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Abstract— Pass Transistor Logic (PTL) is a well known
approach for implementing digital circuits. In order to handle
larger designs, and also to ensure that the total number of series
devices in the resulting circuit is bounded, partitioned Reduced
Ordered Binary Decision Diagrams (ROBDDs) can be used to
generate the PTL circuit. The output signals of each partitioned
block typically needs to be buffered. In this paper, we present a
methodology to perform generalized buffering of the outputs of
PTL blocks using Boolean division and compatible observability
don’t cares (CODCs). By performing the Boolean division of
each PTL block using different gates in a library, we select the
gate that results in the largest reduction in the depth of the PTL
block. The use of CODCs further simplifies the logic of the PTL
block. The gates serve the function of buffering the outputs
of the PTL blocks, while also reducing the depth and delay
of the PTL block. Since the CODC computation is memory
intensive and time consuming, CODCs can not be computed for
large circuits. To avert this problem we also use approximate
CODCs (ACODCs) which can be computed for arbitrary size
circuit. Over a number of examples, we demonstrate that our
approach (generalized buffering with ACODCs) results in a
29% reduction in circuit delay and 27% reduction in number
of MUXes required, with an improvement of 5% in circuit
area, compared to a traditional buffered PTL implementation
of the circuit. Our approach also resulted in a delay reduction
of 5% and an area reduction of 2% over generalized buffering
without don’t cares.

I. INTRODUCTION

Pass Transistor Logic (PTL) is a circuit implementation
style that has typically been used for many specific circuit
implementations, like barrel shifters. Although PTL offers
great benefits for such designs, there has been no widely
accepted PTL design methodology that could be used to
make PTL more broadly acceptable. There have however
been several efforts at the research level, to explore the
promise of PTL.

Synthesis approaches for PTL structures typically lever-
age the fact that there is a direct mapping between the
ROBDD [1], [2] and the PTL implementation of a circuit.
In fact, each ROBDD node can be mapped to a MUX
(which can be implemented using NMOS or CMOS devices).
Figure 1 illustrates the mapping between an ROBDD and
PTL structure. In Figure 1 the solid line (dashed line)
represents the positive (negative) cofactor of an ROBDD
node with respect to the variable of that node. For the PTL
implementation of the ROBDD of any function, there is an
isomorphism between the connectivity of the ROBDD nodes
and the MUXes in the PTL implementation. This elegant and
easy mapping between ROBDDs and PTL structures is not

without attendant problems, however.
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Fig. 1. ROBDD and its PTL Implementation

o For one, in a bulk MOS implementation of any circuit,
it is not practical to connect more than 4-5 devices in
series, due to the phenomenon called body effect, which
effectively increases the threshold voltage Vr of most of
the series-connected MOSFETs. This results in a slower
design. Body effect is governed by the equation
Ve =V + WV
Here V7 is the threshold voltage of the device, V}) is the
threshold voltage of the device at zero body bias, 7 is
the body effect coefficient, and V;, is the source to bulk
voltage of the MOSFET. When several MOSFETs are
connected in series in a PTL circuit, all but one of them
is affected by body effect. For this reason, in practice,
VLSI designers do not stack more than 4-5 devices in
series.

This results in a problem for the traditional PTL
implementations, which attempted to build monolithic
ROBDDs. To solve this problem, we need to build
ROBDDs in a partitioned [3] manner, such that if an
intermediate ROBDD has a depth greater than 4 or 5,
a new variable is created. In circuit terms, a buffer is
implemented at the output of the new variable, ensuring
that the circuit drive capability is regenerated every few



levels in the final PTL design.

o The second problem is that ROBDDs, if built mono-
lithically, can exhibit unpredictable memory explosion.
This precludes the applicability of the PTL methodology
for large designs, as long as the ROBDDs are build
monolithically (since it is very hard to build monolithic
ROBDDs of large functions). Again, this suggests the
use of partitioned ROBDDs to averts this problem.

In summary, partitioned ROBDD construction helps tackle
both the above problems associated with PTL synthesis.
In such a partitioned PTL design, the outputs of each
PTL structure is buffered, to regenerate the electrical drive
capability every 4 or 5 levels.

This work describes a new PTL synthesis approach which
performs better than buffered partitioned ROBDD based PTL
synthesis. In principle, it still employs partitioned ROBDDs,
however, the buffering between PTL stages is done using
generalized buffers. These could be arbitrary gates in the
cell library. We achieve this by casting the problem of
generalized buffering as an instance of Boolean division.
Compatible observability don’t cares (CODCs) are used
along with Boolean division. By using more complex gates
for the buffering logic, and by additionally using CODCs,
our method is able to significantly simplify the logic in
the PTL structure, resulting in an improvement (about 29%
on average) in total circuit delay, which is achieved by
significantly reducing the total number of MUXes. Even
after accounting for the increased area of the generalized
buffers, our method comes out slightly ahead in terms of
area (by about 5% on average). The above comparisons are
against traditionally buffered partitioned ROBDD-based PTL
structures.

The don’t cares (CODCs) can be computed using
Sfull_simplify in SIS [4]. However, this computation is very
memory intensive and time consuming because of its use of
ROBDDs. As a result, the CODC computation is typically
not feasible for large circuits. The work presented in this
paper is applicable for large circuits as well, since it uses an
approximation of CODCs, which can be computed efficiently
and in a robust manner. In [5], the authors presented a
technique to compute approximate compatible don’t cares
(ACODCs). These don’t cares are an approximation of
CODCs. The computation of the ACODC of any node n is
based on extracting other nodes in the transitive fanout/fanin
(TFO/TFI) of n, up to a limited depth. The resulting nodes
induce a sub-network of the original network. The ACODC
of n is simply its CODCs computed for the induced sub-
network. ACODCs can be computed for arbitrarily large
designs, and the time and memory utilization for the ACODC
computation is much less (both typically 30X lower) than
the corresponding values for a full CODC computation.
At the same time, the literal count reduction obtained by
ACODC:s is typically about 80% of that obtained by full
CODCs. Hence, ACODCs are used in this paper, allowing the
applicability of the proposed approach to industrial designs.

The remainder of this paper is organized as follows.

Section II discusses some previous work in this area. In
Section III we describe our method of generalized buffering
of PTL structures, based on Boolean division. In Section IV
we present experimental results comparing our idea with tra-
ditional buffered partitioned ROBDD-based PTL designs [6].
We have also compared our approach with generalized
buffering without CODCs [7]. Conclusions and future work
are discussed in Section V.

II. PREVIOUS WORK

There has been a significant amount of work in the area
of pass transistor logic synthesis. In addition, there have
been several reported design variations on the PTL circuit
concept. A good reference source for published work in this
area is [8]. The focus of our paper being logic synthesis
for PTL design, we will not discuss circuit-level variations
of the PTL approach. Given the generality of our synthesis
methodology, it is orthogonal to the circuit issues and ideas
that are discussed in the papers referred to in [8].

In [9], Yano et al. present a synthesis tool, which works
with their PTL library of cells, macrocells etc. The philos-
ophy of Macchiarulo et al. [10] is that while PTL based
synthesis is well researched, layout and back-end tools
for PTL are not found as readily. They describe a layout
generator, to help develop more complete tools for PTL
design. The approach of Radhakrishnan et al. in [11] is
motivated by the need to develop high density, low power,
high performance circuits using PTL. The authors report
a synthesis method, using two approaches — a modified
Karnaugh map [12] approach for small circuits, and a Quine-
McCluskey [13], [14] based approach for larger designs.
In [15], the authors study regenerative pass transistor logic
(RPL), a dual rail PTL family. Their interest stems from
the compact area of these circuits. In [16], Hsiao et al.
present a layout and logic synthesis approach, with the input
being a logic function, while the output is a PTL netlist,
using MUXes and inverters. After synthesizing the logic,
the methodology adds inverters, in order to ensure that the
longest series path of MUXes has a bounded depth. In this
approach, the buffering is simple (using inverters) as opposed
to the generalized buffering (using arbitrary library gates) in
our work. The work of [6] builds ROBDDs [1], [2] in a
partitioned manner [3], thereby avoiding the memory blow-
up that often occurs while using ROBDDs. The resulting
small ROBDDs are directly mapped to PTL structures, re-
sulting in an efficient synthesis methodology. The downside
of this approach is once again, the absence of generalized
buffering. This approach also does not utilizes the CODCs
to simplify the logic of PTL structures. The authors allude
to performing PTL synthesis in a manner that maps some
nodes to CMOS gates while others are mapped into PTL
blocks. However, this leaves the designer little control of the
depth of these sections. In contrast, our generalized buffering
approach guarantees a fixed bound on the depth of the PTL
block, and also ensures just one level of generalized buffers



between PTL blocks. Our generalized buffering approach
also uses CODCs to simplify the PTL blocks.

In [17], an approach using multilevel gates along with
PTL and transmission gates is reported by Neves et al.,
producing a regular and dense layout. This approach permits
buffer inclusion. It can be viewed as an approach that
combines synthesis and layout in the PTL design flow,
and is as such orthogonal to our approach. The work of
Pedron et al. in the paper [18] reports synthesis algorithms
for PTL. Minimization is performed by using incomplete
transmission gates. The results of synthesis using their tool
PAVOS demonstrate good quality results when compared
with manually tuned PTL circuits. The work of Markovic et
al. [19] reports on PTL synthesis for Complementary Pass
Transistor Logic (CPL), Dual Pass Transistor Logic (DPL)
and Dual Voltage Logic (DVL). Finally, the work of Shelar
et al. in the paper [20] reports on a novel method to minimize
power in a PTL structure, by transforming the problem into
one of ROBDD decomposition and solving it with a max-
flow min-cut approach.

In [21], a mixed PTL-CMOS approach was presented by
Lai et al. The decomposition process simply extracted unate
variables from a sum-of-products (SOP) representation of a
function and recursively cofactored these variables (creating
MUXes in the process) until unate leaves were reached.
Unate leaves were realized using library gates alone. The
weakness of this approach is that it starts with a SOP
representation, limiting its effectiveness for large designs.
Further, if a function is unate, then the entire circuit realiza-
tion is purely standard-cell based. Our approach, in contrast,
can handle arbitrarily large designs since it starts with a
partitioned ROBDD construction as the first step. Also, it
works equally effectively for unate designs.

Another mixed PTL-CMOS approach was presented by
Yamashitas et al. in the paper [22]. In this paper, the
circuit structure was a AND gate followed by a MUX. In
contrast to our approach, this scheme did not selectively
divide a library of standard cells into the PTL structure,
thereby not exploiting the flexibility available in the Boolean
division process. In [23], the authors present a PTL synthesis
algorithm with generalized buffering. They cast the problem
of generalized buffering as an instance of Boolean division.
Their approach yields a good reduction of total circuit
delay over traditional buffering. They also obtained a small
improvement in total circuit area over traditional buffering.
However, their approach does not utilizes the CODCs to
simplify the PTL blocks.

In our approach, we also perform generalized buffering
using Boolean division. However, multi-level don’t cares
(CODCs & ACODCs) are used during Boolean division, to
further simplify the PTL structure. The simplification of PTL
structures will results in a further reduction of total circuit
delay and area.

III. OUR APPROACH

We define the depth of an ROBDD g as the maximum
number of nodes in any traversal of g to its terminal
nodes. Our method creates partitioned PTL structures with a
maximum depth of 5 (this number can be arbitrary, though).
This ensures that there are no more than 5 transistors in
series, in any PTL block.

In order to implement generalized buffering, we employ
Boolean division with CODCs. Algorithm 1 describes the
new PTL synthesis methodology which uses generalized
buffers and CODCs to simplify the PTL blocks. Consider
a boolean network 1. First the network 1 is optimized and
decomposed using 2-input gates and inverters only. This is
done to ensure that the PTL structure grows in predictable
manner. Let the new network be referred to as n*. Now the
nodes of N* is sorted in depth-first manner. The resulting
array of nodes is sorted in levelization order, and placed into
an array A.

In this approach, we first build ROBDDs of the nodes of 1,
topologically from the inputs to the outputs by fetching the
nodes from the array A in index order. Suppose we encounter
a new node n for which we want to construct a ROBDD f.
The ROBDD of each of its fanins must have a support of at
most 4 variables (assuming that the fanins are not partitioned
ROBDD variables). When constructing the ROBDD f of n,
it can initially have at most § ROBDD variables (since any
node in the original network can have at most 2 fanins).
In case no division is possible, we can make one of the
inputs of n a new variable, yielding an ROBDD of depth at
most 5. If the depth of f is less than 5 then we continue
with creating the ROBDD of the other nodes in array A.
However, if the depth of f is greater than or equal to 5 then
we compute the CODCs (or ACODCs) of the node using
compute_dc function. Then we attempt to divide f with the
gates in a library by calling the fest_division function. The
detailed description of the test_division function is provided
after the synthesis flow. If the division is successful, then the
depth of the ROBDD f will reduce. If the resulting depth of
ROBDD is less than or equal to 5 than we made the node n
a ROBDD variable otherwise we back-track. The back-track
procedure is described later.

The key idea is that we will take the ROBDD of n, and
attempt to divide it with the gates in a library. If such a
Boolean division is possible and it is strictly depth-reducing,
we select it. The test for whether a library gate g, with an
associated variable G, divides the ROBDD f of n is described
next. A pictorial view of the process is shown in Figure 2.

A. Boolean Division with Library Gates

Definition 1: g is a Boolean divisor of f if 4 and r exist
such that f =gh+r ,gh#0.

g is said to be a Boolean factor of f if, in addition, » =0,
ie., f=gh.

In this case, & is called the quotient and r is called the
remainder. Note that & and r are not unique.

Theorem 3.1: 1f fg # 0, then g is a Boolean divisor of f.



Algorithm 1 Pseudocode for PTL synthesis using general-
ized buffers and CODCs
1 = optimize_network(n)
N* = decompose_network(m|, p)
A = dfs_and_levelize_nodes(n™)
N =0
i=1
while i < size(A) do
n = array_fetch(A,i)
f = ntbdd_node_to_bdd(n)
if bdd_depth(f) > 5 then
d = compute_dc(m*,n)
for ¢ = G € Gate Library do
f = test division(f,d,g,G)
end for
if bdd_depth(f) > 5 then
back-track
else
bdd_create_variable(n)
continue
end if
else
continue
end if
end while

a) Before dividing AND gate b) After dividing AND gate

(note depth reduced
otherwise the gate is rejected

Fig. 2. Dividing a Generalized Buffer into a PTL Structure

Proof: If fg+# 0, we can write

f=re+re
f=g(f+x)+ fg wherexC g
which is of the form f =gh+r. ]

However, if f is an Incompletely Specified Function (ISF),
with don’t care d, then

f=G(f+d+3)+(f+d)g.

Therefore, the upper and lower bounds (U and L) for f
are:

U=G(f+d+3)+(f+d)g

and

L=(fG+fg)

As a consequence, the test that we perform when we want
to try to divide a gate g (having a variable G) into the
ROBDD f is shown in Algorithm 2.

Algorithm 2 Pseudocode for Division of f by g = G using
CODCs
test division(f,d,g,G){
if fg # 0 then
L= (fG+ f2)(sTG)
U= (fG+dG+Gg+ fg+dg)(gdG)
Z = bdd _between(L,U)
Z* = bdd_smooth(Z, gvars)
R = bdd_compose(Z*,G,g)
if f CRC f+d and bdd_depth(Z*) < bdd_depth(f)

then
0 =d(g®G)
d=3IQ
return(success,Z*)
end if
else
return fail
end if

}

In Algorithm 2, the functions L and U are ANDed with
(¢DG) to express the fact that g and G are not independent
variables, but rather are related as G = g. Note that as a
consequence of this, the Gg term in line 4 of Algorithm 2
can be removed. We next find a small ROBDD Z (using
the function bdd_between(), which returns the heuristically
smallest ROBDD Z such that L CZ C L+ U), which is a
Boolean divisor of f. Next, we smooth out! the variables of
g. If the resulting ROBDD Z*, with g composed back into G,
lies between f and f+d and also if the depth of Z* is less
than the depth of f, we return Z* as the quotient. If we have
a valid division then we map the don’t care d of the node n
onto a new set of variables V so that it can be used during
the next iteration. The CODCs are mapped using following
equations:

0 = d(¢3G)

d=30

where V is the set of variables which lie in the support of g
but are not present in the support of Z*. The re-mapped don’t
cares of n are used for further Boolean division, to explore
additional generalized buffering opportunities for the node
n.

B. Back-track

When we perform ROBDD construction, the maximum
depth of the ROBDD of a node n before division can be 8, as
discussed earlier. Our division routines systematically reduce
this depth to below 5, by using several generalized buffers. If

'Smoothing is also referred to as Existential Quantification. The exis-
tential quantification of f with respect to a variable x is expressed as
3cf = fx + f5. Smoothing a set of variables is achieved by performing
existential quantification, one variable at a time



an ROBDD is not able to be divided (and the resulting depth
after division is greater than 5), then we back-track, and make
one of the fanins of n a new variable. The fanin which is
made a new variable is the one whose topological level is
one less than that of n. The reason for this is illustrated in

I
RN
‘O

Fig. 3. Back-tracking during Division

Consider node a, at topological level n. Suppose it has two
fanins ¢ and d, with levels n— 1 and n — 2 respectively. Since
partitioned ROBDD construction occurs in topological order
from inputs to outputs, it is possible that node b has already
been processed, and divided. Its ROBDD therefore has a
depth less than 5 nodes. Now suppose the ROBDD depths
of d and ¢ are 4 each, and the ROBDD of a has depth 8.
Suppose all divisions for node a fail. In that case, we need
to back-track and make either ¢ or d a new variable. This
would guarantee that a has a new depth 5. We select ¢ (with
level n— 1) as the new variable, since it is more likely that
d (which is at a lower topological level) has more fanouts at
level n or n— 1. When c is made a new variable, all its fanouts
are checked. If any of them has already been processed
(such fanouts must have level n), then their ROBDDs are
re-computed, and division is re-done. In this way, the PTL
network is kept as small as possible. If this re-computation
were not performed, then the logic of the node ¢ would be
implemented twice as a PTL structure (once for the node
b and then again for the variable corresponding to node ¢
itself).

If, after a back-track, the depth of the node # is less than 5,
then we continue to grow the corresponding ROBDD further,
up to a depth 8.

After attempting division (regardless of whether the di-
vision succeeded or failed), the depth of n is guaranteed
to be less than or equal to 5, allowing for an elegant exit
in case division fails. In general, however, this division
strategy yields a number of good generalized buffers, so this
occurrence is rare.

IV. EXPERIMENTAL RESULTS

We implemented the new PTL synthesis algorithm with
generalized buffering and don’t cares in SIS [4]. Our method
creates partitioned PTL structures with a maximum depth of
5 (this number can be arbitrary, though). This ensures that
there are no more than 5 transistors in series, in any PTL

block. The code consisted of reading a circuit (which was
decomposed before-hand into 2-input gates and inverters),
and then building ROBDDs of its nodes in a topological
manner from the inputs to the outputs. When the depth of the
ROBDD of any node grew beyond 5, division was invoked,
as described in the previous section. The CODCs were
computed and used during division. The CODC computation
was done in two ways: one using full_simplify [4] (which
provides complete CODCs) and another using approximate
CODCs (ACODCs) as mentioned in [5]. Results are pre-
sented and compared for both styles of CODCs.

The resulting library gates that were utilized for division,
and the new ROBDDs after division were stored within each
node’s data structure. Since the ROBDDs in question were
small (with a maximum initial support of 8), division was
performed exhaustively. If the resulting depth after division
was still greater than 5, then a back-track step was invoked
making one of the node’s fanins a new variable. After this
we check the nodes which are in the fanout of the fanin node
corresponding to the newly created variable. If any of these
fanout nodes was already processed, then their ROBDDs
were re-computed, and division was re-done. After attempt-
ing division (regardless of whether the division succeeds or
fails), the depth of the final ROBDD is guaranteed to be less
than or equal to 5, allowing for an elegant exit strategy in
case division fails. Our library consisted of the gates AND2,
AND3, AND4, OR2, OR3 and OR4. Since any divided gate
becomes a new variable, it is required in both its polarities.
Therefore, by DeMorgan’s law, we only need non-inverting
gates in our library.

The MUX and all gates in the library were characterized
for delay in SPICE [24], using a 100nm BPTM [25] process
technology. Table I shows the delay and active area of MUX
and all gates in the library.

| Gate | Delay(ps) | Area(u?) |

MUX 18 0.08
INV 10.26 0.08
Buffer 20.5 0.16
AND2 30.20 0.28
AND3 37.76 0.44
AND4 47.39 0.64
OR2 38.70 0.36
OR3 46.08 0.68
OR4 68.28 1.12
TABLE I

DELAY OF VARIOUS GATES IN THE LIBRARY

The delay of a synthesized PTL circuit was extracted by
finding the longest delay path from any output to any input.
Table II compares the delay of the traditionally buffered
partitioned ROBDD based implementation with the general-
ized buffering methodology (with and without CODCs). In
this table, column 1 lists the example under consideration.
Column 2 reports the circuit delay, for traditional buffering.
The traditional method used for comparison was similar to
that reported in [6]. Column 3 reports delay for PTL syn-



thesis algorithm with generalized buffering without CODCs
similar to that reported in [7] (as a fraction of the delay
of the traditional method). Column 4 and 5 report delay
number for new PTL synthesis using ACODCs and CODCs
respectively (again as a fraction of the delay of the traditional
method). Some entries in the table are marked as “-”. This
indicates that full_simplify was not able to compute the
CODCs for that circuit. We observe that our method (i.e.
generalized buffering with ACODCs) results in a speed-up of
about 29% on average compared to the traditional method,
and about 5% over generalized buffering without CODCs.
The usage of complete CODCs using full_simplify yield a
small improvement in delay of less than 1% in comparison
with ACODCs.

Traditional Generalized Buffering
Buffering Without CODC’s | With ACODCs [ With CODCs
Ckt Delay (ps) Delay | Delay | Delay
alu2 1927.26 0.53 0.55 0.54
alu4 3458.88 0.45 0.43 -
apex6 819.72 0.73 0.75 0.75
C432 2302.38 0.86 0.79 0.76
C499 670.68 1.01 1.01 1.01
C880 1248.8 0.70 0.53 0.54
C1908 1336.14 0.74 0.67 0.68
C3540 2104.56 0.71 0.53 -
C5315 1325.88 1.04 1.03 1.04
x3 601.38 0.82 0.82 0.82
i8 940.68 0.69 0.62 0.6
x1 567.9 0.67 0.67 0.67
pair 1243.8 0.75 0.70 0.70
rot 1362.06 0.82 0.80 0.80
C6288 5971.5 0.94 0.86 -
des 1092.24 0.89 0.79 -
too_large 1069.2 0.52 0.54 0.54
[ AVERAGE | [ 0.756 [ 0.710 [
TABLE 11
DELAY COMPARISON OF GENERALIZED AND TRADITIONAL BUFFERED
PTL

The area calculation was performed by determining the
active area of the MUXes and all the library cells. Ta-
ble III compares the active area of the traditionally buffered
partitioned ROBDD based implementation with that of
the generalized buffering methodology (with and without
CODCs). In this table, Column 1 lists the example under
consideration. Column 2 and 3 reports the circuit active
area for the traditional and generalized buffering without
CODCs. Columns 4 and 5 report the area for the new
PTL synthesis algorithm with generalized buffering using
ACODCs and CODCs respectively. The area in Columns
3, 4 and 5 are expressed as a fraction of the area of the
traditional method. Since the generalized buffers occupy a
greater area than the traditional buffers, the overall area
improvement of our method is not as high (5% on average)
compared to traditional method. Our method also yields a
2% improvement in area (over generalized buffering without
CODOCs). In the case of the circuit C432, when CODCs were
used, the area increases by 17% compared to the area when
ACODC:s were used. This increase in area is due to the use of

OR4 and OR3 gates during Boolean division (when CODCs
were used). When ACODCs were used, these gates were not
utilized. Due to this, the CODC based method exhibits a 1%
area overhead over ACODC based method (calculated over
the examples for which the CODC method completed).

Traditional Generalized Buffering
Buffering Without CODC’s | With ACODCs [ With CODCs
Ckt Area (%) Area | Area | Area
alu2 164.32 0.87 0.86 0.83
alu4 963.68 1.12 1.12 -
apex6 305.52 0.95 0.93 0.93
C432 87.12 1.02 0.93 1.10
C499 106.24 0.92 0.92 0.92
C880 136.16 0.80 0.79 0.79
C1908 152.24 0.97 0.93 0.93
C3540 532.88 1.01 0.98 -
C5315 540.16 1.12 1.11 1.12
x3 315.76 0.96 0.96 0.96
i8 520.48 0.75 0.72 0.70
x1 120.88 0.96 0.95 0.95
pair 640.32 1.08 1.07 1.06
rot 229.20 0.96 0.96 0.96
C6288 1220.48 1.10 1.06 -
des 1808.88 0.94 0.91 -
too_large 125.68 0.98 0.97 0.97
[ AVERAGE ]| [ 0.970 [ 0.950 [
TABLE III
AREA COMPARISON OF GENERALIZED AND TRADITIONAL BUFFERED
PTL

The number of MUXes is simply the sum of the sizes of
each of the partitioned ROBDDs in the design. Tables IV
reports the number of MUXes used for PTL synthesis using
traditional and generalized buffering. Column 1 lists the
example under consideration. Columns 2 reports the number
of MUXes required for the traditional buffering. Columns 3
reports the number of MUXes used by generalized buffering
without CODC:s (as a fraction of the corresponding numbers
for the traditional method). Columns 4 and 5 report the
number of MUXes used for generalized buffering using
ACODCs and CODCs respectively (again as a fraction of
the corresponding numbers for the traditional method). We
observe that our method utilizes about 27% fewer MUXes
than traditional buffering and 4% fewer MUXes than gener-
alized buffering without CODCs.

Table V reports the run-time for the different PTL syn-
thesis algorithms with generalized buffering. In this table,
Column 1 lists the circuit under consideration while Column
2 reports the run-time for generalized buffering without
CODCs. Columns 3 and 4 report the run-time for generalized
buffering using ACODCs and CODCs respectively. We ob-
serve from the Table V that the run-time taken generalized
buffering with ACODCs is 8x more than the run-time for
generalized buffering without CODCs. The run-time of our
partitioning algorithm with ACODC:s is slightly less than 152
seconds for the largest example in our benchmark suite. The
run-time for complete CODCs was on average 76X that the
run-time for ACODCs.

These results indicate that generalized buffering with



Traditional Generalized Buffering
Buffering Without CODC’s | ACODCs | CODCs
Ckt MUX MUX | MUX [ MUX
alu2 718 0.600 0.577 0.532
alu4 4188 0.704 0.689 -
apex6 1337 0.737 0.719 0.718
C432 404 0.995 0.795 0.834
C499 404 0.762 0.762 0.762
C880 594 0.731 0.702 0.712
C1908 660 0.858 0.806 0.792
C3540 2362 0.732 0.672 -
C5315 2366 1.068 1.037 1.03
x3 1393 0.797 0.789 0.791
i8 2418 0.483 0.449 0.439
x1 527 0.666 0.657 0.652
pair 2925 0.790 0.726 0.718
rot 999 0.803 0.796 0.79
C6288 5393 0.917 0.834 -
des 7854 0.796 0.740 -
too_large 552 0.654 0.643 0.644
[ AVERAGE | [ 0.770 [ 0729 ] - |
TABLE IV
NUMBER OF MUXES UTILIZED DURING TRADITIONAL AND
GENERALIZED BUFFERING
Generalized Buffering
Without CODC’s [ With ACODCs [ With CODCs
Ckt Time(s) | Time(s) | Time(s)
alu2 0.380 11.48 435.32
alud 8.990 54.52 -
apex6 1.490 4.6 117.23
C432 0.460 13.82 236.820
C499 0.360 11.67 86.78
C880 0.240 2.41 70.0
C1908 0.790 8.08 362.12
C3540 5.010 41.56 -
C5315 30.840 29.2 9543.8
x3 1.400 4.12 104.27
i8 1.630 28.73 2651.48
x1 0.240 1.08 16.2
pair 3.720 25.85 7110.52
ot 0.850 4.59 332.39
C6288 10.790 151.49 -
des 14.730 140.71 -
too_large 0.310 2.89 78.33
[ AVERAGE | 4.837 [ 33.55 [ - |
TABLE V

RUN-TIME FOR PTL SYNTHESIS WITH GENERALIZED BUFFERING

ACODC:s offers significantly faster designs, with a small
area benefit as well, compared to traditionally and general-
ized (without CODCs) buffered PTL. The use of complete
CODCs provides minimal benefits over ACODCs. At the
same time, the complete CODC computation took longer
than the ACODCs on average. Also, complete CODCs
cannot be computed for larger circuits whereas ACODCs can
be computed for arbitrary sized circuits. Therefore, the use
of complete CODCs does not provide any practical benefits
over ACODCs.

The effectiveness of our method can be augmented by
invoking dynamic variable re-ordering while performing
ROBDD construction. This will allow further reduction in
circuit size for both the traditional and generalized buffering
methodologies.

V. CONCLUSIONS

In this paper, we have presented a Pass Transistor Logic
(PTL) circuit synthesis scheme. In order to handle larger
designs, and also to ensure that the total number of series
devices in the resulting circuit is bounded, partitioned Re-
duced Ordered Binary Decision Diagrams (ROBDDs) have
been used to generate the PTL circuit. Our approach utilizes
partitioned ROBDDs to construct the PTL circuit, with
the interfaces between these PTL structures buffered using
library gates. Our technique of generalized buffering uses
Boolean division of the PTL block using different gates in
a library. In this way, we can select the gate that results
in the largest reduction in the height of the PTL block. In
this manner, we can have these gates serve the function of
buffering the outputs of PTL blocks, and also perform circuit
computations at the same time. Approximate Compatible
observability don’t cares (ACODCs) or complete compatible
observability don’t cares (CODCs) were used along with
Boolean division to simplify the PTL structures. Over a
number of examples, we demonstrate that on average, our
approach (generalized buffering with ACODCs) results in
a 29% reduction in delay, and a 5% improvement in circuit
area, compared to a traditional buffered PTL implementation.
Our approach also resulted in reduction in delay by 5% and
reduction in area by 2% over generalized buffering without
don’t cares.

The use of complete CODCs provides minimal benefits
over ACODCs. At the same time, the complete CODC
computation took significantly longer than the ACODCs.
Additionally, complete CODCs can only be computed for
circuits with up to a few thousand gates, while ACODCs can
be computed for arbitrary sized circuits. Therefore, it is better
to use ACODCs over complete CODCs. Results show that
ACODCs provide enough don’t cares to yield significantly
better PTL structures in terms of area and delay.
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