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Abstract

In this paper, we present two combinational ATPG al-
gorithms for combinational designs. These algorithms
utilize the multi-level don’t cares that are computed for
the design during technology independent logic optimiza-
tion. They are based on Boolean Satisfiability (SAT), and
utilize the single stuck-at fault model. Both algorithms
make use of the Compatible Observability Don’t Cares
(CODCs) associated with nodes of the circuit, to speed
up the ATPG process. For large circuits, both algorithms
make use of approximate CODCs (ACODCs), which we
can compute efficiently. Our first technique speeds up
fault propagation by modifying the active clauses in the
transitive fanout (TFO) of the fault site. In our second
technique, we define new j — active variables for specific
nodes in the transitive fanin (TFI) of the fault site. Us-
ing these j-active variables we write additional clauses to
speed up fault justification. Experimental results demon-
strate that the combination of these techniques (when
using CODCs) results in an average reduction of 45% in
ATPG run-times. When ACODCs are used, a speed-up
of about 30% is obtained in the ATPG run-times for large
designs. We compared our method against a commercial
structural ATPG tool as well. Our method was slower for
small designs, but for large designs, we obtained a 31%
average speedup over the commercial tool.

1. Introduction

In order to ensure that a manufactured IC is defect
free, IC vendors typically perform a set of tests before
shipping each die. Manufacturing defects manifest them-
selves as logical faults, which are mathematically modeled
as circuit nodes becoming statically '1’ (stuck-at-1) or ’0’
(stuck-at-0). Using this single stuck-at fault model, auto-
matic test pattern generation (ATPG) algorithms deter-
mine a set of tests (vectors on the primary inputs of the
circuit) to test all possible stuck-at faults in a design.

Existing ATPG techniques for testing single stuck-at
faults in combinational circuits fall under three classes.
The first class consists of structural methods which per-
form a topological search of the circuit under test. In
order to generate a test vector, these methods force a
value discrepancy at the fault site (fault excitation). They
then search for consistent values on circuit nodes such
that the discrepancy is justified by a primary input as-
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signment (fault justification). Finally they propagate the
value discrepancy to some primary output of the circuit
(fault propagation). Some of the well known structural
methods are the D-algorithm [1], PODEM [2], FAN 3],
TOPS [4] and SOCRATES [5]. The second class of tech-
niques consists of algebraic methods which generate test
patterns by manipulation of algebraic formulas. These
methods produce a formula describing all possible tests
for a particular fault and then simplify the resulting for-
mula. The Boolean difference method [6] is an example
of this class. The third class consists of hybrid methods.
The Boolean satisfiability (SAT) method [7, 8, 9] is an
example of this class. In this method, we start with a
formula that encodes the testability condition (just as in
the Boolean difference method), but instead of performing
symbolic manipulation of this formula, we transform the
formula into a conjunctive normal form (CNF) expression
and run Boolean satisfiability (SAT) on the expression, to
find a test.

In this paper we propose two techniques which signif-
icantly speed up SAT-based combinational ATPG. Both
techniques use the compatible observability don’t cares
(CODCs) associated with nodes of the circuit. These
don’t cares are generally computed during technology in-
dependent optimization of the circuit and are discarded
thereafter. In our approach we save these don’t cares and
use them to speed up ATPG. In our first technique we
augment the active clauses of the nodes in the TFO of the
fault site, to speed up the process of fault propagation. In
the second technique we define new j-active variables for
specific nodes in the TFI of the fault. Additional clauses
using these j-active variables are then added to speed up
the process of fault justification.

This paper could relatively easily be extended to ad-
dress sequential ATPG, by simply unfolding a sequential
circuit in time, and applying the same techniques as de-
scribed in the sequel. Further, in such a scenario, sequen-
tial don’t cares can be used to additionally enhance the
technique. The experiments that were performed for this
paper were conducted on combinational designs.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide definitions that are used in the rest of
the paper. Section 3 discusses previous work while Sec-
tion 4 describes our improved SAT based ATPG scheme.
Experimental results are presented in Section 5, and con-
clusions are drawn in Section 6.
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2. Preliminaries and Terminology

DEFINITION 1. The Boolean difference [10] of f with
respect to x is defined as

of
Yrok 1)
DEFINITION 2. Given a multi-level combinational Boolean
network C, a single stuck-at fault f = f(x,B) causes a
node x in C to be permanently stuck at logic value B
(where B € {0,1}). The faulty circuit, denoted by Cy
is then C with the faulty node x assigned to B.

DEFINITION 3. The test for a node x stuck-at-0 is de-
fined as
of
() (3)
where f is some primary output of the multi-level Boolean
circuit.

In the expression above, the first term (z) represents
the fault excitation and justification conditions and the
second term (%) represents the fault propagation condi-
tion.

Similarly, the test for a node x stuck-at-1 is defined as

_, Of
@ (2

DEFINITION 4. A conjunctive normal form (CNF) Boolean

formula f on n Boolean variables z1,x2, ..., %, is a con-
junction (logical AND) of m clauses ci,cz, ..., cm. Each
clause ¢; is the disjunction (logical OR) of its constituent
literals.

For example
f=(z1 +x3) (1 +7T2)

is a CNF formula with two clauses, ¢1 = (z1 + x3) and
c2 = (1 + T2).

DEFINITION 5. Boolean satisfiability (SAT) is the prob-
lem of determining whether a Boolean formula in conjunc-
tive normal form (CNF) has a satisfying assignment.

SAT is an NP complete problem [11]. Several heuris-
tic approaches exist for efficient solution of SAT. Among
these are Zchaff[12] and GRASP [13]. In GRASP, ef-
ficiency results from the use of non-chronological back-
track. Zchaff improves these results further by an effi-
cient mechanism of 'watching’ literals in the clauses. In
all cases, if a SAT solver determines that a formula is
satisfiable, it also returns the corresponding satisfying as-
signment.

DEFINITION 6. The Observability Don’t Care of node
yj in a multi-level Boolean network with respect to output
2k 1S

ODCjr = {x € B" s.t. zi(x)]y;=0 = zx(x)]y,;=1}
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In other words ODC;, is the set of minterms of the pri-
mary inputs for which the value of y; is not observable at
% [14]. This can also be denoted as

_ &
ODCik = () @)

Figure 1: Don’t Care example networks

In the network of Figure 1(a), z; explicitly depends on

y; (i.e. y; is a fanin of zx) so gﬂy_ can be computed using
J

equation 1. In general, when z; is not explicitly dependent

. . . P
on y;, as is the case in Figure 1(b), we can compute =

6yj
using the chain rule:
dy;  Ogi By;  dg2 Ay dgq  Oy;
Oz Og1 Og , 0%z 0Og1 Ogs
09192 9y; Oy; ~ Ogigs Oy; Oy;
O Om Doy, Pa Ou
09194 Oy; Oy; 09q-19  9Oy;
Oy; ~ Og1g29s Oy; Oy; 0Oy,
_ Oz Ogq1 992 Ogq (3)
09192...94 Oy; Oy; Oy

Once a node function is changed by minimizing [15]
it against its ODCs, the ODCs of the other nodes must
be recomputed. To avoid re-computation of ODCs dur-
ing optimization, Compatible Observability Don’t Cares
(CODCs) [14] were developed. The CODC of a node is a
subset of the ODC for that node. Unlike ODCs, CODCs
have a property that one can simultaneously change the
function of all nodes in the network as long as each of
the modified functions are contained in their respective
CODCs.

DEFINITION 7. A node z is said to be the dominator
of another node y (i.e node y is dominated by node x), if
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all paths from y to the primary outputs go through node
z [16].

This is illustrated by means of an example in Figure 2.
We can see that all paths from nodes ¢, e and g pass
through node z. Hence node x dominates nodes ¢, e and

g.

Figure 2: Dominators in Logic Network

In the rest of this section, we briefly review SAT-based
ATPG, with a view to providing a framework for dis-
cussing our approach.

In the SAT based ATPG method we first generate a
formula (in conjunctive normal form (CNF)) to represent
the test for the fault. Every gate of the circuit has a CNF
formula associated with it which represents the function
performed by the gate. This formula is true iff the vari-
ables representing the gate’s inputs and output take on
values consistent with its truth table. For example, con-
sider a 2-input AND gate with z and y as inputs and z as
output. The CNF formula for the AND gate is written
as:

Z+2) - Z+y) (24+T+7)

A CNF formula for the entire circuit is obtained by
forming the conjunction of the CNF formulas of all gates
of the circuit. This CNF formula describes the good
(fault-free) circuit behavior. The faulty circuit is a copy of
the fault-free circuit with new faulty variables for the gates
affected by the fault (i.e gates in the transitive fanout of
the fault). A CNF formula describing the faulty circuit is
obtained in a similar manner as the formula obtained for
the good circuit. A clause for the faulty circuit is written
only if it is different from the good circuit clauses. Next,
fault detection clauses are written. These clauses consist
of:

e Clauses representing the XOR of each good circuit

primary output and the corresponding faulty circuit
primary output.
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e Clauses representing the logical OR of the clauses
of the conditions above.

For SAT-based ATPG, a CNF formula for the ATPG
instance is constructed by taking the conjunction of the
good circuit clauses (conjunction of good circuit clauses of
each gate), the faulty circuit clauses (conjunction of faulty
clauses for each gate in the TFO of the fault site) and fault
detection clauses. This CNF formula is then solved using
a SAT solver. If a satisfying assignment S exists then the
fault is testable else it is redundant. The assignment of
values to primary input variables in S represents the test
vector for the fault. The entire process is repeated for
each distinct fault in the circuit.

To speed up the process of finding a satisfying assign-
ment, active clauses [7] are added to the composite CNF
formula. These are described in Section 4.1.

3. Previous Work

In the past, the ATPG problem has received extensive
attention in academia and industry. ATPG techniques
can be classified as structural, algebraic and hybrid.

A large fraction of ATPG techniques use structural
methods. The D-Algorithm [1] was one of the earliest
known ATPG techniques. This method tried to perform
fault justification and propagation by a structural search
on all nodes of a circuit. This was improved by PO-
DEM [2] where the search space was restricted to the pri-
mary inputs of the circuit, resulting in a significantly more
efficient ATPG technique. Techniques like FAN [3] further
improved performance by exploiting immediately applica-
ble implications, headlines, and multiple back-traces. An
algorithm that exploits the notion of circuit dominators
was introduced in [4]. Structural ATPG techniques based
on Boolean learning were introduced in [5, 17]. These
techniques augmented the structure-based search process
by performing additional static or dynamic learning of
logical implications in the circuit.

Algebraic techniques are elegant from a mathematical
perspective, and involve algebraic manipulation of the
equations describing the testability condition. The most
well known of these techniques is the Boolean Difference
Method [6]. In general, these techniques can prove to be
expensive and therefore there has not been much atten-
tion devoted to them.

Hybrid techniques are more recent, and they typically
utilize a mixed structural and functional approach.

One such hybrid technique is the SAT-based ATPG
technique introduced by Larrabee [7] and explored further
in TEGUS [8]. These techniques translate the testabil-
ity condition into a Boolean Satisfiability (SAT) instance,
which retains the circuit structure. A test for the circuit
is now obtained by invoking a SAT solver. During this
step, the circuit structure is not explicitly used in deter-
mining a test. SAT based ATPG techniques were shown
to be robust and fast, and our algorithms are developed
in a SAT-based ATPG framework.

EST [18] is an ATPG algorithm which utilizes struc-

tural search based on TOPS [4], augmented by Free BDDs [19]

to keep track of previously encountered search states.
Another SAT-based technique was reported in [9]. In
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this approach, the authors perform justification and prop-
agation on an implication graph (IG) structure. This
represents an efficient implementation of a SAT-based
method to analyze Boolean networks. Our techniques
are orthogonal to those of [9]. It would be interesting
to see the performance of a method which combines our
approach and that of [9].

In [20], the authors present a dynamic method to de-
tect and remove inactive clauses during SAT. Their ap-
proach is orthogonal to ours, and it would be an inter-
esting research problem to see how a combined approach
performs. Our method would make the search of the re-
maining clauses faster since it augments the clauses with
CODC information.

The efforts of [21, 22, 23] are similarly motivated. In [23],
SAT is sped up for a circuit instance by labeling variables
as lazy when they are determined to be non-controlling.
For example, if a logic cone feeds into an AND gate, one
of whose inputs is a 0, then all the variables in the logic
cone can be disregarded by the SAT solver. The approach
of [21] uses don’t care literals, which are treated differ-
ently during the solution process. A similar approach is
reported in [22], where unobservable literals are added
to each clause. These three approaches are quite similar
in their motivation. The main difference between these
approaches and ours is that our computed don’t cares
do not need to be updated during a SAT run, since we
utilize Compatible Observability Don’t Cares (CODCs).
Further, our approach is essentially orthogonal to those
of [21, 22, 23], since the information used by these ap-
proaches does not utilize CODCs, but rather the structure
of the circuit.

In [24, 25], the authors describe techniques to identify
redundant gate and wire replacement conditions. The
work is based on SAT, and the authors utilize CODCs
(which they refer to as approximate ODCs). The differ-
ence of our approach from [24, 25] lies in the fact that
we utilize approzimate CODCs (in order to handle large
designs for which CODCs cannot be computed). Further,
the application setting of our paper is widely different, re-
sulting in the need to write very different clauses than [24,
25].

SPIRIT is a SAT-based ATPG tool [26] which imple-
ments structural concepts like unjustified lines and static
learning. However, unlike our method, the learning ap-
plied is local. Our method implicitly utilizes dynamic
learning since the underlying SAT solver incorporates this.
Our method also utilizes structural information (in the
form of CODCs) to make the SAT based search more ef-
ficient.

In [27], the authors present an ROBDD-based ATPG
tool. In this hybrid technique, circuit structure is lost
when the ROBDD of the circuit is constructed, but struc-
tural information is used to guide the ROBDD-based test
generation process.

4. Our Approach

Our approach utilizes a SAT-based formulation of ATPG.
We utilize the efficient SAT solver Zchaff[12] to solve the
SAT instance that arises from the ATPG problem. Our
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approach has two parts.

In the first part we augment the active clauses [7] in the
TFO of the fault by utilizing the available CODC infor-
mation. This improves the efficiency of fault propagation.
In the second part we introduce new active variables and
new clauses for selected nodes in the TFI of the fault.
These clauses utilize CODC information as well, and help
improve the efficiency of fault justification.

4.1 Efficient Fault Propagation

In Larrabee’s SAT based approach [7], fault propaga-
tion is sped up by adding active clauses to the composite
CNF formula representing the testability condition. If a
fault is testable, then there must be at least one path
from the fault site to the primary output, such that every
node along that path has different good and faulty values.
Hence, every node in the TFO of the fault is allocated an
active variable. A node x is active (represented as x4) if
its value in the good circuit is different from its value in
the faulty circuit. The clauses for this condition are:

T > TDxy

Here zy refers to the faulty value of the node x. If a
node is active then at least one of its fanouts must be
active. The clauses for this condition are obtained from
the expression:

Taq = Z (ya)

yEFO(z)

Finally, one of the outputs must be active.

We write active clauses for every node in the TFO of the
fault, in order to guide the SAT solver to search in the rel-
evant region of the circuit. Since the SAT solver natively
has no notion of circuit structure, such guidance is quite
essential. By adding active variables and the associated
active clauses, we effectively incorporate some structural
information in the SAT search process. Correctness is not
compromised if some or all active variables and/or active
clauses are omitted.

As an example consider Figure 2. Assume that node x
is the fault node. If z, and z, are the active variables for
nodes x and z respectively, then the active clauses would
be written as

FTat+z+ay) (Ta+T+7Ty5)
and

(Za+z+2f) (Za+Z+7%))
Along with these clauses, the other active clauses that are
added are (Tq + z4) and (zq).

In our method, we add new clauses to guide fault prop-
agation. These clauses make use of the Compatible Ob-
servability Don’t Cares (CODCs) of the nodes in the TFO
of the fault site. It is generally the case that these don’t
cares are computed during technology independent opti-
mization of a digital circuit so there is no computational
overhead in adding the proposed clauses. We could use
full ODCs as well, and these would result in improved re-
sults. However, full ODCs are harder to compute. Since
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CODC s are typically computed during the technology in-
dependent phase of a design, we simply re-utilize them in
our approach.

CrAaM 1. If the assignment of the inputs of a node n
is contained in the CODC of n, then n cannot be on a
path consisting of active nodes starting from the fault site
and ending at a primary output.

The above claim can be proved easily since the CODC
of a node is contained in its ODC. In our approach, we
assert that if the input assignment of a node is contained
in its CODC, the node cannot be active, thereby avoiding
unnecessary search. Hence, for node z in Figure 2, the
new clauses which can be added to the circuit are

(zo = CODCYL) or

(Ta + CODCy)

In general, the clauses generated by the above expres-
sion may have a large number of literals. In our imple-
mentation, we ensure that the resulting clauses have at
most k literals, by deleting clauses with k + 1 or more
literals. Here k is a user specified parameter. As a result,
we actually implement

(e = S_z), where

S. D CODC,

These clauses are added for all nodes in the TFO of the
fault. Experimental results show an average improvement
of 41.5% in the SAT run time due to the addition of these
new clauses. The variable overhead is on average 0.1%,
while the clause overhead is slightly more than 4%.

4.2 Efficient Fault Justification

We now describe our method of adding new j-active
clauses for selected nodes in the TFI of the fault site.
These new clauses help speed up fault justification. These
clauses can be expressed in terms of the ODC of the nodes
in the TFI of the fault. However, since the CODCs of
every node have already been computed, we make use of
them instead. To do this we first find all the nodes in the
TFI of the fault (except for primary inputs) for which the
fault node is a dominator. We assign j-active variables’
to all such nodes. Because these new j-active nodes are
dominated by the fault node, we can reduce the chain rule
(equation 3 in Section 2) to:

8zk 8zk 3g1
2R (ZZEy L (222 4
Jy; dg1” 0y, @)

where zj, is a primary output, g; is the fault node and y;
is a node which is dominated by g¢i. This is valid since

‘;%T_‘ = 0 for n > 1. From this equation, we note that
J

1For a node p, we denote its j-active variable as pgce. This
notation is intentionally different from the notation used
for active variables corresponding to nodes in the TFO of
the fault site.
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the first term of the right hand side (RHS) is the care-
set associated with fault propagation. The second term
of the RHS is the care-set associated with fault justifi-
cation. Since we require that the fault be justified and
propagated, we need to ensure that the care points used
for the node y; satisfy both terms of the RHS. In other
words, the care points used for the node y; must be the
care points obtained by computing the Boolean difference
of the output z; with respect to y; (the condition on the
left hand side (LHS) of Equation 4).

For a multi-output circuit, we would need to compute
the care points for node y; as the complement of ODC},
where

opc; = [] (0DCjy)

kePO

In practice, we compute the care points for node y; as
the complement of CODC}, since these have already been
computed during technology-independent logic optimiza-
tion.

The new j-active clauses for a node p which is domi-
nated by the fault site are written in two parts:

1. A node p is said to be j-active if the immediate fanins
of its fanout nodes (other than the node p itself) do
not determine the value of the fanout node.

2. If a node is j-active then its input assignment must
not be contained in its CODC. In other words, for
node p which is dominated by the fault site, we write
clauses:

Pact = CODCy

The traversal of the circuit to write the first part of
the j-active clauses is illustrated by the algorithm below.
Note that we run this algorithm on each node (in the
transitive fanin of the fault site) which is dominated by
the fault site.

Active_clauses(node, fault_site) {
ForEach_Fanout(node) {
AddActive_clause(node)
if (fanout = fault_site)
return
else
Active_clauses( fanout, fault_site)

}

return

}

The function AddActive clause(node) adds the first part
of the new j-active clauses based on the type of gate being
implemented at the node.

Next, we write the second part of the new j-active
clauses.

ag1
ac = =
Pact ap

For the AOI-211 gate of Figure 3 the first part of the

j-active clauses that would be added for node x would be

(E . ﬂ) = Tact
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This is because the value of z is determined by x only if
c=0anda-b=0.
The second part of the j-active clauses would be

(Tact = CODCy)

Figure 3: AOI-211 gate

The addition of these new active clauses for our working
example in Figure 2 is described next.

Assume node x is the fault node. Here the nodes ¢, e
and g are dominated by x. Now, node g will determine
the value of x only if f equals 1. Hence the new active
clauses for node g can be written as

(f = Gact) * (gact = CODCy)
i.e
(f + gact) - (Gaet + CODCy)

Similarly, we can also write new active clauses for the
node e as

(d- f = eact) - (eact = CODCx)
i.e
(d+f + €act) - (€act + CODCv)

Note that j-active clauses for node c¢ are not written
since it is a primary input. In this manner we can write
new j-active clauses for all nodes in the TFI of the fault
node, which are dominated by the fault node. Experimen-
tal results using CODCs show an average improvement of
45% in the SAT run times due to the addition of the
clauses implemented in Sections 4.1 and 4.2. The incre-
mental improvement obtained by including clauses of this
section is only about 5%, since we are able to write new
j-active clauses for a small subset of nodes in the TFT of
the fault site.

In a traditional SAT-based ATPG flow, active clauses [7]
are utilized. Therefore, implementing our method of Sec-
tion 4.1 incurs no variable overhead. Also, the number of
dominators we found in typical circuits was very small.
As a result, we do not report results for the method of
Section 4.2 applied in isolation.

4.3 Approximate CODCs

CODCs are computed using an ROBDD [28] based com-
putation. Therefore it is not possible to compute them for
larger designs. Hence, for larger designs, we implemented

a technique to compute approximate CODCs (ACODCs) [29],

which computes a large subset of the CODCs quickly.
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ACODCs can be computed on average 25x faster than
CODCs, with an average 33x reduction in memory uti-
lization. This method is robust in that it can be applied
to large designs for which the CODC computation does
not complete.

We demonstrate the utility of our techniques using CODCs

(on circuits for which CODCs can be computed) as well as
ACODCs. For larger designs, we utilize ACODCs exclu-
sively. In this case, we simply replace the CODC terms
in the clauses described in Sections 4.1 and 4.2 by the
ACODCs.

5. Experimental Results

We implemented both our techniques in SIS [30]. For
our experiments we used the mcnc91 and itc99 bench-
mark circuits. Our experimental procedure consisted of
reading in a design and running script.rugged on the de-
sign. This script computes CODCs for the circuit dur-
ing circuit optimization. For ACODC tests, we replaced
full_simplify with our ACODC [29] version of this code.
These don’t cares are generally computed during tech-
nology independent optimization of the circuit and are
discarded thereafter. In our approach we save these don’t
cares and use them to speed up ATPG. Hence the use of
these don’t cares for ATPG incurs no extra run-time cost.
Next we technology-mapped the circuit using the library
lib2.genlib (using area as the cost function). Now for each
uncollapsed fault in the design, we generated SAT clauses
to test the fault, and then invoked Zchaff [12] to find a
test. Our method was compared with SAT-based ATPG
(without don’t cares)® as well as a commercial ATPG
tool. Comparisons with the old method were performed
on an IBM IntelliStation running Linux with a 1.7 GHz
Pentium-4 CPU and 1 GB of RAM. Comparisons with
the commercial tool were run on a Sun Ultra-4 SPARC
machine, running SunOS 5.7 (we ran our method and the
commercial ATPG tool on the same Sun machine). We
used the latest version of this commercial tool. The licens-
ing agreement for this tool requires that we do not mention
the name of the tool in this paper. In all experiments, no
random vector simulation was performed and all faults
were tested using our deterministic procedure. This en-
sures that run-time comparisons are fair and objective.
The reason for this choice is that if random wvector sim-
ulation was performed, the commercial tool and our tool
may have tested a different set of faults during random
vector simulation, making it impossible to draw objective
conclusions from the results.

Table 1 describes the clause and variable overhead of
our proposed techniques applied to medium sized cir-
cuits. Column 1 lists the circuit name, column 2 re-
ports the number of faults to be tested and columns 3
and 4 report the number of tested and redundant faults
respectively. Column 5 lists the total number of clauses
(for all the faults) in the old method, while column 6

2The original SIS ATPG algorithm uses a SAT solver in-
ternal to SIS. We changed this so that the SIS ATPG al-
gorithm uses Zchaff [12] as the SAT solver. This method
is referred to as the ”old method” in this paper. It uti-
lizes the notion of active clauses [7], but uses no don’t
care enhanced clauses like our method does.
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lists the clause overhead using our first technique (as de-
scribed in Section 4.1). Column 7 lists the clause overhead
using both our techniques (as described in Sections 4.1
and 4.2) simultaneously. Column 8 lists the total num-
ber of variables in the old method (over all tested faults),
whereas column 9 shows the variable overhead in the new
method (new variables are added only in our second tech-
nique). Columns 6, 7 and 9 correspond to the use of
CODCs. Columns 10, 11 and 12 respectively represent
the same overheads as columns 6, 7 and 9 for the case
when ACODCs are used in the ATPG computation.

Note that the average clause overhead of our techniques
(using CODCs) is low (approximately 4%). The aver-
age variable overhead of our second technique is also low
(0.1%). The percentage of nodes, on average, that are
dominated by fault nodes is about 5%. Also, note that for
our method, there were no aborted faults. When ACODCs
were used, these overheads reduce marginally. In all cases
the clause and variable overheads are extremely reason-
able.

Table 2 describes the ATPG results for large designs
(for which CODCs cannot be computed). Therefore we
used ACODC:s for both our algorithms. Columns 1 through
4 of this table are self-explanatory. Columns 5 and 6
respectively represent the clause overhead for our first
method in isolation and for both methods together. Col-
umn 8 represents the variable overhead for our second
method. Columns 9 and 10 represent the runtimes of
our techniques using the method of Section 4.1 and using
the combination of the methods of Section 4.1 and Sec-
tion 4.2, both normalized with respect to the old method.
We see that for large designs, our techniques deliver about
31.5% speedup compared to the old method (i.e. com-
pared to the use of SAT-based ATPG with just the use
of traditional active clauses, but no don’t care enhance-
ments). For these large designs, the percentage of nodes,
on average, that are dominated by fault nodes is about
3.8%. Column 11 reports the run-time of our method, the
run-time of the commercial tool, and the ratio of the two.
Also, Column 12 reports the aborted faults of our method
and the commercial tool. Note that on average, for these
large designs, our method runs 31% faster than the com-
mercial tool. Also, our method aborts on no faults, while
the commercial tool aborts on a handful of faults in some
of these designs. The increased run-time for 522_C'is at-
tributed to the presence of some hard faults, which our
method tested but the commercial tool aborted on.

Figure 4 shows the scatter plot comparing the SAT run
times for the old method with both our techniques (de-
scribed in Sections 4.1 and 4.2). The set of benchmark
circuits used are a superset of those listed in Table 2. Fig-
ure 4 shows that our methods perform consistently better,
and are very effective for harder examples.

Table 3 describes the effect of restricting the maximum
number of literals in each new clause to a user-specified
value k. For the results of Table 3, we implemented both
our techniques simultaneously. Column 1 lists the circuits
used while column 2, 3, 4 and 5 list the clause overhead as
a function of k. Columns 6, 7, 8 and 9 list the normalized
runtime of our technique again as a function of k (com-
pared to the old method). Column 10 lists the normalized
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examples
runtime (with respect to the old method) when ACODCs
are used. Finally, Column 11 reports the run-time of our
method, the run-time for the commercial ATPG tool, and
the ratio of the two. Since we compute an approximation
of the CODCs in this technique, we chose k > 5 so that
cubes of the ACODC are not removed. Further, since the
number of clauses did not increase dramatically for k > 5
based on columns 2, 3, 4 and 5, this was a pragmatic
choice. In general, the overheads for £ > 5 are reason-
able. Note that the ACODC method has a speedup of
23% on average for medium sized designs, compared to a
45% average speedup for the CODC method. This reduc-
tion is because ACODCs compute a subset of the CODCs,
resulting in a reduced benefit. The reason for choosing
ACODC:s is that CODCs cannot be computed for large
designs, while ACODCs can be computed [29] much faster
(25x faster on average) and with lower memory utiliza-
tion (33x lower on average). This allows ACODCs to
be used for large industrial designs, yielding a speedup
of 31.5% for larger designs as we saw earlier. Note that
our method is slower than the commercial ATPG tool for
these small examples (by a factor of about 7x), since the
SAT clause generation overhead dominates the total run-
time. However, as we saw earlier, for large designs, our
method is 31% faster than the commercial ATPG tool on
average.

SAT run-time comparison using large

6. Conclusions

Boolean satisfiability (SAT) based formulations result
in efficient techniques to solve the ATPG problem [7, 8,
9]. In these methods, we first transform the testability
condition into an equivalent CNF formula. This formula
is then solved using a SAT solver [13, 12]. If the formula is
satisfiable, the SAT solver returns a satisfying assignment,
from which we can extract the test vector.

In this work we have presented two techniques to speed
up SAT-based ATPG. In both techniques, we add clauses
to the existing CNF formula in order to speed up the
SAT solution process. In both techniques, these addi-
tional clauses are derived from the CODCs of the nodes
of the circuit. We assume that CODCs of circuit nodes
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‘ circuit H fits H test ‘ red ‘ old ‘| using CODCs [ using ACODCs |

clause |[[ cI% (1) [ cl %(1+2) [ oldvars [ var % (2) [ cI1% (1) [ eIl %(1+2) [ var % (2) |
alu2 976 968 8 1297k 5.12 5.73 411529 0.20 4.96 5.21 0.15
alu4d 1833 1812 21 4191k 4.60 4.87 1366145 0.09 4.32 4.55 0.08
apex6 2153 2153 0 497k 4.46 5.08 202319 0.17 4.11 4.67 0.15
apex7 650 649 1 133k 3.23 3.50 57703 0.24 3.01 3.22 0.20
C1355 1337 1337 0 2643k 4.17 4.62 892533 0.03 3.83 3.99 0.02
C1908 1284 1282 2 2414k 4.84 5.04 857028 0.06 4.33 4.65 0.05
C2670 2304 2297 7 3145k 1.44 2.06 1260296 0.17 1.32 1.57 0.15
C499 1337 1337 0 2646k 3.90 4.09 981219 0.06 3.61 3.89 0.05
C880 1216 1216 0 824k 1.48 1.83 315654 0.11 1.22 1.45 0.10
frg2 2219 2213 6 780k 3.48 3.70 323958 0.06 3.18 3.35 0.05
i5 844 844 0 147k 0.23 0.32 70584 0.09 0.20 0.30 0.08
i6 1529 1529 0 195k 5.38 5.83 76996 0.15 4.56 4.92 0.12
i7 2096 2096 0 298k 5.26 5.37 121723 0.12 5.02 5.10 0.09
rot 1954 1953 1 1166k 1.34 1.50 479787 0.04 1.11 1.26 0.03
terml 498 494 4 131k 2.98 4.36 51436 0.32 2.77 3.43 0.22
too_large 810 803 7 518k 1.26 1.91 198527 0.20 0.99 1.34 0.15
vda 1092 1092 0 1127k 6.82 6.89 383695 0.02 5.96 6.01 0.02
x1 862 862 0 198k 0.52 1.03 85480 0.14 0.42 0.86 0.10
x3 2303 2303 0 508k 3.30 3.84 203281 0.15 3.03 3.26 0.11
x4 1126 1126 0 211k 4.40 4.60 90763 0.16 4.12 4.35 0.13

[ AVG [ - 1T - T -1T - 1T 387 [ 4or7 [ - [ 010 [ 336 [ 3.65 [ 008 ]

Table 1: Clause and Variable Overheads for our Techniques - medium sized circuits

circuit faults tested old [ clause ovh [ old vars norm. time | our time (1+2)/commerc. time/ aborts
clauses || % (1) T % (I+2) ]| vars %(2) 12 ratio our/commerc.
b14_C 31055 30850 286.9M 2.11 2.21 98.1M 0.06 0.65 0.62 4818.06/5625.34=0.85 0/1
b15_C 28950 28037 444 9M 2.23 2.34 151.1M 0.03 0.83 0.81 14591.42/22370.30=0.65 0/0
b17_C 101143 98685 1381.3M 1.64 1.77 467.6M 0.02 0.72 0.69 36459.48/56912.03=0.64 0/2
b20-C 63127 62718 812.6M 2.43 2.71 274.0M 0.06 0.76 0.74 15534.91/31270.12=0.49 0/3
b21_C 64465 64003 851.7TM 1.28 1.35 287.9M 0.02 0.63 0.59 15506.17/38152.79=0.40 0/3
b22_C 93309 92838 1171.7M 1.32 1.45 396.3M 0.02 0.69 0.66 23419.98/6429.08=3.64 0/3
[AVG [ - T - T - 18] 197 [ - 0035 071] 0685 | 110330.02/160759.66=0.69 | -

Table 2: Clause and Variable Overheads, and Runtime for our Techniques - large designs

‘ circuit [[ clauses (1+2) w/ CODCs [ norm. time (1+2) w/ CODCs [ norm. time (1+2) ACODCs || our time (1+2) with CODCs (k > 5)
[k=3 k=4 [k=5 k>5[ k=3]k=4]k=5] k>5 | k> 5 /commerc. time/ratio
alu2 3.80 4.45 5.05 5.73 0.87 0.93 1.00 0.91 0.98 8.17/0.53=15.41
alud 3.14 4.17 | 4.58 4.87 0.66 | 0.89 | 0.83 0.69 0.74 28.28/1.51=18.72
apex6 3.87 4.33 | 4.46 5.08 0.17 | 0.19 | 0.16 0.16 0.30 4.33/0.21=20.61
apex7 2.31 2.87 | 3.23 3.50 0.69 | 0.77 | 0.54 0.31 0.35 1.19/0.05=23.80
C1355 3.63 4.06 | 4.30 4.62 0.77 | 0.77 | 0.77 0.73 0.80 26.45/11.10=2.38
C1908 3.96 4.71 4.79 5.04 0.73 | 0.92 1.05 0.93 0.98 18.26/0.66=27.67
C2670 1.05 1.21 1.41 2.06 0.82 | 0.87 | 0.85 0.81 0.91 30.36/0.55=55.20
C499 3.79 3.90 | 4.02 4.09 0.70 | 0.75 | 0.81 0.76 0.83 26.52/11.02=2.40
C880 1.21 1.24 1.48 1.83 0.88 | 0.91 0.87 0.76 0.83 6.29/0.17=37.00
frg2 3.20 3.46 | 3.48 3.70 0.48 | 0.55 | 0.48 0.43 0.65 7.17/0.19=37.73
i5 0.05 0.10 | 0.25 0.32 0.44 | 0.50 | 0.50 0.50 0.74 1.32/0.03=44.00
i6 5.01 5.38 | 5.48 5.83 0.36 | 0.46 | 0.50 0.60 0.75 1.70/0.07=24.28
i7 5.26 5.30 | 5.36 5.37 0.83 | 0.88 | 0.92 1.37 1.45 3.15/0.07=45.00
rot 1.07 1.33 1.33 1.50 0.13 0.15 0.15 0.14 0.35 10.30/0.22=46.81
term1 2.33 2.88 2.98 4.36 0.66 1.50 2.16 1.80 1.82 1.13/0.10=11.30
too_large 0.73 1.07 1.26 1.91 0.73 0.75 0.81 0.81 0.87 4.53/0.36=12.58
vda 6.74 6.80 | 6.82 6.89 0.93 1.20 1.03 0.88 0.93 7.98/0.44=18.13
x1 0.50 0.52 0.74 1.03 0.53 1.00 1.06 1.33 1.36 1.67/0.11=15.18
x3 2.55 3.20 | 3.30 3.84 0.11 0.12 | 0.15 0.12 0.35 4.79/0.21=22.81
x4 3.73 4.24 | 4.40 4.60 2.5 3.00 | 3.16 2.83 2.85 1.95/0.07=27.86
[ AVG ][ 301 [[ 352 [ 8.73 [ 407 [052 [ 059 [ 050 [ 055 ] 0.77 I 105.54/27.67=7.07

Table 3: Effect of Limiting Clause Sizes in our Techniques
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are computed before-hand, during technology indepen-
dent logic optimization. As a result, they are available for
the SAT-based ATPG tool, and there is no overhead in
computing them. For large designs, for both techniques,
we utilize Approximate CODCs (ACODCs) [29], which
can be computed efficiently for a design.

In our first technique we add clauses designed to speed
up fault propagation. This is performed by augmenting
the active clauses [7] (which are written for nodes in the
TFO of the node being tested) with don’t care informa-
tion.

In our second technique, we define new j-active vari-
ables and add new j-active clauses for selected nodes in
the TFI of the fault node. These clauses are designed to
speed up the fault justification process.

When using CODCs, we have demonstrated an aver-
age improvement in run-times of 41.5% when only our
first technique was used. If both our techniques are used
together, the average improvement in run-times is 45%.
When ACODCs are used, we have demonstrated an im-
provement of about 31.5% in ATPG run-times for large
examples. When compared to a commercial ATPG tool,
our method was 31% faster for large designs, but slower
for small designs since the SAT clause generation over-
head dominates the runtime for small designs. In the fu-
ture, we plan to optimize our implementation, to further
improve its performance.

In the future, we plan to extend our technique to ad-
dress sequential ATPG, by unfolding a sequential circuit
in time, and applying the same ideas outlined in the pa-
per. In such a scenario, sequential don’t cares will be used
to additionally enhance the technique.
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