In general,

return(success, Z*) however, this division strategy yields a number of good generalized
end if buffers, so this occurrence is rare.

else
return fail 4. Experimental Results

end if We implemented the generalized buffering algorithm in SIS [20].
} Our code consisted of reading a circuit (which was decomposed before-

hand into 2-input gates and inverters), and then building ROBDDs of
In Algorithm 1, the functions L and U are ANDed with (g~G) its nodes in a topological manner from inputs to outputs. When the

to express the fact that g and G are not independent variables, but height of the ROBDD of any node grew beyond 5, division was in-
rather are related as G g. We next find a small ROBDD Z (using voked, as described in Section 3. The resulting gates that were di-
the function bdd between, which returns the heuristically smallest vided, and the new ROBDD after division were stored within each
ROBDD Z such that L C Z C L + U), which is a Boolean divisor of node's data structures. Since the ROBDDs in question were small
f. Next, we smooth outL the variables of g. If the resulting ROBDD (with a maximum height of 8), we performed division exhaustively.
Z*, with g composed back into G, is identical to f, we return Z* as Our library consisted of the gates AND2, AND3, AND4, OR2, OR3
the quotient. and OR4. Since any divided gate becomes a new variable, it is re-
When we perform ROBDD construction, the maximum height of quired in both its polarities. Therefore, by DeMorgan's law, we onlyWhenwe prforROBD costrctio, th maxmum eigh of

have non-inverting gates in our librarythe ROBDD of a node n before division can be 8, as discussed earlier. Tave I rertsg gte m obtaiy.
Our division routines systematically reduce this height to below 5 T
by using several generalized buffers. If an ROBDD is not able to be table, column 1 lists the example under consideration. Column 2 lists
divided (and the resulting height after division is greater than 5), then the number of inverters required by partitioned ROBDD based de-
we back-track, and make one of the fanins of n a new variable. The composition of the circuit, using traditional buffering. The traditional
fanin which is made a new variable is the one whose topological level method used for comparison was similar to that reported in [ 13]. The
is one less than that of n. The reason for this is illustrated in Figure 3. remaining columns report the number of library gates invoked by our

algorithm. Note that in general, a healthy number of library gates are

a b utilized for each example.
Table 2 compares the results of traditionally buffered partitioned

ROBDD based PTL implementations, with our generalized buffering
methodology. Columns 2, 3 and 4 report the circuit delay, area and

/c / / \ number of MUXes utilized for the traditional method. Columns 5, 6
and 7 report these numbers for our method (as a fraction of the cor-
responding numbers for the traditional method). Finally, Column 8
reports the runtime for our division based generalized buffering based
synthesis algorithm.

d e In each case, delays were extracted by finding the longest delay
path from any output to any input. The MUX structures and all gates
in the library were characterized for delay in SPICE [21], using a
100nm BPTM [22] process technology. The area computation was

Figure 3: Back-tracking during Division performed by determining the active area of the MUXes and all the
library cells. The number of MUXes is simply the sum of the sizes of

Consider node a, at topological level n. Suppose it has two fanins each of the partitioned ROBDDs in the design.
c and d, with levels n-1 and n-2 respectively. Since partitioned We observe that our method results in a speed-up of about 26%Y

'Smothng s asoeferedto s xisental uanifiatin. he x- on average, compared to the traditional method. Also, our method
istential quantification of f with respect to a variable x is expressed as utilizes about 24%Y fewer MUXes. However, since the generalized
3xf =fx +fx- Smoothing a set of variables is achieved by performing buffers occupy greater area than the traditional buffers, the overall
existential quantification, one variable at a time area improvement of our method is not as high (2.3%Y on average).
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These results indicate that generalized buffering offers significantly utilizes partitioned ROBDDs to construct the PTL circuit, with the
faster designs, with a small area benefit as well, compared to tradi- interfaces between these PTL structures buffered using library gates.
tionally buffered PTL. The run-time of our partitioning algorithm is Our technique of generalized buffering requires Boolean division of
slig,htly less than 90 seconds for the largest example in our benchmark the PTL block using different gates in a library. In this way, we can
suite. select the gate that results in the largest reduction in the height of
The effectiveness of our method can be augmented by invoking dy- the PTL block. In this manner, we can have these gates serve the

namic variable re-ordering while performing ROBDD construction. function of buffering the outputs of PTL blocks, and also perform cir-
This will allow further reduction in circuit size for both the traditional cuit computations at the same time. Over a number of examples, we
and generalized buffering methodologies. Generalized buffering can demonstrate that on average, our approach results in a 26% reduc-
benefit yet further by utilizing multi-level don't-cares, as described in tion in delay, and a 2.3% improvement in circuit area, compared to a
Section 3, something that the traditional method cannot benefit from. traditional buffered PTL implementation.
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