Robust Window-based Multi-node Technology-Independent
Logic Minimization

Abstract

Multi-node optimization using Boolean relations is a pdiwkapproach
for network minimization. The approach has been studiedeory, and
so far its superiority over single node optimization tecfugis has only
been conjectured for practical designs. This is due to thlelyjnimemory
intensive computations involved in the calculation of Bxaoi relations
representing the multi-node optimization flexibility. Inig paper, we
present an algorithm to perform Boolean relation-basedimatie op-

timization using a robust, fast and memory efficient aldwnit In partic-

ular, we simultaneously optimize two nodes at a time. Wentagsults

on large designs, demonstrating the power of our multi-ragtemiza-

tion algorithm. The robustness of our approach arises fiwruse of
a window-based technique for computing these Booleanioakt Sec-
ondly, we perform early quantification during the compuatatikeeping
memory utilization low. Finally, we employ smart heuristifor select-
ing the node pair to be optimized simultaneously. Theseifeatallow
the approach to scale well and provide good results for ldagggns.

We perform experiments on a set of large benchmarks and adempa

our algorithm’s performance to a recent SAT-based netwgtkroza-
tion technique using complete don't cares. On average, W& a
15% reduction in literal count across all the large designgpared to
the complete don't care-based method while maintainindlsor@imes
and low memory usage.

1. Introduction

The optimization of industrial multi-level Boolean netweris tradi-
tionally performed using algebraic techniques. The maisoa for this
is that traditional Boolean techniques such as don’t caset optimiza-
tion, though more powerful, do not scale well with desigresibon’t
cares are calculated for a single node, and they can spédicihedlexi-
bility for implementing the node function. These don’t ca(®r a node)
are computed using a combination of Satisfiability Don't&a{SDCs),
Observability Don't Cares (ODCs) or External Don't CaresD(s).
These are described further in [1].

ODCs [2, 3] of a node are a powerful representation of the ‘Bdide-
ibility. However, the minimization of a node with respectite ODCs
can potentially change the ODCs at other nodes in the ciroesult-
ing in a need to re-compute ODCs for all circuit nodes. A stiofe
ODCs, termed as Compatible Observability Don't Cares (CODQ]
are computed keeping this limitation in mind. If a nadés minimized
with respect to its CODCs, then the CODCs of all other circaities
are still valid (and therefore do not need to be recomputddyvever, in
the CODC computation, the order of selecting a node duriag®DC
computation becomes important. The maximum flexibilityt tten be
obtained at the fanin nodeof a noden is a function of the CODCs of

Inputs | Outputs
00 00
01 01
10 {00,1%
11 10

Table 1: Example of a Boolean Relation

output vector{00,11. On the other hand, no Boolean function can rep-
resent the fact that both vectof80,11} are allowed at the outputs.

The superiority of a multi-node optimization approach itgsBoolean
relations) over don't cares has been pointed out in [5, 6]e fidason
for this superior optimization flexibility is that in the cqmtation of a
node’s don't cares, the functions of all the other nodesnatellowed
to change. This restriction does not apply to the multi-nopgémiza-
tion approach using Boolean relations since they allovstireilltaneous
modification of all nodes being targeted. However, this sop@pti-
mization flexibility has a price. The multi-node optimizati approach
requires that a Boolean relation be solved, which is typicalhighly
time and memory intensive operation. As a result, not mutdnton
has been devoted to these approaches, although there leavthberet-
ical works which have suggested the superiority of this négple over
don't care-based approaches [6]. However there has beenhustr
scalable approach which demonstrates the applicabilitsnaiti-node
optimization techniques to large designs. This problend@r@ssed by
this paper.

We now illustrate the power of a multi-node optimization eggch
by way of a small example [7]. Consider the netwgrkhown in Fig-
ure 1(a), where nod®&;’s output f implements the Boolean function
x -y and nodd/,’s outputg implementse + y. Given a networlg with
primary outputsZ, the ODC of a nodg is given by
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Using this equation for the network of Figure 1, we g&bC'(V1) =
ODC(V2) = @. As a result, no optimization is possible using ODCs.
However, we can observe thais equivalent tar & y as shown in Fig-
ure 1(b). This optimization caanly be obtained whev; andV; are
optimized simultaneously. The Boolean relation resulfiogn such an
optimization can represent this flexibility. After mininiig this Boolean
relation, noded’; andV; can be deleted from the network without com-

the fanins computed prior to In both the ODC and CODC approaches, promising the network’s functionality.

network optimization is performed on one node at a time.

A significant improvement in terms literal count over dordte-based
techniques can be obtained by considering multiple nodesa. The
formulation of such an optimization results in a Boolearatieh [4],
which implicitly represents the flexibility in optimizindldahe nodes si-
multaneously. The flexibility inherent in multi-node optiration can-
not be expressed using functions. Table 1 represents adoodation,
which, for a single input vectdf10}, can express more than oakowed

a) b)

Figure 1: Network n before and after optimization



The main contributions of our work are as follows. We impletma
window-based multi-node optimization methodology usimgliced Or-
dered Binary Decision Diagrams (ROBDDs) [8, 9]. Instead wfding
the Boolean relation that represents multi-node flexipititterms of the

primary inputs of the networkn, we build this relation using a subnet-

work 77/ which is rooted around the nodes being targeted. This alibe/s
resulting Boolean relation to havesegnificantlysmaller size, which lets
our approach work on large networks. Another feature of ppr@ach
that allows it to scale elegantly is that it usesrly quantification[10]
while computing the Boolean relation. Finally, our implertegion opti-
mizes two nodes at a time. A careful selection of these noils @eoids
the quadratic costhat can result from optimizing all pairs of nodes.

Our multi-node optimization approach results in a Booleglation
that encodes the flexibility in implementing the targetede® To re-
implement the targeted functions, this relation needs tanbremized.
There are several available techniques to do this [11, J2pLBmethod
uses [11].

The rest of this paper is organized as follows. In Section & pvo-
vide some preliminaries and definitions. Section 3 contaisaEmmary
of previous work in this area, while Section 4 details ourrapph for
multi-node optimization using Boolean relations. In Sec®, we report
experimental results and finally, we conclude in Section 6.

2. Preliminaries and Terminology

DerFINITION 1. A Boolean networky is a directed acyclic graph
(DAG) in which every node has a Boolean functifrassociated with
it. Also, f; has a corresponding Boolean variahje associated with it,
such thaty; = f;.

There is a directed edgg; from y; to y; if f; depends explicitly omy;.

A nodey; is afanin of a nodey; if there is a directed edge ;. Node
y; is afanoutof y; if there is a directed edgej;. F1(y) and FO(y)
represent the set of immediate fanins and set of immediataufa ofy
respectively.

A nodey; is in thetransitive faninof a nodey; if there is a directed
path fromy; to y;. Nodey; is in thetransitive fanoubf nodey; if there
is a directed path from; toy;. The transitive fanin of a nodg up to ak
levels, TF1(y;:, k), is the set of node$y; } such that there is a directed
path of length less than or equalkpbetweery; andy;. Similarly, the
transitive fanout of a nod& F'O(y;, k) is the set of node$y; } such that
there is a directed path of length less than or equél teetweeny; and

Yj-
DEFINITION 2. Reduced Ordered Binary Decision Diagramsare
a means to represent a Boolean functjinThey are modified Shannon

decompositions of in which any path from the root to the leaves obeys

the same variable ordering, and isomorphic nodes are del&tan the
decomposition.

For a given variable ordering, ROBDDs are canonical. Iniotreds,
the ROBDDs of equivalent functions are identical.

DEFINITION 3. The consensus operatoor universal quantifica-
tion of a functionf with respect to a variable; is

DEFINITION 4. Theexistential quantification of a functionf with
respect to a variable; is

Joi f = foi + fo
DEFINITION 5. ABoolean relationR is a one-to-many multi-output

Boolean mappingR : B" — B™.

tSuch an approach would be applicable for only small netwsitkse the ROBDDs of the
characteristic function representing the induced refafmn primary inputs) would be in-
tractable for larger networks.

We say that for an output vectgf € B™ is allowed foran input
vectorz® € B" iff (z*,y') € R.

DEFINITION 6. A multi-output Boolean function f is a mapping
compatible withR if f(z) € R,V, € B™. Thisis denoted by < R.

We refer to the process of findinggivenR as the process afeter-
minizing the relationk.

A Boolean relatioriR can be represented by @karacteristic function
®: B™ x B™ — B such thatb(z",y') = 1iff (2*,4') € R.

For a network) which implements the multi-output Boolean function
z = f(x), the characteristic function is denoted ¥, where

m

@ =[] (z@F-.(@)

k=1

wherem is the number of outputs of and f-, (z) is the function ofz;
in terms ofz.
Note that in the sequel a set of variables is represented as

3. Previous Work

Some of the previous research efforts which are relevarttedech-
nique and objective of our paper are discussed next. In fhé],au-
thors describe a method to compute don't cares using oyengsub-
networks, computed using a varying window size. Their megittoes
not optimize wires, but only gates in a design, in contrasbuo ap-
proach which frequently removes wires in a circuit. Furhieis tech-
nigue uses [15] to optimize a single subnetwork. In [15]jrofation is
done by manipulating a cover of the subnetwork explicitlgeuthors
indicate that this requires large amounts of runtime forlsn&works.
As a consequence, the technique of [14], in many examplesijres
run-times which are dramatically larger than MIS [16]. Thmp®@ach
of [17] partitions the circuit into subnetworks, each of ahis flattened
and optimized using ESPRESSO [18].

In [19] a SAT sweeping technique is presented, which idestiéind
merges functionally equivalent nodes through the use of §édries.
We run SAT sweep as a preprocessing step to all of our expetime
presented in this paper.

In [20], the CODC computation of [21] was shown to be depehdan
the currentimplementation of a node, and an implementatidependent
computation was proposed. In [22], the authors perform C@D@pu-
tation on overlapping subnetworks, and demonstrate arfesthnique
compared to full CODC computation. They report achievingpadjlit-
eral count reduction (within 10% of tHell_simplify (FS) command of
SIS [23]) with a faster runtime (25x faster than FS). Our rodtan
achieve a literal count reduction which on average surgagsse re-
ported in [22], within 55% of the runtime of [22]. This imprement is
in part due to the additional flexibility encoded in the multide opti-
mization technique (using Boolean relations) we presevet; the node-
by-node optimization in [22].

In [24], the authors present a SAT-based methodology forpeaimg

the ODC and SDC, termed as complete DC (CDC), for a every node

in a network. They also propose a windowing scheme to maimtai

bustness. In our experiments, we compare our results wifh f2cause
their approach provided the best literal count reductiathram times of
all previous approaches mentioned here.

While the methods discussed above explore the flexibilitgatctly
one node at a time, a much greater flexibility can be availedgdtiyniz-
ing multiple nodes of a network simultaneously. This is atieély un-
explored aspect of multi-level optimization. There arecegsh efforts
which recognize the power of such a technique [5, 25, 6] wegpect
to multi-node network optimization, but none of these work even
medium sized circuits. The survey described in [5] only poiout the
advantage of multi-node minimization over don’t cares. &pproach
in [25] describes a BDD-based computation of SPFDs [26]ctvign-



code the flexibility of more than one node. The average liteoant
reductions we obtain are better than those reported in &} though
the size of circuits they report are significantly smalleurtker, their
runtimes are much higher and the approach is not shown todbede.

In [6], an approach for computing the Boolean relation ofakd sub-
network of the original network is described. Our approaeltontrast,
demonstrates good results in a scalable manner due in ptré tose
of an efficient method to find pairs of nodes to optimize togetfhis
method effectively filters out pairs of nodes for which thepested flex-
ibility is low. Also, the results reported in [6] are for vesynall circuits,
and incur extremely high runtimes. Our implementation iw@dul and
robust, resulting in the ability to optimize large netwogkgremely fast,
with an impressive quality of results. Further, [6] does us¢ a rela-
tion minimizer, but instead it exhaustively calls ESPRESSOrder to
minimize the Boolean relation that represents the optitinadlexibil-
ity. They do acknowledge this as a possible limitation inirthaper. We
use BREL [11] to minimize the Boolean relations which we d¢nort
for each pair of nodes being optimized simultaneously.

There are some earlier research efforts in the context df-modie op-
timization using Boolean relations to express the multienoptimiza-
tion flexibility, but our approach is very different. A tedgoe which
calculates this Boolean relation in terms of primary ingatpresented
in [7]. We compute this Boolean relation in terms of only tpeiary
input’ variables of the extracted subnetwork, enablingapproach to
scale elegantly.

A technique to compute the maximal Boolean relation thataggnts
the optimization flexibility for the nodes in an arbitrarybsietwork is
presented in [27], which was improved by [28] to additiopalbmpute
approximate Boolean relations. However, they do not sugheir work
with experimental results.

The technique for minimizing a Boolean relation used in gaper is
reported in [11]. Because the relation will have only twopuis$ (since
we optimize node pairs simultaneously), we use GhackSolveralgo-
rithm of BREL to find a solution. This determinizes the firsttmut
using the flexibility provided by the relation, and then detimizes the
second output, using the constraints imposed by the detaation of
the first output. In each of the 2 determinization steps, t#t function
for QuickSolveris literal count. In the sequel BREL refers only to the
QuickSolverportion of the algorithm.

4. Our Approach

In general, the exact computation of the Boolean relatigressing
the optimization flexibility of multiple nodes of even a sital medium
sized network is extremely memory intensive. This is onénefreasons
why past research efforts in this area have been mostly étieak in
nature. Our approach for simultaneous multi-node minitioraof a
multi-level network has several salient features.

e \We compute the flexibility for simultaneously optimizing aipof

good optimization opportunities. This is doméhoutenumerat-
ing all node pairs.

Our algorithm begins by efficiently selecting pairs of nodesop-
timize from the original multilevel network. Given a pair of nodes
(ns,m;) to optimize simultaneously, our algorithm then finds a stbne
work 7; ; which is rooted around these nodes. The Boolean rel&ion
representing the simultaneous flexibility of these 2 node®mputed in
terms of the primary inputs of the subnetwaork;. Finally, the Boolean
relation’R is minimized using a relation minimizer. The relation mini-
mizer returns a multi-output function (in particular a 2 it function)

f, such thatf is compatible withR (f < R). The optimized pair of
nodes are then grafted back infoAt the end of thefor loop we obtain
aminimizedmulti-level networkn/.

Algorithm 1 describes the flow of our multi-level optimizani method-
ology. The details of the steps of the algorithm are desdribéhe next
subsection.

Algorithm 1 Boolean Relation-based Multi-Node Optimization

L = select_nodes(thresh, ki, k2, o)
for all (n;,n;) € L do
M,; = extract_subnetwork(n:, n;, k1)
RY (s,y) = build_relation_bdd(n: j, X, Z,S,Y)
(n;,n;) = BREL(RY (s,y))
Graft (n;, n;) inn
Deleten; andn; fromn
end for
Returny = network_sweep(n)

4.1 Algorithm details

Our Boolean relation-based multi-node network optimmatalgo-
rithm is shown in Algorithm 1. The input to the algorithm is adean
network n, the output is an optimized Boolean netwoyk which is
functionally equivalent ta). The primary inputs of; are referred to as
X9tobal gnd its primary outputs are callggp!obe!.

4.1.1 Selecting Node Pairs

When selecting node pairs, we would like to find nodes thatesha
common fanins and fanouts when the subnetwork is createt olNg
will this make the subnetwork smaller, but it will also inase the like-
lihood that don't cares will be found from the resulting teda.

To generate a list of all node pairs to minimize, we call
select_nodes(thresh, k1, k2, ). This function starts by selecting a
noden; in the network. To find a potential partner for this node,
we first callT FI.q4c(ns, k1), which returns only the nodesn} in the
transitive fanin ofn; which have a backward depth of exackly levels
from n;. From these nodes we c&8llFO(m, k2), which returns nodes

nodes of the network at a time, using an ROBDD-based approaCh{nj} in the transitive fanout ofn. that have a forward depth of up ke

h levels fromm. This gives us all potential partnefs.; }, and ensures
thatn; andn; will later share at least one common primary input in the
subnetwork.

Next, we test each node; against; to check if the transitive fanins
(fanouts) of backward (forward) depth exackly of both nodes have a
support overlap of greater than or equakheesh We weigh the fanin
support overlap by and the fanout support overlap by «. We define
TFOecaqe(ni, k1) as the nodes in the transitive fanoutafwhich have
a forward depth of exactly; levels fromn;. In other words, we test

e \We avoid memory explosion by a 'windowing’ technique whic
first creates a subnetwork around the two nodes being optihiz
This subnetwork has a user-controllable topological defthe
Boolean relation representing the flexibility for simukausly
optimizing the two nodes is built in terms of the primary itgu
of the subnetwork This keeps the sizes of the ROBDDs under
control, and effectively allows the approach to scale rdpuer
large networks, with good result quality.

e During the computation of the ROBDD of the characteristiocftu ~ whether
tion of the relation, we aggressll\./ely. control memory uétion by T F Luage (ni, k) O TF Loage (ny. k1)
performing careful early quantification. Q- : : +
|TFIedge(m, kl) U TFIedge(nj7 k1)|
Further, instead of running our algorithm on all pairs of esdve cdge (T edge (1],
° g g p %) (1—0() |TFO dg (’nJﬁ)ﬂTFO dg (TLJ k1)| > thresh

run the algorithm on only those node pairs that are likelyiébdy [TFOcage(ni, k1) UTFOcage(nj, k1)|



is true. All nodesn; for which the above test evaluates toeec are
paired withn,; and placed in the node pair list

These steps are performed forall € ), visited in topological order
from the POs to the Pls, until every node has been tested fenfal
partners. A listL of all node pairs to optimize is returned.

We next extract a subnetwork, ; of n, rooted at nodeén;,n;). The
technique for this extraction is explained in the followsgbsection.

4.1.2 Building the Subnetwork

For each pair of nodén;,n;) found, we extract sub-networks gf
rooted at the nodes; andn, by callingextract_subnetwork(ni, nj, ki1).
This function constructs a subnetwaoyk; such that if noden €
{TFO(ni, ki) UTFO(n;, ki)}, thenm € n; ; and if nodep €
{TFI(n;, ki)UTFI(nj, k1)}, thenp € n; ;. Herek, is the same value
used when callingelect_nodes. The result of this step is illustrated in
Figure 2(a) as the shaded subnetwork.

Nodem € n;,; is designated as a primary input®f; if 3,cri(m),

n ¢ n; ;. Similarly, a noden is designated as a primary outputigf;
if 3cro@m), n ¢ mij. The set of primary inputs (outputs) of ; is
referred to as\ (2).

Next we collect the set of all nodea € T'FI(v, k1), wherev is a
primary output of the subnetworlg ;. This step is illustrated in Fig-
ure 2(b). Let this set be calleB. The nodes in the dotted and shaded
region of Figure 2(b) constitute the sBt We then set); ; <« n;,; U D.

Figure 2(c) zooms into the region of interest for the subsatidiscus-
sion. Figure 2: Extraction of Subnetwork

~ Next, foreachi € D we check iff"/(d) can be expressed completely naqysly optimized be referred to asand their combined support be
in terms of th.e current nodes i ;. We perform this check by.recur- S. Note thatS, Y, X andZ correspond to a set of nodesmf;. Let
sively traversing the network topologically frodtowards the primary  he variables for these he y, = and z respectively as shown in Fig-

inputs X7'**! of 5. If this traversal visits a node iy ;, we terminate e 2(d). The characteristic function of the Boolean refaft is a map-
the traversal and add all nodes visited in this traversaj;to If the ping BIS! x BY! . Bst.

traversal visits a node iy 9/°**! instead, then we augment the set of pri-
mary inputs ofy; ; with d, i.e. X is updated as{ < X U d. This step

is illustrated in Figure 2(d), which shows the final;. In Figure 2(d),
square nodes are the subnetwork Rlswhile triangle nodes are the
subnetwork PO%. Thus, the fanin of the node € D is added toy; ;.
Similarly the faninu of » € D is next added tay; ;. This is because
bothr andw can be expressed completely in termsXaf However, the  gs(z) is the characteristic function of thsevariables in terms aof. The
fanin of nodet € D cannot be expressed in terms of nodes;in, and computation ofRY" is explained intuitively as follows. For all primary
sot is added taX. This check avoids the addition of unnecessary pri- input mintermse, let s take on values dictated hy(i.e. s = gs(x)). If
mary inputs for representing the sub-netwagk;. A larger number of ~ so, we should have the situation thatifakes on the values dictated by
primary input variables typically results in larger intexdiate ROBDDs  z and the node values gf then the values af andz should be related
in the computation of the Boolean relatih by the original network functionality (i.eb(z, z)).

Note that the size of each subcircuyit; is determined by the depth
parametek. Hence, by suitably choosirig , we ensure that the subcir-
cuits are never too large, and the Boolean relation can b@gtad with
low memory utilization, even for an extremely large netwgrk he final
subnetworky; ; is shown in Figure 2(d). This subnetwork is then used to
create a Boolean relation which inherently representsithal&neous
flexibility of both n; andn; as discussed in the following subsection.

[] primary inputs /\ primary outputs

R (s,9) = Val(s = g5(@)) = Val(z = 2" (z,9)) = ¥(z,2)]]

In this expression®(z, z) is the characteristic function of the circuit
outputsz = f(z). The subexpressiafi™ (z,y) represents the character-
istic function of the circuit outputs expressed in terma @ndy. Also,

4.1.4 Quantification Scheduling

In our approach, the Boolean relatid®" (s,y) is computed using
ROBDDs. In order to avoid a possible memory explosion probiee
perform early quantification as explained next.

4.1.3 Computing the Boolean RelationR" We rewrite the computation faR " (s, y) as

As mentioned previously, the exact computation of a Bootetation
expressing the flexibility in a medium to large design cowdaektremely
memory intensive. Also, we employ an ROBDD-based compidtr
this relation. ROBDDs can, by nature, exhibit very irreguteemory
requirements, especially for medium to large designs. Amaeqguence,
we have implemented a robust methodology for computing thadzn
relation. Not only do we compute this relation for a node air, n;)
using a windowed subnetworf, ; (thus ensuring that the ROBDDs are

RY (8,9) = Val(s = gs(2)) = V:[[ [ (282" (z,9))
= [[=@2 @)
This expression can be re-written as:

R (s,y) = Vzl(s = 95(2)) = V:[[ [ (282" (2,9))

small) but we also perform careful early quantification angase limits i

on the window size to ensure that ROBDDs stay tractable duitie
relation computation.
Suppose we are given a subnetwagk;, its set of primary inputs¥

= (2:0Zi(2))]]

Our first observation is that the quantification owe(V,) and the

and its set of primary outputg. Let the set of nodes being simulta- product term ovet (J],) can be swapped to obtain a new expression



for RY (s,y):
R (5.9) = Yal(s = gs(2)) = [[IV: (282" (2.9))
= (2:®Zi(z))]]]
This is correct because in general,

Vo l(f - 9) =Vu(f)  Vulg)

Quantifying out thez variables earlier results in smaller intermediate
ROBDDs for the expression to the right of the first implicatioThe
computation can therefore be expressed as:

RY(s,y) = Val(s = gs(x)) = P(2,y)] = Va[(s = gs(x)) + P(z.y)]

where Pxy) is is the ROBDD obtained after applying the first observa-
tion.

P(z,y) = [ [[v:[(z:82 (z,y)) = (20 Zi(2))]

7

In general, however,

Vo (f +9) #VYu(f) +Vulg)

Let the common variables betwegnand g be w™. Letw = wnw"
Then,

Vo(f+9) =V, (Vw\w’ (f)+ Vw\w’ (9))

Our second observation is that(z) depends on a smaller subset

(:c') of the primary inputgz) of the network. Hence, we can compute
RY (s,y) as

RY (s,9) = VIV, /(8 = 95@) + Y, (P(9))]
which reduces to:
R (s,9) = ¥,/ [(s = g5 @) + v, (P(@.9))]

In practice, we apply both observations in tandem. We firstdin(z),

and the set. Then, while computing R(), we quantify oub:\z'. The
final computing step is

R (s,9) =V 1 [(s = g5(2)) + P (& )]

whereP’ (:c',y) = vz\z, (P(z,y)). By implementing both these ideas,
we ensure that intermediate ROBDD never blows up in size. filtag
ROBDD representin@R" (s, y) is returned to the calling function.

4.1.5 Endgame

Next, we invoke a call to BREL to minimizRY (s, y). The output of
BREL is a pair of completely specified functions for the nodésand
n; such that these functions are compatible with (s, y) and the total

cost Ofn,:- andn; is minimal. We finally graftn; andn; back inton and
delete the original nodes; andn; from 7.

5. Experimental Results

The preliminary implementation of our approach was dond$133].
We used large circuits from threcnc9landitc99 benchmarks for our ex-
periments. The ROBDD package used was the CUDD package ©]. W
compare our results against the SAT-based CDC mettisav[24] in-
cluded in MVSIS [29], which uses a 2x2 windowing techniqueotéN
that all results reported in this section are the literalnteumeasured
by summing the factored form literal count of all nodes in tie¢work.
The experiments were performed on a Linux-based Dell Optiplith a
2.6GHz Core 2 Quad CPU with 4 GB of RAM.

The values for the parameters passestiect_nodes() arethresh =
0.8, k1 = 1, k2 = 1 anda = 0.3. These values were chosen by varying
each parameter according to Table 2 and calculating thegediteral
count and runtime over the set of 15 circuits. The parametaras
varied first, setting the other parameters to their nomia#lies. This
is becauser chooses whether Pl or PO compatibility is weighed more,
which is independent of the other parameters. Qneeas determined,
the other parameters determining window size and selgctiére then
found using the same method. Various plots describing théme and
literal count reduction as a function of the swept paransetee omitted
due to lack of space. It was found that a 1x1 window yieldedrgela
literal count reduction in addition to keeping runtimes loWhe final
values for all parameters were found to work equally welbasrall cir-
cuits, and they used in the experiments reported in Tablel3rahle 4.

In addition, we impose limitations on the subnetwork size.pérticu-
lar, if a subnetwork has more than 50 inputs or outputs, thembde
pair is rejected without calculatig” . This assures that the BDD sizes
remain tractable during the computation of the Booleartimia

[ Parameter] Low [ High [ Increment [ Nominal |

o 0 1.0 0.1 B
2 1 3 T 2
2 1 7 T 3

thresh 0 1.0 0.1 05

Table 2: Initial Values, Final Values, Increments, and Nomnal Val-
ues of the Node Selection Parameters

For Table 3, we first run SAT sweep [19] to remove functionatiyiv-
alent nodes from the network. This is the starting point fithlthemfsw
technique and our method, and was similarly performed as@rpcess-
ing step in [24]. The literal count after SAT sweep is showiCmlumn
2 of Table 3. The literal count after runningfswand our method is
reported in Column 3 and Column 4, respectively. Thesealiteounts
are measured by summing the factored form literal count offi @ede
across the entire network. Column 5 shows the ratio of IseraCol-
umn 4 to Column 3. Column 6 is the peak number of ROBDD nodes
in memory for our method. All runtimes are under 90 secondschv
shows that this method scales well with very large circuits.

We can see from Table 3 that starting from the SAT swept dscui
our method reduces the literal count by 18%er and abovevhatmfsw
can achieve. The memory requirements are also very |low aksgar of
the size of the circuit. In [24] it was reported that runningTsweep
and thermfswdecreased the literal count by 10%. In Table 3, we report
the literal count after SAT sweep (Column 2) and after SAT eqvand
mfsw(Column 3). Note that the gain due tafswover SAT sweep is on
average 2% based on Table 3.

In Table 4, we start with the reduced network produced by S¥dep

At the end of thdfor loop, when all node pairs have been processed byand mfswcombined. This table is meant to test if our method can im-

our relation-based minimization procedure, we run ieévorksweep
command of SIS [23]. We also verify that the resulting nek/vo/r is
functionally equivalent to the original network

Additionally, for all nodes that weraot modified by our two-node
relation approach, we attempted to find the single node OD@sran-
imize them as a post-processing step. The resulting imprexe was
negligible, and thus we do not include this step in the folfmwresults.

prove on the result obtained by running SAT sweep followednriigw
Column 2 reports the literal count after running SAT sweedlpfzed
mfsw Column 3 shows the literal count after we run our relatiothrod
on the netlist obtained by running SAT sweep followedfgw We find
that an additional 16% literal reduction can be acheivedurytechnique
as shown in Column 4. Also, Column 5 demonstrates that ouranem
utilization is very low.



Itis also important to note that the window sizenofiswis the only pa-
rameter which can be changed to trade off runtime and liteyaht im-

provement. By choosing a 15x15 window fofsw the runtime matches
that of our approach; however, the literal countrdéwimproves by less

than 0.5% across all the circuits (compared to the resuftsmifswwith
a 2x2 window).

[ il literals | Il |
| circuit || satsweep] mfsw | relation | ratio [[ memory |
c1355 992 992 598 0.603 170
1908 759 748 605 0.809 293
c2670 1252 1197 933 0.779 320
c5315 3062 2935 2343 0.798 804
c7552 3796 3549 2994 0.844 641
b15 15084 14894 14205 0.954 1210
b17 49096 48595 45892 0.944 1342
b20 22037 21816 19810 0.908 666
b21 22552 22306 20341 0.912 597
b22 33330 33001 30133 0.913 846
51494 1239 1177 1171 0.995 335
s5378 2327 2283 1978 0.866 617
513207 5052 4833 4045 0.837 132
515850 6624 6342 5217 0.823 153
s$38417 17531 17314 14719 0.850 619
[ average - [ - T - [ 0.850 ] - |

Table 3: Results after SAT Sweep

[ il literals | i |
[ circuit ]| sat sweep + mfsw[ relation | ratio [| memory |
c1355 992 598 0.603 189
c1908 748 601 0.803 29
c2670 1197 926 0.774 333
c5315 2935 2264 0.771 632
c7552 3549 2813 0.793 404
b15 14894 14085 0.946 605
b17 48595 45444 0.935 1093
b20 21816 19662 0.901 580
b21 22306 20129 0.902 518
b22 33001 29894 0.906 828
51494 1177 1139 0.968 179
s5378 2283 1956 0.857 628
513207 4833 4045 0.837 132
515850 6342 4958 0.782 166
s38417 17314 14539 0.840 619
[ average ]| - [ - J0836] - |

Table 4: Results after SAT Sweep ananfsw

Table 5 shows some properties of the node pairs selectedrialgns
rithm. The values reported in Table 5 are averaged acroiseadlesigns
we report in Tables 3 and 4. Because of the low value chosen, the
number of fanouts in common is higher than the number of faimin
common. In addition, due to the 1x1 window chosen, there arg few
nodes in the subnetwork and relation, which results in sroatimes. It
should be noted that with the high threshold value chosénpdE pairs
processed reduced the literal count by at least 1 literal .

6. Conclusions

In this paper, we present an algorithm to perform multi-nogé-
mization using Boolean relations. Our algorithm is robssglable and

[ Property [ Average |
4.36
2.03
33%
50%
4.42
3.23

Total number of fanins of both node:

Total number of fanouts of both nodep

% of fanin in common between both nodds

% of fanout in common between both nodgs

Total number of literals in both node!

Total number of cubes in both nodes

Total number of Pls of subnetworl 7.31

Total number of POs of subnetwor 4.32

% of subnetwork Pls in common between both nodes 35%
% of subnetwork POs in common between both nodes 50%

Number of nodes in subnetwor 6.97
Number of literals in subnetwork  10.60
Number of BDD nodes in relationf  7.13

Table 5: Properties of Node Pairs

memory efficient. We use an ROBDD-based approach for comgptie
Boolean relations that express multi-node optimizatioxilfiéity. Using
a window-based technique for computing these Booleanisaki(for
simultaneously optimizing two nodes at a time) allows oysrapch to
scale elegantly. We perform early quantification to continel ROBDD
size at all stages of the Boolean relation computation, éuemploy
smart heuristics for selecting the node pairs to be optichiagether.

Our results demonstrate the efficiency and scalability of algo-
rithm. We achieve a better literal count than [24] acrosesiimples,
and can improve upon the results generated in [24] by 15% tiRas
for our method are all under 90 seconds, even for the largeshgles,
and the memory utilization is very low.
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