
Resource and Delay Efficient
Matrix Multiplication using Newer FPGA Devices

Scott J. Campbell
Department of ECE

University of Colorado, Boulder
Boulder, CO 80309

Sunil P. Khatri
Department of ECE

Texas A&M University
College Station TX 77843

ABSTRACT
Matrix multiplication is a fundamental building block for
many applications including image processing, coding, and
digital signal processing. This paper presents a delay and
resource efficient methodology for implementing integer and
floating point matrix multiplication using FPGAs. We present
a scalable architecture based on new FPGA features that
provides a significant reduction in total computation time
and resource utilization over previous solutions. The imple-
mentation of our algorithm for various matrix dimensions
using Xilinx FPGAs is also described. When compared to
the best previously reported method, our approach achieves
an improvement in the parallelization of 60% for 64-bit float-
ing point computations.

Categories and Subject Descriptors: B.6.1 [Logic De-
sign]:Design Styles

General Terms: Algorithms, Design

Keywords: FPGA, Matrix, Multiplier, Floating Point

1. INTRODUCTION
Matrix multiplication is a fundamental operation for many

applications including image processing, coding, and digital
signal processing (DSP). Because thee operations are vital,
and processors implement matrix multiplication in O(n3)
run-time, many parallel methods have been developed to
reduce this complexity [1] [2] [3]. While these parallel pro-
cessing methods have reduced the total computation time,
they are applicable only for small matrix dimensions since
they require significant device resources. However, recent ad-
vances in Field Programmable Gate Array (FPGA) technol-
ogy now allow for more efficient implementation of parallel
matrix multiplication algorithms.

The contribution of this paper is to present a methodology
for implementing integer and floating point matrix multipli-
ers using FPGAs which take advantage of the new FPGA
technology. As our results illustrate, our new method per-
forms significantly faster, while utilizing much fewer FPGA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’06, April 30–May 2, 2006, Philadelphia, PA, USA.
Copyright 2006 ACM 1-59593-347-6/06/0004 ...$5.00.

resources than previous solutions. The remainder of this pa-
per is organized as follows: Section 2 discusses prior work
in this area. In Section 3 we describe our new matrix mul-
tiplication design. Section 4 presents experimental results
comparing our method with previous implementations. Fi-
nally, conclusions are drawn in Section 5.

2. PREVIOUS WORK
There has been extensive previous work in the area of

designing a parallel implementation of the matrix multipli-
cation operation. Recent work has focused on using FPGA
technology to implement these algorithms.

In [1] Jang et al. presented an integer/fixed-point mul-
tiplication design that reduced the overall resource utiliza-
tion and latency of the operation over previous designs such
as [2] by taking advantage of data re-use. This design was
extended to serve as a co-processor for the on-chip micropro-
cessors of Xilinx Virtex-II family in [4] which maintained the
operating frequency while reducing the resource utilization
of the design. In [3] a systematic algorithm for floating-
point matrix operations was presented which expanded on
the work in [1] to decrease latency. Finally, [5] extended
the floating-point algorithm work in [3] to consider multiple
FPGA’s and overall system design.

While these prior works have systematically improved the
resource utilization and operating frequency over prior de-
signs, their algorithms all require intercommunication be-
tween the processing elements (PE’s). This communication
requires extensive routing and logic, and limits the num-
ber of PE’s that can be implemented as well as the operat-
ing frequency of the design. The aforementioned limitations
have practically restricted the prior work to realizing very
small parallelization factors p. In particular, our approach
achieves an improvement of 60% in the value of the paral-
lelization factor for a 64-bit floating point matrix multipli-
cation compared to the best known prior approach [3].

New advances in FPGA technology allow more efficient
implementation of integer and floating-point multiplication
and addition over previous generations of devices. For ex-
ample, the Xilinx Virtex-4 family introduced the dedicated
DSP-48 block which consists of a 18 × 18 multiplier cou-
pled with a 48-bit adder / accumulator[7]. In addition, the
Virtex-4 family includes dedicated FIFOs which allows effi-
cient implementation of both synchronous and asynchronous
FIFOs without requiring additional logic resources. With
the larger versions of Virtex-4 device family including up to
512 of the DSP-48 blocks, and 320 BlockRams [6], the family
is ideal for implementing large dimension matrix multipliers.

308

3. OUR APPROACH
Several methods have been explored to decrease the algo-

rithmic complexity of the matrix multiplication operation as
discussed in Section 2. In order to achieve maximum data
re-use, these methods have focused on using complex PE’s
to both store and transfer intermediate results throughout
the processing array. While this improves the latency of
the system, it is not delay or resource optimal due to data
sharing between the PE’s. To the best of our knowledge,
our method is the first to perform matrix multiplication with
PE’s that operate in isolation from each other.

3.1 New Parallel Model
In order to optimize FPGA architecture resource use, the

data from input matrices A and B should be re-used. Opti-
mal data re-use occurs when data is read from memory for
matrices A and B exactly once. By simultaneously reading
one column of matrix A and one row of matrix B, and per-
forming all multiply operations based on those values before
additional memory reads, optimal data re-use occurs. Data
read in this sequence allows one partial product term of ev-
ery element in output matrix C to be computed per clock
cycle. This process is shown in Figure 1.

A11 A12 ... A1n

A21 A22 ... A2n

...

An1 An2 ... Ann

B11 B 12 ... B1n

B21 B 22 ... B2n

...

Bn1 B n2 ... Bnn

X

C11 C12 ... C1n

C21 C22 ... C2n

...

Cn2 ... Cnn

=

Cycle 1

Cycle n Cycle n

Cycle 1

...

Cn1

Figure 1: Parallel Matrix Multiplication Sequence

3.1.1 Multiplier Array Architecture
In order to meet the memory read requirements, an array

structure of PE’s is required. For example, Figure 2 shows
the array structure required when input matrix A has l ele-
ments, and B has m elements.

PE11

PEL1

PE21

PE12

PEL2

PE22

PE1M

PELM

PE2M

RAM
B1

RAM
A1

RAM
B2

RAM
BM

RAM
A2

RAM
AL

Figure 2: Our Matrix Multiplier Array

In this array configuration, lm product terms are pro-
duced each clock cycle from the l + m matrix elements. In
the sequel, we assume that m = l, allowing for a regular
multiplier array structure. In all but the smallest of ma-
trix dimensions n where m = n, it is assumed that m = n/k
where k is an integer. This array configuration allows the al-
gorithm to be applied to matrices of non-square dimension.
It is important to note that in our approach, no intercom-
munication exists between the PE’s as required in previous
architectures. This novel structure significantly reduces the

routing resources required in the design and removes the as-
sociate performance penalty. In addition, because each PE
operates independently of other PE’s in the array, the op-
erating frequency of the PE array is independent of matrix
dimension.

3.1.2 PE Structure
The structure of the PE is shown in Figure 3.

PE / DSP-48

X +
PE FIFO

A

B

C

Figure 3: Our Processing Element (PE) Structure

The PE structure consists of one input each from matrix
A and B, a multiplier accumulator (MAC), and a result
FIFO. In Figure 3, the multiplier latency is denoted as αm,
while that of the adder and FIFO are denoted as αa and αf

respectively. The inputs from matrices A and B, containing
one word each per clock cycle, are implemented using ded-
icated routes from the BlockRam memory associated with
the multiplier. By having dedicated memory connections for
each PE, multiplexing between several inputs sources is not
required, and the so the routing and resource delay penalty
is eliminated.

During the computation of output matrix element Cij the
product term Aik · Bki must be available at the output of
the adder during the same clock cycle as the product term
Ai(k+1) ·B(k+1)i is available from the multiplier. For matrix

arrays of dimension k2 < αa, αi idle cycles are required
between successive input memory loads. The final product
term requires αa of latency in the adder before it is stored
in memory. The latency of entire operation Lm in these
systems is given by Equation (3).

3.1.3 Memory Structure
The memory hierarchy consists of input matrices A and

B, and output Matrix C FIFO storage. Each matrix is par-
titioned into m BlockRam banks. This structure has one
bank of A and B feeding one PE array row and column re-
specitvely. Each bank of A stores k = (n/m) words of each
column in A, for every row of A. Each bank of B stores
k = (n/m) words of each row in B, for every column of
B. By storing data in this manner, matrices of arbitrary
dimension can be implemented. Because the data remains
in FIFO memory only until used, additional data can be
loaded from external memory to accomodate array dimen-
sions larger than internal storage would allow.

Each BlockRam has a depth d based on the width of the
internal data. To determine the number of BlockRams re-
quired per matrix word, the input data word width (Wmat)
is divided by the BlockRam width (Wbram) and rounded
up. This is multiplied by the number of words in the matrix
n2 and divided by the FIFO depth d. The total number
of input BlockRams required for matrices A and B are as
presented in Equation (1).

InputBlockRams = 2 ∗ �(�(Wmat/Wbram)� ∗ (n2)/d)� (1)

309

The output memory C for each PE, as seen in Figure 3,
contains a FIFO to synchronize the product terms. The
alignment FIFO within the BlockRam for each PE, the num-
ber of FPGA fabric resources is significantly reduced. Be-
cause the FIFO contains the contents of the Multiply and
Accumulate (MACC) operation, no additional latency cy-
cles are required to transfer the results from the PE to the
C matrix memory.

For large matrices, each PE FIFO stores k2 terms of out-
put matrix C. The number of PE BlockRams required is
the width of the input word (WPE)divided by the Block-
Ram (Wbram) width and rounded up. Note that the data
width at the output of the matrix MAC operation is wider
than that of the input matrices, and will thus require more
BlockRams per word. This value is multiplied by the num-
ber of PE words (k2) and divided by the FIFO depth d. The
total number of BlockRams required to store the result is
given in Equation (2).

PEBlockRams = �(WPE/Wbram) ∗ (k2/d)� (2)

3.2 System Latency and Computation Time
This section discusses the latency and computation time

of the new system. The latency is defined as the time be-
tween reading the first elements from the input matrices,
A11 and B11, and writing the first element C11 to the re-
sult matrix. The total computation time is the time elapsed
between reading the first elements from the input matrices,
A11 and B11, and writing the final result matrix element
Cnn to memory.

3.2.1 System Latency
In our design , where k = n/m, it requires k2 clock cycles

to read the input data which produces the product terms for
one column of A multiplied by one row of B. With n rows
and n columns in our design, and each column of A and
B read simultaneously, there are nk2 clock cycles required
to read the input matrices from memory. This means that
after [(n − 1)k2 + 1] clock cycles the elements A1n and Bn1

which are required for the final product term of C1n will
be read from memory. Given that the multiplier latency is
αm and the adder latency is αa, the first result C1n will be
presented to the PE FIFO after [(n − 1)k2 + 1] + αm + αa

clock cycles. Because the PE FIFO also serves as the output
matrix C storage, no additional clock cycles are required to
store the result. The latency formula of our system is given
in Equation (3).

Lm = [(n − 1)k2 + 1] + αm + αa (3)

3.2.2 Total Computation Time
The input matrix elements Ann and Bnn required for the

final product term of Cnn are read from memory after nk2

clock cycles. Given the multiplier latency of αm and the
adder latency of αa, the final result Cnn will be written to
the PE FIFO after nk2 +αm +αa clock cycles. Again, with
no addition time required for storing result Cnn to memory,
the total computation time is given in Equation (4).

Total Computation Time = nk2 + αm + αa (4)

While the total computation time of prior approaches is
dependent on the PE storage capacity [3], Equation (4) shows

the total computation time in our architecture is entirely in-
dependent of PE storage capacity, and depends only on the
number of PE’s available in the device. In addition, because
the adder and multiplier latency has only O(1) affect on total
computation time, computation time is largely independent
of latency.

4. EXPERIMENTAL RESULTS
In this section we will discuss the implementation of our

matrix multiplication algorithm in a Xilinx Virtex-4 XC4VSX55
-12 FPGA. This device is optimized for DSP applications,
and contains 512 DSP-48 blocks combined with 320 Block-
Ram components [6]. The discussion will include resource
utilization, performance metrics for both integer and floating-
point matrix multiplications, and a comparison of our algo-
rithm with recently reported designs.

4.1 Integer Fixed Point Implementation
This section discusses the resource utilization and algo-

rithm performance for integer and fixed point systems. These
systems are characterized by efficient multiplier and adder
implementation in the PE, and have low result latency for
both those functions.

The memory and DSP-48 resource utilization of the ma-
trix multiplication implementation depends on matrix word
size and the dimension of the processor array. Table 1 shows
the resource utilization for the 16-bit integer multiplication.

n m DSP-48 Inp BRAM PE BRAM Tot BRAM
8 8 64 16 128 144
16 8 64 32 128 160
32 8 64 32 128 160
64 8 64 32 128 160
128 8 64 128 128 256

Table 1: 16-bit Integer Resource Utilization

The performance of the matrix multiplier is dependent on
the system operating frequency, latency, and total compu-
tation time. The BlockRam and DSP-48 frequency is well
characterized, and operates at 400 MHz for the -12 speed-
grade for the XC4VSX55 [6]. The matrix multiplication
latency is given in Equation (3) while the total computa-
tion time is given by Equation (4). Table 2 lists the latency
and total computation time for various matrix dimension
operating at 400 MHz.

n Lat Cycles Tot Cycles Lat Time (ns) Total (ns)
8 10 10 25 25
16 63 66 158 165
32 499 514 1248 1285
64 4035 4098 10088 10245
128 32515 32770 81288 81925

Table 2: 16-bit Integer Performance

4.2 Double Precision Implementation
This section discusses the double precision floating point

implementation of the algorithm compliant with IEEE spec-
ifications [8]. Floating point operations typically contain
complex multiply and add functions. The complex nature
of these operations causes the latency to be much higher
than integer implementations.

The Xilinx 64-bit double precision Floating Point Op-
erator Core requires 16 DSP-48 blocks and 396 slices per
core [9]. Because of the large DSP-48 requirement, the PE

310

array dimension m was chose to be 4 for a total of 16 PE’s.
In addition, the 64-bit double precision floating point for-
mat requires two 36-bit BlockRam words of storage for each
matrix word. The resource requirements for the double pre-
cision implementation are shown in Table 3.

n Inp RAM DSP-48 PE RAM Slice Tot RAM
8 16 256 32 6336 48
16 16 256 32 6336 48
32 16 256 32 6336 48
64 32 256 32 6336 64
128 128 256 64 6336 192

Table 3: Double Precision Resource Utilization

The performance of the Xilinx double precision Xilinx
Floating Point Operator Core is listed as 279 MHz [9]. For
the purposes of this experiment we chose the operating fre-
quency to be 250 MHz. Table 4 shows the performance of
our algorithm for various array dimensions. In this table, the
latency of the matrix multiplication is given in Equation (3)
while the total computation time given by Equation (4).

n Lat Cycle Tot Cycle Lat Time (ns) Tot Time (ns)
8 118 129 472 516
16 274 289 1096 1156
32 2018 2081 8072 8324
64 16162 16417 64648 65668
128 130082 131105 520328 524420

Table 4: Double Precision Performance

4.3 Integer Performance Comparison
In an attempt to normalize the results across the different

designs, we use p to represent the number of parallel PE’s
in the design, and n to represent the dimension of the ma-
trices. In addition, we extrapolate the resources required
for a 16-bit 8 × 8 matrix multiplication based on the pre-
viously published work [1] [4]. Table 5 shows the results of
our comparison for the integer multiplier.

Design Computation Cycles Area (CLB’s)

Our Method n3/p + αm + αa 128
Corsonello et al. [4] 11n3/p + 5n2 981

Jang et al. [1] n3/p + 2n2/p 560 est.

Table 5: Integer Performance Comparison

Table 5 shows that our method decreases the total integer
matrix computation time by eliminating the n2 component
of the complexity equation present in the other solutions.
This complexity reduction is made possible by our remov-
ing the connection between PE’s, which allows the PE’s to
operate in isolation from one another, combined with our
unique method of reading the input matrix data. In ad-
dition, the CLB resource requirement for the PE’s is re-
duced significantly because our method utilizes the built-in
hardware FIFOs in the FPGA, and also because we utilize
the same BlockRam for the local PE memory and for stor-
ing the result matrix C. Finally, the previous approaches
requires the FPGA CLBs to communicate over the FPGA
routing fabric, possibly yielding a lower clock rate than our
method, in which each PE operates independently (without
any communication between PEs).

4.4 Floating Point Performance Comparison
The results presented below are based on normalizing the

results of other designs to our notation. Table 6 presents

the comparison of our design to recently published work for
the 8 × 8 double precision floating point multiplication.

Design Computation Cycles Area Slices

Our Method n3/p + αm + αa 6336
Prasanna et al. 1 n3/p + p + n + αm + αa − 1 19045
Prasanna et al. 2 n3/p + 2p + n + αm + αa − 2 33589

Table 6: 8 × 8 Double Precision Performance

Table 6 shows that our method dramatically decreases the
total large array computation time by eliminating the (p+n)
complexity component present in the other solutions [3]. It
is important to note that for p = n2 other designs require an
additional n2 complexity over our solution. In addition, our
solution also significantly reduces the resource utilization
over other designs.

Additionally, we performed a study to compare the par-
allelization factor p for [3] with our method. Using the
same FPGA device (the Xilinx Virtex-4 XC4VSX55 -12),
the method of [3] achieves a p value of 10 for 64-bit floating
point computations. Our method, on the other hand,
achieves a p value of 16 for 64-bit floating point com-
putations. This represents an improvement of 60%
over the approach of [3]. Additionally, the approach
of [3] requires the FPGA CLBs to communicate over
the FPGA routing fabric, possibly yielding a lower
clock rate than our method, in which each PE op-
erates independently.

5. CONCLUSIONS
In this paper we have presented a delay and resource effi-

cient implementation of the matrix multiplication algorithm
for fixed-point and floating-point designs. We take advan-
tage of recent FPGA technology to significantly reduce the
resource utilization and total computation time over previ-
ous methods. These advances have been made possible by
our novel algorithm which removes the intercommunication
between parallel processing elements (PEs), and allows each
PE to operate in isolation. This algorithm allows the imple-
mentation using matrices of arbitrary dimension, and scales
in performance with more DSP-48 blocks and memory.

6. REFERENCES
[1] J. Jang, S. Choi, and V. Prasanna, “Area and time efficient

implementations of matrix multiplication on FPGAs,,” in
Proceedings, IEEE International Conference on Field
Programmable Technology (FPT), pp. 93–100, Dec 2002.

[2] A. Amira and F. Bensaali, “An FPGA based parameterizable
system for matrix product implementation,” in IEEE Workshop
on Signal Processing Systems (SIPS), pp. 75–79, Oct 2002.

[3] L. Zhuo and V. Prasanna, “Scalable and modular algorithms for
floating-point matrix multiplication on FPGAs,” in Proceedings,
International Parallel and Distributed Processing Symposium,
p. 92, Apr 2004.

[4] P. Corsonello, S. Perri, and P. Zicari, “A matrix product
coprocessor for FPGA embedded soft processors,” in
Proceedings, International Symposium on Signals, Circuits
and Systems (ISSCS), vol. 2, pp. 489–492, July 2005.

[5] J. Jang, S. Choi, and V. Prasanna, “Energy- and time-efficient
matrix multiplication on FPGAs,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 13,
pp. 1305–1319, Nov 2005.

[6] Xilinx, “Virtex-4 FPGA users guide.” www.xilinx.com.

[7] Xilinx, “XtremeDSP design considerations.” www.xilinx.com.

[8] I. of Electrical and E. Engineers, “IEEE 754 standard for binary
floating-point arithmetic,” 1984.

[9] Xilinx, “Floating point operator v1.0.” www.xilinx.com.

311

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

