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Abstract

Multi-node optimization using Boolean relations is a powerful approach
for network minimization. The approach has been studied in theory, and
so far its superiority over single node optimization techniques has only
been conjectured for practical designs. This is due to the highly memory
intensive computations involved in the calculation of Boolean relations
representing the multi-node optimization flexibility. In this paper, we
present an algorithm to perform Boolean relation-based multi-node op-
timization using a robust, fast and memory efficient algorithm. In partic-
ular, we simultaneously optimize two nodes at a time. We report results
on large designs, demonstrating the power of our multi-nodeoptimiza-
tion algorithm. The robustness of our approach arises from the use of
a window-based technique for computing these Boolean relations. Sec-
ondly, we perform early quantification during the computation, keeping
memory utilization low. Finally, we employ smart heuristics for select-
ing the node pair to be optimized simultaneously. These features allow
the approach to scale well and provide good results for largedesigns.
We perform experiments on a set of large benchmarks and compare
our algorithm’s performance to a recent SAT-based network optimiza-
tion technique using complete don’t cares. On average, we achieve a
15% reduction in literal count across all the large designs,compared to
the complete don’t care-based method while maintaining small runtimes
and low memory usage.

1. Introduction
The optimization of industrial multi-level Boolean networks is tradi-

tionally performed using algebraic techniques. The main reason for this
is that traditional Boolean techniques such as don’t care-based optimiza-
tion, though more powerful, do not scale well with design size. Don’t
cares are calculated for a single node, and they can specify all the flexi-
bility for implementing the node function. These don’t cares (for a node)
are computed using a combination of Satisfiability Don’t Cares (SDCs),
Observability Don’t Cares (ODCs) or External Don’t Cares (XDCs).
These are described further in [1].

ODCs [2, 3] of a node are a powerful representation of the node’s flex-
ibility. However, the minimization of a node with respect toits ODCs
can potentially change the ODCs at other nodes in the circuit, result-
ing in a need to re-compute ODCs for all circuit nodes. A subset of
ODCs, termed as Compatible Observability Don’t Cares (CODCs) [2]
are computed keeping this limitation in mind. If a noden is minimized
with respect to its CODCs, then the CODCs of all other circuitnodes
are still valid (and therefore do not need to be recomputed).However, in
the CODC computation, the order of selecting a node during the CODC
computation becomes important. The maximum flexibility that can be
obtained at the fanin nodei of a noden is a function of the CODCs of
the fanins computed prior toi. In both the ODC and CODC approaches,
network optimization is performed on one node at a time.

A significant improvement in terms literal count over don’t care-based
techniques can be obtained by considering multiple nodes atonce. The
formulation of such an optimization results in a Boolean relation [4],
which implicitly represents the flexibility in optimizing all the nodes si-
multaneously. The flexibility inherent in multi-node optimization can-
not be expressed using functions. Table 1 represents a Boolean relation,
which, for a single input vector{10}, can express more than oneallowed

Inputs Outputs
00 00
01 01
10 {00,11}
11 10

Table 1: Example of a Boolean Relation

output vector,{00,11}. On the other hand, no Boolean function can rep-
resent the fact that both vectors{00,11} are allowed at the outputs.

The superiority of a multi-node optimization approach (using Boolean
relations) over don’t cares has been pointed out in [5, 6]. The reason
for this superior optimization flexibility is that in the computation of a
node’s don’t cares, the functions of all the other nodes arenot allowed
to change. This restriction does not apply to the multi-nodeoptimiza-
tion approach using Boolean relations since they allow thesimultaneous
modification of all nodes being targeted. However, this superior opti-
mization flexibility has a price. The multi-node optimization approach
requires that a Boolean relation be solved, which is typically a highly
time and memory intensive operation. As a result, not much attention
has been devoted to these approaches, although there have been theoret-
ical works which have suggested the superiority of this technique over
don’t care-based approaches [6]. However there has been no robust,
scalable approach which demonstrates the applicability ofmulti-node
optimization techniques to large designs. This problem is addressed by
this paper.

We now illustrate the power of a multi-node optimization approach
by way of a small example [7]. Consider the networkη shown in Fig-
ure 1(a), where nodeV1’s output f implements the Boolean function
x · y and nodeV2’s outputg implementsx + y. Given a networkη with
primary outputsZ, the ODC of a nodey is given by

ODC(y) =
Y

zi∈PO(η)

(
∂zi

∂y
)

where,

∂zi

∂y
= zi|y ⊕ zi|y.

Using this equation for the network of Figure 1, we getODC(V1) =
ODC(V2) = ∅. As a result, no optimization is possible using ODCs.
However, we can observe thatz is equivalent tox⊕ y as shown in Fig-
ure 1(b). This optimization canonly be obtained whenV1 andV2 are
optimized simultaneously. The Boolean relation resultingfrom such an
optimization can represent this flexibility. After minimizing this Boolean
relation, nodesV1 andV2 can be deleted from the network without com-
promising the network’s functionality.
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Figure 1: Network η before and after optimization



The main contributions of our work are as follows. We implement a
window-based multi-node optimization methodology using Reduced Or-
dered Binary Decision Diagrams (ROBDDs) [8, 9]. Instead of building
the Boolean relation that represents multi-node flexibility in terms of the
primary inputs of the network1 η, we build this relation using a subnet-
work η

′

which is rooted around the nodes being targeted. This allowsthe
resulting Boolean relation to have asignificantlysmaller size, which lets
our approach work on large networks. Another feature of our approach
that allows it to scale elegantly is that it usesearly quantification[10]
while computing the Boolean relation. Finally, our implementation opti-
mizes two nodes at a time. A careful selection of these node pairs avoids
the quadratic costthat can result from optimizing all pairs of nodes.

Our multi-node optimization approach results in a Boolean relation
that encodes the flexibility in implementing the targeted nodes. To re-
implement the targeted functions, this relation needs to beminimized.
There are several available techniques to do this [11, 12, 13]; our method
uses [11].

The rest of this paper is organized as follows. In Section 2, we pro-
vide some preliminaries and definitions. Section 3 containsa summary
of previous work in this area, while Section 4 details our approach for
multi-node optimization using Boolean relations. In Section 5, we report
experimental results and finally, we conclude in Section 6.

2. Preliminaries and Terminology

DEFINITION 1. A Boolean networkη is a directed acyclic graph
(DAG) in which every node has a Boolean functionfi associated with
it. Also,fi has a corresponding Boolean variableyi associated with it,
such thatyi = fi.

There is a directed edgeeij from yi to yj if fj depends explicitly onyi.
A nodeyi is a fanin of a nodeyj if there is a directed edgeeij . Node

yi is a fanoutof yj if there is a directed edgeeji. FI(y) andFO(y)
represent the set of immediate fanins and set of immediate fanouts ofy
respectively.

A nodeyi is in thetransitive faninof a nodeyj if there is a directed
path fromyi to yj . Nodeyi is in thetransitive fanoutof nodeyj if there
is a directed path fromyj toyi. The transitive fanin of a nodeyi up to ak
levels,TFI(yi, k), is the set of nodes{yj} such that there is a directed
path of length less than or equal tok, betweenyj andyi. Similarly, the
transitive fanout of a nodeTFO(yi, k) is the set of nodes{yj} such that
there is a directed path of length less than or equal tok, betweenyi and
yj .

DEFINITION 2. Reduced Ordered Binary Decision Diagramsare
a means to represent a Boolean functionf . They are modified Shannon
decompositions off in which any path from the root to the leaves obeys
the same variable ordering, and isomorphic nodes are deleted from the
decomposition.

For a given variable ordering, ROBDDs are canonical. In other words,
the ROBDDs of equivalent functions are identical.

DEFINITION 3. The consensus operatoror universal quantifica-
tion of a functionf with respect to a variablexi is

∀xi
f = fxi

· fxi

DEFINITION 4. Theexistential quantification of a functionf with
respect to a variablexi is

∃xi
f = fxi

+ fxi

DEFINITION 5. ABoolean relationR is a one-to-many multi-output
Boolean mapping,R : Bn → Bm.
1Such an approach would be applicable for only small networkssince the ROBDDs of the
characteristic function representing the induced relation (on primary inputs) would be in-
tractable for larger networks.

We say that for an output vectoryl ∈ Bm is allowed foran input
vectorxk ∈ Bn iff (xk,yl) ∈ R.

DEFINITION 6. A multi-output Boolean function f is a mapping
compatible withR if f(x) ∈ R, ∀x ∈ Bn. This is denoted byf ≺ R.

We refer to the process of findingf givenR as the process ofdeter-
minizing the relationR.

A Boolean relationR can be represented by itscharacteristic function
Φ : Bn ×Bm → B such thatΦ(xk, yl) = 1 iff (xk, yl) ∈ R.

For a networkη which implements the multi-output Boolean function
zzz = f(xxx), the characteristic function is denoted byΦη, where

Φη =

m
Y

k=1

(zi⊕fzi
(xxx))

wherem is the number of outputs ofη andfzi
(xxx) is the function ofzi

in terms ofxxx.
Note that in the sequel a set of variables{a} is represented asaaa.

3. Previous Work
Some of the previous research efforts which are relevant to the tech-

nique and objective of our paper are discussed next. In [14],the au-
thors describe a method to compute don’t cares using overlapping sub-
networks, computed using a varying window size. Their method does
not optimize wires, but only gates in a design, in contrast toour ap-
proach which frequently removes wires in a circuit. Further, this tech-
nique uses [15] to optimize a single subnetwork. In [15], optimization is
done by manipulating a cover of the subnetwork explicitly. The authors
indicate that this requires large amounts of runtime for small networks.
As a consequence, the technique of [14], in many examples, requires
run-times which are dramatically larger than MIS [16]. The approach
of [17] partitions the circuit into subnetworks, each of which is flattened
and optimized using ESPRESSO [18].

In [19] a SAT sweeping technique is presented, which identifies and
merges functionally equivalent nodes through the use of SATqueries.
We run SAT sweep as a preprocessing step to all of our experiments
presented in this paper.

In [20], the CODC computation of [21] was shown to be dependent on
the current implementation of a node, and an implementation-independent
computation was proposed. In [22], the authors perform CODCcompu-
tation on overlapping subnetworks, and demonstrate a faster technique
compared to full CODC computation. They report achieving a good lit-
eral count reduction (within 10% of thefull simplify (FS) command of
SIS [23]) with a faster runtime (25x faster than FS). Our method can
achieve a literal count reduction which on average surpasses those re-
ported in [22], within 55% of the runtime of [22]. This improvement is
in part due to the additional flexibility encoded in the multi-node opti-
mization technique (using Boolean relations) we present, over the node-
by-node optimization in [22].

In [24], the authors present a SAT-based methodology for computing
the ODC and SDC, termed as complete DC (CDC), for a every node
in a network. They also propose a windowing scheme to maintain ro-
bustness. In our experiments, we compare our results with [24], because
their approach provided the best literal count reduction and run times of
all previous approaches mentioned here.

While the methods discussed above explore the flexibility ofexactly
one node at a time, a much greater flexibility can be availed byoptimiz-
ing multiple nodes of a network simultaneously. This is a relatively un-
explored aspect of multi-level optimization. There are research efforts
which recognize the power of such a technique [5, 25, 6] with respect
to multi-node network optimization, but none of these work on even
medium sized circuits. The survey described in [5] only points out the
advantage of multi-node minimization over don’t cares. Theapproach
in [25] describes a BDD-based computation of SPFDs [26], which en-



code the flexibility of more than one node. The average literal count
reductions we obtain are better than those reported in [25],even though
the size of circuits they report are significantly smaller. Further, their
runtimes are much higher and the approach is not shown to be scalable.

In [6], an approach for computing the Boolean relation of a single sub-
network of the original network is described. Our approach,in contrast,
demonstrates good results in a scalable manner due in part tothe use
of an efficient method to find pairs of nodes to optimize together. This
method effectively filters out pairs of nodes for which the expected flex-
ibility is low. Also, the results reported in [6] are for verysmall circuits,
and incur extremely high runtimes. Our implementation is powerful and
robust, resulting in the ability to optimize large networksextremely fast,
with an impressive quality of results. Further, [6] does notuse a rela-
tion minimizer, but instead it exhaustively calls ESPRESSOin order to
minimize the Boolean relation that represents the optimization flexibil-
ity. They do acknowledge this as a possible limitation in their paper. We
use BREL [11] to minimize the Boolean relations which we construct
for each pair of nodes being optimized simultaneously.

There are some earlier research efforts in the context of multi-node op-
timization using Boolean relations to express the multi-node optimiza-
tion flexibility, but our approach is very different. A technique which
calculates this Boolean relation in terms of primary inputsis presented
in [7]. We compute this Boolean relation in terms of only the ‘primary
input’ variables of the extracted subnetwork, enabling theapproach to
scale elegantly.

A technique to compute the maximal Boolean relation that represents
the optimization flexibility for the nodes in an arbitrary subnetwork is
presented in [27], which was improved by [28] to additionally compute
approximate Boolean relations. However, they do not support their work
with experimental results.

The technique for minimizing a Boolean relation used in thispaper is
reported in [11]. Because the relation will have only two outputs (since
we optimize node pairs simultaneously), we use theQuickSolveralgo-
rithm of BREL to find a solution. This determinizes the first output
using the flexibility provided by the relation, and then determinizes the
second output, using the constraints imposed by the determinization of
the first output. In each of the 2 determinization steps, the cost function
for QuickSolveris literal count. In the sequel BREL refers only to the
QuickSolverportion of the algorithm.

4. Our Approach
In general, the exact computation of the Boolean relation expressing

the optimization flexibility of multiple nodes of even a small to medium
sized network is extremely memory intensive. This is one of the reasons
why past research efforts in this area have been mostly theoretical in
nature. Our approach for simultaneous multi-node minimization of a
multi-level network has several salient features.

• We compute the flexibility for simultaneously optimizing a pair of
nodes of the network at a time, using an ROBDD-based approach.

• We avoid memory explosion by a ’windowing’ technique which
first creates a subnetwork around the two nodes being optimized.
This subnetwork has a user-controllable topological depth. The
Boolean relation representing the flexibility for simultaneously
optimizing the two nodes is built in terms of the primary inputs
of the subnetwork. This keeps the sizes of the ROBDDs under
control, and effectively allows the approach to scale robustly for
large networks, with good result quality.

• During the computation of the ROBDD of the characteristic func-
tion of the relation, we aggressively control memory utilization by
performing careful early quantification.

• Further, instead of running our algorithm on all pairs of nodes, we
run the algorithm on only those node pairs that are likely to yield

good optimization opportunities. This is donewithoutenumerat-
ing all node pairs.

Our algorithm begins by efficiently selecting pairs of nodesto op-
timize from the original multilevel networkη. Given a pair of nodes
(ni, nj) to optimize simultaneously, our algorithm then finds a subnet-
work ηi,j which is rooted around these nodes. The Boolean relationR
representing the simultaneous flexibility of these 2 nodes is computed in
terms of the primary inputs of the subnetworkηi,j . Finally, the Boolean
relationR is minimized using a relation minimizer. The relation mini-
mizer returns a multi-output function (in particular a 2 output function)
f , such thatf is compatible withR (f ≺ R). The optimized pair of
nodes are then grafted back intoη. At the end of thefor loop we obtain
a minimizedmulti-level networkη

′

.
Algorithm 1 describes the flow of our multi-level optimization method-

ology. The details of the steps of the algorithm are described in the next
subsection.

Algorithm 1 Boolean Relation-based Multi-Node Optimization

L = select nodes(thresh, k1, k2, α)
for all (ni, nj) ∈ L do

ηi,j = extract subnetwork(ni, nj , k1)
RY (sss,yyy) = build relation bdd(ηi,j , X, Z, S, Y )

(n
′

i, n
′

j) = BREL(RY (sss,yyy))

Graft (n
′

i, n
′

j) in η
Deleteni andnj from η

end for
Returnη

′

= network sweep(η)

4.1 Algorithm details
Our Boolean relation-based multi-node network optimization algo-

rithm is shown in Algorithm 1. The input to the algorithm is a Boolean
network η, the output is an optimized Boolean networkη

′

, which is
functionally equivalent toη. The primary inputs ofη are referred to as
Xglobal and its primary outputs are calledZglobal.

4.1.1 Selecting Node Pairs

When selecting node pairs, we would like to find nodes that share
common fanins and fanouts when the subnetwork is created. Not only
will this make the subnetwork smaller, but it will also increase the like-
lihood that don’t cares will be found from the resulting relation.

To generate a list of all node pairs to minimize, we call
select nodes(thresh, k1, k2, α). This function starts by selecting a
nodeni in the network. To find a potential partnernj for this node,
we first callTFIedge(ni, k1), which returns only the nodes{m} in the
transitive fanin ofni which have a backward depth of exactlyk1 levels
from ni. From these nodes we callTFO(m,k2), which returns nodes
{nj} in the transitive fanout ofm that have a forward depth of up tok2

levels fromm. This gives us all potential partners{nj}, and ensures
thatni andnj will later share at least one common primary input in the
subnetwork.

Next, we test each nodenj againstni to check if the transitive fanins
(fanouts) of backward (forward) depth exactlyk1 of both nodes have a
support overlap of greater than or equal tothresh. We weigh the fanin
support overlap byα and the fanout support overlap by1 - α. We define
TFOedge(ni, k1) as the nodes in the transitive fanout ofni which have
a forward depth of exactlyk1 levels fromni. In other words, we test
whether

α ·
|TFIedge(ni, k1) ∩ TFIedge(nj , k1)|

|TFIedge(ni, k1) ∪ TFIedge(nj , k1)|
+

(1− α)
|TFOedge(ni, k1) ∩ TFOedge(nj , k1)|

|TFOedge(ni, k1) ∪ TFOedge(nj , k1)|
≥ thresh



is true. All nodesnj for which the above test evaluates to betrue are
paired withni and placed in the node pair listL.

These steps are performed for allni ∈ η, visited in topological order
from the POs to the PIs, until every node has been tested for potential
partners. A listL of all node pairs to optimize is returned.

We next extract a subnetworkηi,j of η, rooted at nodes(ni, nj). The
technique for this extraction is explained in the followingsubsection.

4.1.2 Building the Subnetwork

For each pair of node(ni, nj) found, we extract sub-networks ofη
rooted at the nodesni andnj , by callingextract subnetwork(ni, nj , k1).
This function constructs a subnetworkηi,j such that if nodem ∈
{TFO(ni, k1) ∪ TFO(nj , k1)}, thenm ∈ ηi,j and if nodep ∈
{TFI(ni, k1)∪TFI(nj, k1)}, thenp ∈ ηi,j . Herek1 is the same value
used when callingselect nodes. The result of this step is illustrated in
Figure 2(a) as the shaded subnetwork.

Nodem ∈ ηi,j is designated as a primary input ofηi,j if ∃n∈F I(m),
n /∈ ηi,j . Similarly, a nodem is designated as a primary output ofηi,j

if ∃n∈F O(m), n /∈ ηi,j . The set of primary inputs (outputs) ofηi,j is
referred to asX (Z).

Next we collect the set of all nodesm ∈ TFI(v, k1), wherev is a
primary output of the subnetworkηi,j . This step is illustrated in Fig-
ure 2(b). Let this set be calledD. The nodes in the dotted and shaded
region of Figure 2(b) constitute the setD. We then setηi,j ← ηi,j ∪D.
Figure 2(c) zooms into the region of interest for the subsequent discus-
sion.

Next, for eachd ∈ D we check ifFI(d) can be expressed completely
in terms of the current nodes inηi,j . We perform this check by recur-
sively traversing the network topologically fromd towards the primary
inputsXglobal of η. If this traversal visits a node inηi,j , we terminate
the traversal and add all nodes visited in this traversal toηi,j . If the
traversal visits a node inXglobal instead, then we augment the set of pri-
mary inputs ofηi,j with d, i.e. X is updated asX ← X ∪ d. This step
is illustrated in Figure 2(d), which shows the finalηi,j . In Figure 2(d),
square nodes are the subnetwork PIsX, while triangle nodes are the
subnetwork POsZ. Thus, the fanin of the nodew ∈ D is added toηi,j .
Similarly the faninu of r ∈ D is next added toηi,j . This is because
bothr andw can be expressed completely in terms ofX. However, the
fanin of nodet ∈ D cannot be expressed in terms of nodes inηi,j , and
so t is added toX. This check avoids the addition of unnecessary pri-
mary inputs for representing the sub-networkηi,j . A larger number of
primary input variables typically results in larger intermediate ROBDDs
in the computation of the Boolean relationR.

Note that the size of each subcircuitηi,j is determined by the depth
parameterk1. Hence, by suitably choosingk1, we ensure that the subcir-
cuits are never too large, and the Boolean relation can be computed with
low memory utilization, even for an extremely large networkη. The final
subnetworkηi,j is shown in Figure 2(d). This subnetwork is then used to
create a Boolean relation which inherently represents the simultaneous
flexibility of both ni andnj as discussed in the following subsection.

4.1.3 Computing the Boolean RelationRY

As mentioned previously, the exact computation of a Booleanrelation
expressing the flexibility in a medium to large design could be extremely
memory intensive. Also, we employ an ROBDD-based computation for
this relation. ROBDDs can, by nature, exhibit very irregular memory
requirements, especially for medium to large designs. As a consequence,
we have implemented a robust methodology for computing the Boolean
relation. Not only do we compute this relation for a node pair(ni, nj)
using a windowed subnetworkηi,j (thus ensuring that the ROBDDs are
small) but we also perform careful early quantification and impose limits
on the window size to ensure that ROBDDs stay tractable during the
relation computation.

Suppose we are given a subnetworkηi,j , its set of primary inputsX
and its set of primary outputsZ. Let the set of nodes being simulta-

primary outputs
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Figure 2: Extraction of Subnetwork

neously optimized be referred to asY and their combined support be
S. Note thatS, Y , X andZ correspond to a set of nodes ofηi,j . Let
the variables for these besss, yyy, xxx andzzz respectively as shown in Fig-
ure 2(d). The characteristic function of the Boolean relationR is a map-
pingB|S| ×B|Y | → B s.t.

RY (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒ ∀zzz[(zzz = ZM (xxx,yyy))⇒ Φ(xxx,zzz)]]

In this expression,Φ(xxx,zzz) is the characteristic function of the circuit
outputszzz = f(xxx). The subexpressionZM (xxx,yyy) represents the character-
istic function of the circuit outputs expressed in terms ofxxx andyyy. Also,
gS(xxx) is the characteristic function of thesss variables in terms ofxxx. The
computation ofRY is explained intuitively as follows. For all primary
input mintermsxxx, letsss take on values dictated byxxx (i.e. sss = gS(xxx)). If
so, we should have the situation that ifzzz takes on the values dictated by
xxx and the node values ofyyy, then the values ofxxx andzzz should be related
by the original network functionality (i.e.Φ(xxx,zzz)).

4.1.4 Quantification Scheduling

In our approach, the Boolean relationRY (sss,yyy) is computed using
ROBDDs. In order to avoid a possible memory explosion problem, we
perform early quantification as explained next.

We rewrite the computation forRY (sss,yyy) as

RY (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒ ∀zzz[
Y

i

(zi⊕ZM
i (xxx,yyy))

⇒
Y

i

(zi⊕Zi(xxx))]]

This expression can be re-written as:

RY (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒ ∀zzz[
Y

i

[(zi⊕ZM
i (xxx,yyy))

⇒ (zi⊕Zi(xxx))]]]

Our first observation is that the quantification overzzz (∀zzz) and the
product term overi (

Q

i
) can be swapped to obtain a new expression



forRY (sss,yyy):

RY (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒
Y

i

[∀zzz[(zi⊕ZM
i (xxx,yyy))

⇒ (zi⊕Zi(xxx))]]]

This is correct because in general,

∀ω(f · g) = ∀ω(f) · ∀ω(g)

Quantifying out thezzz variables earlier results in smaller intermediate
ROBDDs for the expression to the right of the first implication. The
computation can therefore be expressed as:

RY (sss,yyy) = ∀xxx[(sss = gS(xxx))⇒ P (xxx,yyy)] = ∀xxx[(sss = gS(xxx)) + P (xxx,yyy)]

where P(xxx,yyy) is is the ROBDD obtained after applying the first observa-
tion.

P (xxx,yyy) =
Y

i

[∀zzz[(zi⊕ZM
i (xxx,yyy))⇒ (zi⊕Zi(xxx))]]

In general, however,

∀ω(f + g) 6= ∀ω(f) + ∀ω(g)

Let the common variables betweenf andg beω∗. Let ω
′

= ω ∩ ω∗.
Then,

∀ω(f + g) = ∀
ω
′ (∀

ω\ω
′ (f) + ∀

ω\ω
′ (g))

Our second observation is thatgS(xxx) depends on a smaller subset

(x
′

x
′

x
′

) of the primary inputs(xxx) of the network. Hence, we can compute
RY (sss,yyy) as

RY (sss,yyy) = ∀
x
′

x
′

x
′ [∀

xxx\x
′

x
′

x
′ (sss = gS(xxx)) + ∀

xxx\x
′

x
′

x
′ (P (xxx,yyy))]

which reduces to:

RY (sss,yyy) = ∀
x
′

x
′

x
′ [(sss = gS(xxx)) + ∀

xxx\x
′

x
′

x
′ (P (xxx,yyy))]

In practice, we apply both observations in tandem. We first findgS(xxx),
and the setx

′

x
′

x
′

. Then, while computing P(xxx,yyy), we quantify outxxx\x
′

x
′

x
′

. The
final computing step is

RY (sss,yyy) = ∀
x
′

x
′

x
′ [(sss = gS(xxx)) + P

′

(x
′

x
′

x
′

,yyy)]

whereP
′

(x
′

x
′

x
′

,yyy) = ∀
xxx\x

′

x
′

x
′ (P (xxx,yyy)). By implementing both these ideas,

we ensure that intermediate ROBDD never blows up in size. Thefinal
ROBDD representingRY (sss,yyy) is returned to the calling function.

4.1.5 Endgame

Next, we invoke a call to BREL to minimizeRY (sss,yyy). The output of
BREL is a pair of completely specified functions for the nodesn

′

i and
n

′

j such that these functions are compatible withRY (sss,yyy) and the total

cost ofn
′

i andn
′

j is minimal. We finally graftn
′

i andn
′

j back intoη and
delete the original nodesni andnj from η.

At the end of thefor loop, when all node pairs have been processed by
our relation-based minimization procedure, we run thenetworksweep
command of SIS [23]. We also verify that the resulting network η

′

is
functionally equivalent to the original networkη.

Additionally, for all nodes that werenot modified by our two-node
relation approach, we attempted to find the single node ODCs and min-
imize them as a post-processing step. The resulting improvement was
negligible, and thus we do not include this step in the following results.

5. Experimental Results
The preliminary implementation of our approach was done in SIS [23].

We used large circuits from themcnc91anditc99benchmarks for our ex-
periments. The ROBDD package used was the CUDD package [9]. We
compare our results against the SAT-based CDC methodmfsw[24] in-
cluded in MVSIS [29], which uses a 2x2 windowing technique. Note
that all results reported in this section are the literal counts measured
by summing the factored form literal count of all nodes in thenetwork.
The experiments were performed on a Linux-based Dell Optiplex with a
2.6GHz Core 2 Quad CPU with 4 GB of RAM.

The values for the parameters passed toselect nodes() arethresh =
0.8, k1 = 1, k2 = 1 andα = 0.3. These values were chosen by varying
each parameter according to Table 2 and calculating the average literal
count and runtime over the set of 15 circuits. The parameterα was
varied first, setting the other parameters to their nominal values. This
is becauseα chooses whether PI or PO compatibility is weighed more,
which is independent of the other parameters. Onceα was determined,
the other parameters determining window size and selectivity were then
found using the same method. Various plots describing the runtime and
literal count reduction as a function of the swept parameters are omitted
due to lack of space. It was found that a 1x1 window yielded a large
literal count reduction in addition to keeping runtimes low. The final
values for all parameters were found to work equally well across all cir-
cuits, and they used in the experiments reported in Table 3 and Table 4.
In addition, we impose limitations on the subnetwork size. In particu-
lar, if a subnetwork has more than 50 inputs or outputs, then the node
pair is rejected without calculatingRY . This assures that the BDD sizes
remain tractable during the computation of the Boolean relation.

Parameter Low High Increment Nominal

α 0 1.0 0.1 -
k1 1 3 1 2
k2 1 4 1 3

thresh 0 1.0 0.1 0.5

Table 2: Initial Values, Final Values, Increments, and Nominal Val-
ues of the Node Selection Parameters

For Table 3, we first run SAT sweep [19] to remove functionallyequiv-
alent nodes from the network. This is the starting point for both themfsw
technique and our method, and was similarly performed as a preprocess-
ing step in [24]. The literal count after SAT sweep is shown inColumn
2 of Table 3. The literal count after runningmfswand our method is
reported in Column 3 and Column 4, respectively. These literal counts
are measured by summing the factored form literal count of each node
across the entire network. Column 5 shows the ratio of literals in Col-
umn 4 to Column 3. Column 6 is the peak number of ROBDD nodes
in memory for our method. All runtimes are under 90 seconds, which
shows that this method scales well with very large circuits.

We can see from Table 3 that starting from the SAT swept circuits,
our method reduces the literal count by 15%over and abovewhatmfsw
can achieve. The memory requirements are also very low regardless of
the size of the circuit. In [24] it was reported that running SAT sweep
and thenmfswdecreased the literal count by 10%. In Table 3, we report
the literal count after SAT sweep (Column 2) and after SAT sweep and
mfsw(Column 3). Note that the gain due tomfswover SAT sweep is on
average 2% based on Table 3.

In Table 4, we start with the reduced network produced by SAT sweep
andmfswcombined. This table is meant to test if our method can im-
prove on the result obtained by running SAT sweep followed bymfsw.
Column 2 reports the literal count after running SAT sweep followed
mfsw. Column 3 shows the literal count after we run our relation method
on the netlist obtained by running SAT sweep followed bymfsw. We find
that an additional 16% literal reduction can be acheived by our technique
as shown in Column 4. Also, Column 5 demonstrates that our memory
utilization is very low.



It is also important to note that the window size ofmfswis the only pa-
rameter which can be changed to trade off runtime and literalcount im-
provement. By choosing a 15x15 window formfsw, the runtime matches
that of our approach; however, the literal count ofmfswimproves by less
than 0.5% across all the circuits (compared to the results for mfswwith
a 2x2 window).

literals
circuit sat sweep mfsw relation ratio memory

c1355 992 992 598 0.603 170
c1908 759 748 605 0.809 293
c2670 1252 1197 933 0.779 320
c5315 3062 2935 2343 0.798 804
c7552 3796 3549 2994 0.844 641
b15 15084 14894 14205 0.954 1210
b17 49096 48595 45892 0.944 1342
b20 22037 21816 19810 0.908 666
b21 22552 22306 20341 0.912 597
b22 33330 33001 30133 0.913 846

s1494 1239 1177 1171 0.995 335
s5378 2327 2283 1978 0.866 617
s13207 5052 4833 4045 0.837 132
s15850 6624 6342 5217 0.823 153
s38417 17531 17314 14719 0.850 619

average - - - 0.850 -

Table 3: Results after SAT Sweep

literals
circuit sat sweep + mfsw relation ratio memory

c1355 992 598 0.603 189
c1908 748 601 0.803 29
c2670 1197 926 0.774 333
c5315 2935 2264 0.771 632
c7552 3549 2813 0.793 404
b15 14894 14085 0.946 605
b17 48595 45444 0.935 1093
b20 21816 19662 0.901 580
b21 22306 20129 0.902 518
b22 33001 29894 0.906 828

s1494 1177 1139 0.968 179
s5378 2283 1956 0.857 628
s13207 4833 4045 0.837 132
s15850 6342 4958 0.782 166
s38417 17314 14539 0.840 619

average - - 0.836 -

Table 4: Results after SAT Sweep andmfsw

Table 5 shows some properties of the node pairs selected by our algo-
rithm. The values reported in Table 5 are averaged across allthe designs
we report in Tables 3 and 4. Because of the low value ofα chosen, the
number of fanouts in common is higher than the number of fanins in
common. In addition, due to the 1x1 window chosen, there are very few
nodes in the subnetwork and relation, which results in smallruntimes. It
should be noted that with the high threshold value chosen, all node pairs
processed reduced the literal count by at least 1 literal .

6. Conclusions
In this paper, we present an algorithm to perform multi-nodeopti-

mization using Boolean relations. Our algorithm is robust,scalable and

Property Average

Total number of fanins of both nodes 4.36
Total number of fanouts of both nodes 2.03

% of fanin in common between both nodes 33%
% of fanout in common between both nodes 50%

Total number of literals in both nodes 4.42
Total number of cubes in both nodes 3.23

Total number of PIs of subnetwork 7.31
Total number of POs of subnetwork 4.32

% of subnetwork PIs in common between both nodes 35%
% of subnetwork POs in common between both nodes 50%

Number of nodes in subnetwork 6.97
Number of literals in subnetwork 10.60

Number of BDD nodes in relation 7.13

Table 5: Properties of Node Pairs

memory efficient. We use an ROBDD-based approach for computing the
Boolean relations that express multi-node optimization flexibility. Using
a window-based technique for computing these Boolean relations (for
simultaneously optimizing two nodes at a time) allows our approach to
scale elegantly. We perform early quantification to controlthe ROBDD
size at all stages of the Boolean relation computation, and also employ
smart heuristics for selecting the node pairs to be optimized together.

Our results demonstrate the efficiency and scalability of our algo-
rithm. We achieve a better literal count than [24] across allexamples,
and can improve upon the results generated in [24] by 15%. Runtimes
for our method are all under 90 seconds, even for the largest examples,
and the memory utilization is very low.
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