A Probabilistic Method to Determine the Minimum Leakage
Vector for Combinational Designs

Kanupriya Gulati

Nikhil Jayakumar

Sunil P Khatri

Department of EE, Texas A&M University, College Station TX 77843.

Abstract

"Parking” a circuit in a minimum leakage state during its standby
mode of operation is one of the techniques of reducing leakage
power consumption in a circuit. However, the problem of finding
this minimum leakage state is NP-hard. In this paper, we present
a heuristic approach to determine the input vector which mini-
mizes leakage for a combinational design. Our approach utilizes
approximate signal probabilities of internal nodes to aid in finding
the minimum leakage vector. We use a probabilistic heuristic to
select the next gate to be processed, as well as to select the best
state of the selected gate. A fast SAT solver is employed to ensure
the consistency of the assignments that are made in this process.
Experimental results indicate that our method has very low run-
times, with excellent accuracy, compared to existing approaches.

1. Introduction

Traditionally, dynamic (switching) power has dominated the to-
tal power consumption of a VLSI IC. However, due to current
scaling trends, leakage power has now become a major component
of the total power consumption in VLSI circuits. The leakage cur-
rent for a PMOS or NMOS device corresponds to the I4s of the
device when the device is in the cut-off or sub-threshold region of
operation. The expression for this current [1] is:

(Vgs*VT*Voff Vs

w _
Lo = - Toe ™7 (1— 77 (1)

Here Iy and Voffl are constants, while v; is the thermal volt-
age (26mV at 300°K) and n is the sub-threshold swing parameter.
Note that I, increases exponentially with a decrease in V. This
is why a reduction in supply voltage (which is accompanied by a
reduction in threshold voltage) results in exponential increase in
leakage. This is expected to be a major concern for VLSI design
in the nanometer realm [2]. Further, the increasing demand for
portable/hand-held electronics has meant that leakage power con-
sumption has received even greater attention. Since these portable
devices spend most of their time in a standby state (also sometimes
called sleep state), reducing the leakage power consumption in this
standby state is crucial to extending the battery life of these de-
signs.

One of the natural techniques for reducing the leakage of a circuit
is to gate the power supply using power-gating transistors (also
called sleep transistors). Typically high-Vp power-gating tran-
sistors are placed between the power supply and the logic gates
(MTCMOS [3, 4]). In some cases these power-gating transistors
are embedded in the logic gates itself [5]. In standby, these power-
gating transistors are turned off, thus shutting off power to the
circuit in question. Such power-gating techniques can reduce cir-
cuit leakages by 2 to 3 orders of magnitude. However, the addition
of a power-gating transistor causes an increase in delay of the cir-
cuit. Further, the process of waking the circuit up involves a delay
(and a power transient), since the supply rails need to reach their
stable values before the circuit can operate again.

Increasing Vp via body effect and bulk voltage modulation [6,
7] is another way to reduce leakage power. The leakage current
of a transistor decreases with greater applied Reverse Body Bias

ITypically Vorr = —0.08V
0-7803-9390-2/06/$20.00 ©2006 IEEE

(RBB). RBB affects Vp through body effect, and sub-threshold
leakage has an exponential dependence on Vr as seen in Equa-
tion 1. The body effect equation can be written as Vpr = VTO -+
'y\/V_Sb where VTO is the threshold voltage at zero V.

All the techniques listed above require significant circuit mod-
ifications in order to reduce leakage. Another technique, which
achieves up to 2 orders of magnitude leakage reduction, is the
technique of parking a circuit in its minimum leakage state. This
technique involves very little or no circuit modification and does
not require any additional power supplies. A combinational cir-
cuit is parked in a particular state by driving the primary inputs
of the circuit to a particular value. This value can be scanned in
or forced using MUXes (with the standby/sleep signal used as a
select signal for the MUX).

Table 1 shows the leakage of a NAND3 gate for all possible input
vectors to the gate. The leakage values shown are from a SPICE
simulation using the 0.1 BPTM [8] models, with a VDD of 1.2V.

Tnput | Leakage(A)
000 1.37389%e-10
001 2.69965e-10
010 2.70326e-10
011 4.96216e-09
100 2.62308e-10
101 2.67509e-09
110 2.51066e-09
111 1.01162e-08

Table 1: Leakage of a NANDS3 gate

As can be seen from Table 1, setting a gate in its minimal leakage
state (000 in the case of the NAND3 gate) can reduce leakage by
about 2 orders of magnitude. Ideally, it is desirable to set every
gate in the circuit to its minimal leakage state. However, this
may not be possible due to the logical inter-dependencies of the
inputs of the gates. Finding this minimum leakage input vector is
an NP-hard problem. Several research efforts have addressed the
problem of determining an input vector that minimizes leakage for
a design. Our approach falls into this category. The problem of
finding a minimal leakage vector can be viewed as one of selecting
the state of each gate in the circuit such that the total leakage over
all gates is minimized, and the states of each gate in the circuit are
logically feasible (i.e. is logically compatible with states of all the
other gates). The main feature of our approach is that it is guided
by signal probabilities. In other words, the selection of the best
candidate gate, as well as the input state to use for that gate, is
performed probabilistically. The intuition behind such selections
is that they have a high likelihood of resulting in a circuit state
which is logically justifiable, while minimizing leakage as well.

The remainder of this paper is organized as follows: Section 2
discusses some previous work in this area. In Section 3 we describe
our heuristic method to find the minimum leakage vector (MLV)
of a circuit. In Section 4 we present experimental results, while
conclusions and future work are discussed in Section 5.

2. Previous Work

The problem of finding the minimum leakage sleep vector for a
combinational CMOS gate-level circuit has received some atten-

22414ion recently. In [9], the authors find a minimall¥akeE20@6tor

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

using random search with the number of vectors used for the ran-
dom search selected to achieve a specified statistical confidence and
tolerance. In [10], the authors reported a genetic algorithm based
approach to solve the problem. The authors of [11] introduce a con-
cept called leakage observability, and based on this idea, describe
a greedy approach as well as an exact branch and bound search to
find the maximum and minimum leakage bounds. The work of [12]
is based on an ILP formulation. It makes use of pseudo-Boolean
functions which are incorporated into an optimal ILP model and
a heuristic mixed integer linear programming method as well. In
contrast to these approaches, our approach is a heuristic that uses
signal probabilities and leakage values of the gates to help assign
values to the nodes in a combinational circuit. In [13, 14], the
authors present an MDD [15] based algorithm to determine the
lowest leakage state of a circuit. Unlike our method, [14] com-
putes a leakage histogram for the design. The use of MDD based
MLV computations limits the applicability of [13] to large designs.

In [16], the authors present a greedy search based heuristic,
guided by node controllabilities and functional dependencies. The
algorithm used in [16] involves finding the controllability and the
controllability lists of all nodes in circuit and then using this in-
formation as a guide to choose gates to set to a low leakage state.
The controllability of a node is defined as the minimum number of
inputs that have to be assigned to specific states in order to force
the node to a particular state (based on concepts used in auto-
matic test pattern generation). Controllability lists are defined as
the minimum constraints necessary on the input vector to force a
node to particular state. The time complexity of their algorithm
is reported to O(n?) where n is the number of cells (gates) in the
circuit. However in estimating the complexity of their algorithm,
it is not clear if the authors include the time taken to generate
the controllabilities and controllability lists of each node in the
circuit. While finding the controllabilities can be done fairly eas-
ily [17], generating the controllability lists can be more involved.
In our approach we do not compute node controllabilities or their
controllability lists. We compute signal probabilities instead. The
algorithm for this is detailed in section 3

In [18], the authors express the problem of finding a minimum
leakage vector as a satisfiability problem and use an incremental
SAT solver to find the minimum and maximum leakage current.
While their approach worked well for small circuits, the authors
report very large runtimes for large circuits. The authors therefore
suggest using their algorithm as a checker for the random search
suggested in [9]. Our approach can handle larger circuits with low
run-times and good accuracy, as shown in Section 4.

3. Our Approach

The outline of our methodology for selecting the input vector
that minimizes circuit leakage is as follows:

e First, we compute signal probabilities for all nodes in the
design, assuming that all inputs have a signal probability of
0.52. These probabilities are heuristically adjusted for inac-
curacies arising from reconvergent fanouts.

e Next, we select the best candidate gate whose leakage we
would like to set in a given iteration. This is performed by
selecting the gate that is probabilistically most likely to result
in the largest leakage reduction.

e For the gate thus selected, we next assign its best state, such
that the leakage of the selected gate is probabilistically mini-
mized. All other gates in the circuit which are newly implied
by the state just selected are accounted for while making this
decision.

o We test if the logic values that were set to 1 or 0 during
this iteration are satisfiable, by calling a Boolean Satisfia-
bility solver. The SAT solver is called every p iterations to

2Tn case of sequential circuits, we could utilize the probabilities of
the signals at the outputs of memory elements instead.

reduce the runtime. If the circuit is unsatisfiable, we undo
the assignments of the last p iterations, and find the iteration
that caused the circuit to become unsatisfied. After making
a different selection for that iteration, we proceed as before.

e After any iteration, gate probabilities are adjusted, to ac-
count for the nodes that were newly assigned fixed logic val-
ues.

o A fixed number of passes are made for the circuit, with the
above steps being applied successively. Each pass is more
”lenient” in setting a node to a logic value v when its signal
probability deviates from v. The last pass is most lenient,
allowing any deviation from v to be accepted.

Algorithm 1 describes the pseudocode for our approach for com-
puting the MLV for a combinational network 7.

Algorithm 1 Pseudocode of Minimum Leakage Vector Algorithm

compute_minimum_eakage_vector(n, p){
compute_signal_probabilities(n)
platinumvalues «— @
fori=1;i{ < k;i+ + do
goldvalues «— &
iteration = 1
(G = findbest_gate(n)
if (G is not marked visited) then
(S = find_best_leakage_state(G,n)
if S satisfies m; then
goldvalues «— goldvalues U S U get_implications(S)
propagate probabilities in TFO of goldvalues nodes
end if
if iteration is a multiple of p OR all inputs assigned/implied then
if goldvalues are satisfiable then
if all inputs assigned then
exit
end if
platinumvalues «+— platinumvalues U goldvalues
else
goldvalues «+— platinumvalues
end if
end if
end if
iteration += 1
end for

}

3.1 Computing Signal Probabilities

The algorithm compute_minimum_leakage vector(n) begins by
computing signal probabilities for all nodes in the network n. The
inputs are assumed to have probabilities of 0.5, and these probabil-
ities are propagated throughout the circuit®. After the initial pass
of propagation, we heuristically adjust for reconvergent fanouts.
The heuristic for probability adjustment in the presence of recon-
vergence is illustrated in Figure 1.

Figure 1: Adjusting Probabilities for Reconverging Nodes

Suppose a node X, with a statically computed probability of Px
reconverges at Z. Then we set the probability of X to 1 and O,
and find the probabilities of the inputs to the reconvergent gate
(V and W). Suppose the probabilities of V' (W) are V1 (W1) and
Vo (W) respectively, when X is set to 1(0). In this case, the new
probability of Z is PZ°* = w.

3If the input ¢ of an n-input AND gate has probability p;, then the
output has probability II;p;. Likewise, for an OR gate, the output
has probability 1 —II; (1 —p;). The probabilities of other gates can

42be found in a similar fashion

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

From this we compute the adjustment factor for the probability
of Z, as follows:

Adjustment(Z) —

In future updates of the probability of the node Z, suppose the
statically computed probability of node Z is P}"Odlfled. In that
case, the final adjusted value of the probability of node Z is

Pyl = (Petiliely (1 4 Adjustment(Z)).

In other words, Adjustment(Z) is computed once, and utilized
to adjust the statically computed values of the probability of node
Z, each time it is modified due to other assignments in the circuit.

In the example of Figure 1, Adjustment(Z) = —1. Therefore,
Pgdj = 0 each time the probability of Z is modified. This is
reasonable, given that the output Z is logically 0.

If an adjustment of the probability of a node results in its prob-
ability becoming higher than P.q4; (lower than 1 — P,q4;), then the
probability of the node is capped at P,4 (1 — P,4;) respectively.

_ (PF*V—Pgz)
- P

3.2 Finding Best Leakage Candidate

Once signal probabilities are computed, we next select the best
candidate gate whose input state we would like to finalize. Gates

are ranked by the probabilistic criterion described below:
C = >o(psls) (lmar _ lmin)
2(pe) N v)
Here, p; is the probability that the gate is in state . By ”state”,

we mean a complete assignment of the inputs (and outputs) of the
gate. The quantity [; is the leakage of the state ¢. The value []***
(17" is the maximum (minimum) leakage value of this gate. The
gate with the maximum value of C is selected. In other words,
this criterion selects gates that have a high probability of being
in a high-leakage state. The last term in the expression for C
ensures that gates with large leakage ranges are favored, since they
offer potentially greater optimization flexibility. The gate that
maximizes C is selected preferentially over others.

3.3 Finding Best Leakage State for Selected Gate

Suppose a gate G was selected by the previous step. We now
want to assign it a state such that its leakage is minimized. This is
done by applying the probabilistic criterion L below. Note that all
gates other than & whose states become fully assigned® on account
of implying the current state of (G, are included in the computation
of L. Let the number of such gates be n. The value of probabilistic
leakage in the numerator of L is normalized with respect to the
number of such gates, and is computed as follows:

I = >, (dyely)

The statyeL of gate GG that minimizes L is preferentially selected
over others. Here d; is the deviation of the values assigned to the
gate inputs from their probabilistic values. For example, consider
an AND gate with inputs ¢ and b with probabilities 0.1 and 0.7
respectively. If inputs @ and b are logic 1 and logic 0 respectively,
then the deviation is (|1 — 0.1])(|0.7 — 0]).

In order to bias the state selection towards assignments with
lower leakage, the deviation is incremented by a value 8. Likewise,
in order to bias the state selection towards those with lower devi-
ation, we increment [; by a fixed value y. Therefore, the modified

value of L that i? used is
I = 225 (di+8)- (L +v)

3.4 Accepting Leakage States and Endgame

The state selected from the previous step is now implied through-
out the circuit. The resulting values are referred to as golden val-
ues. The deviations of the resulting implications are now checked
against a margin value m;. If any deviation is greater than m;,
then the assignment to gate G is discarded. Initially, m; is set to
a small value, and with increasing iteration ¢, it is relaxed. This is
in an attempt to get closer to a global minima, by a more careful
selection of states in early iterations. We perform k = 3 iterations
in our experiments.

4A gate is said to be fully assigned if all its inputs are assigned to
specific logic values 2

Once the new implications are computed, the implied nodes’
probabilities are adjusted to reflect the freshly computed impli-
cations. If a node is set to a logic 1, then its probability is set
to (1-a), while a node which is set to logic 0 has its probability
updated to a.

For every p gates selected (or if all primary inputs have been as-
signed or implied), we test if the golden values are satisfiable (this
test is done by invoking the BerkMin [19] satisfiability solver). If
so, then all golden values are designated as new platinum values,
never to be modified in the future. If the golden values are satisfi-
able, and all inputs are assigned, then the algorithm exits. If the
golden values could not be satisfied, then we roll back the golden
values, by copying the last set of platinum values into the set of
golden values. For up to the next p iterations, we call the satisfia-
bility solver after each new state assighment. This is in an attempt
to locate which of the last p assighments caused the unsatisfiability
condition to occur. Once this state is identified, we again revert
to calling the satisfiability solver after every p state assignments.
If the satisfiability solver returns an unsatisfiable condition for a
certain state s assigned at a particular gate g, then we never try
assigning s to g again.

4. Experimental Results

We performed extensive experiments to validate our method and
compare its results to the exact minimum circuit leakage values.
When it was not possible to find the exact minimum circuit leakage
values, we found the minimum leakage value over a large number of
input vector samples. In all our experiments, we utilized a value
of k = 3 iterations. The 3 sets of parameter sets (M1, M2 and
M3) that we utilized for our experiments are described in Table 2.
These are referred to as methods in the sequel. The value of p
used was 1, but it can be increased for less accurate but faster
invocations of the algorithm. The values reported in Table 2 were
found after extensive experimentation with many circuits.

[Method [mi [m2 [ma [B | 7 | Patz | = |
M1 .6 .96 1 0.5 50 .95 .95
M2 .6 .96 1 5 16 .95 .95
M3 .4 .96 1 .1 166G .9 .9

Table 2: Parameters used in our Experiments

Method M1 and M2 utilizes a value of mq of 0.6. As a conse-
quence, we expect to set more gates to platinum values in the first
iteration. These methods are designed to reduce the number of
gates discarded due to margin violations. Among these methods,
M1 has a higher v value, and therefore biases the state selection
towards states which have smaller deviations. On the other hand,
M2 has a higher § value, and as a consequence, state selection fa-
vors states with lower leakage. Method M3 has a smaller m1 value,
and therefore tends to reject gates due to margin violations. It is
biased towards state selections which have smaller deviations.

Using these three methods, we first compared the results of our
method with those of an exhaustive evaluation of leakages. This
was performed for small examples, and results are reported in Ta-
ble 3. The minimum leakage value returned by our method (Col-
umn 4), along with the exact maximum (Column 2) and minimum
(Column 3) leakages are shown in this table. Further, we report a
figure of merit R in Column 5.

R— Our min leakage — Exact mi'r‘L leakage

Ezxact maxleakage — Exzact min leakage

The values of the maximum and minimum range of leakages are
computed based on an exhaustive simulation of the circuit. Ideally,
R should be 0. Runtimes for our method are reported in Column
7, while the method utilized is reported in Column 6.

Note that the figure of merit R is a more rigorous metric
for comparing the effectiveness of any MLV determination
technique. In the prior approaches to the MLV determination

problem, the figure of merit utilized was
_ Heuristicminleakage — Ezact minleakage
Roa = .
FEzract minleakage
Based on Table 3, the average value of R for our method was

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

about 0.125. For our method, the average value of the previously
utilized figure of merit is about 0.053.

Table 3 shows that the runtimes for our method are very small,
with a good figure of merit for the method. Given that the run-
times are very small, we can afford to apply all three methods (M1,
M2 and MS), and choose the best result among the three. In gen-
eral, we may try several methods and select one that yields the
vector with the smallest leakage.

We also tested our method on larger circuits. The results of
this experiment are shown in Table 4. The columns in this table
are as in Table 3, with the exception that exact leakage values are
not computed in this table. Instead, the minimum and maximum
leakage found over 10,000 random vectors is shown in Table 4.
According to [9], this statistically yields a greater than 99% confi-
dence that we will obtain the lowest 0.5% leakage vector.

Table 4 shows that our method produces MLVs with very low er-
rors, with extremely small runtimes. From [12], for the previously
reported methods of [12], [20] and [16], the errors were respec-
tively 5.3%, 3.7% and 10.4% (using the R,;4° metric, for which
our method results in an error of 3.7%). Further, the runtimes for
our method are significantly smaller than those of [20].

[Ciewt [Tow [Weh [Owlow [E [Eg [Meh [Time 5]
C17 12.47 30.15 12.47 0.000 0.600 M2 [}
cm138a 70.80 109.86 71.63 0.021 0.012 M1 0.01
cmlbla 129.55 167.57 135.75 0.163 0.048 M2 0.02
cml52a 65.95 99.07 75.54 0.290 0.145 M3 0.01
cm4d2a 90.19 111.23 90.73 0.026 0.606 M1 (5]
cm82a 87.22 161.16 91.37 $.298 0.048 M2 0.02
cm85a 142.25 217.08 162.08 0.265 0.139 M1 .08
decod 185.97 237.43 185.97 0.000 0.600 M3 0.08
majority 32.41 44.55 32.41 0.000 0.000 M2 0.01
t 17.48 33.72 20.7 $.198 0.184 M2 [}
AVG 0.1261 0.053
Table 3: Exhaustive and Estimated Leakages for Small
Circuits
Circuit Tow Hich Gur Low I3 Roig | Meth. | Time (5
apexf 2738.57 3085.62 2609.550 -0.372 -0.047 M3 81.88
b9 328.16 554.04 362.11 0.150 0.163 M2 0.47
C1908 2353.45 2833.71 2473.570 0.250 0.051 M2 42.73
C2670 3430.12 3880.88 3459.29 0.065 0.009 M2 141.31
C3540 5268.64 5918.25 5402.009 0.205 0.025 M1 206.19
C432 841.13 1674.19 893.27 0.224 0.062 M2 1.78
C499 1748.97 1942.81 1775.1 0.135 0.015 M2 20.18
<8 507.41 829.42 552.24 0.139 0.088 M3 1.46
cc 190.44 402.85 203.87 0.063 0.071 M1 .12
cht 735.31 1066.45 T77.480 0.127 0.057 M3 3.39
cml50a 257.87 324.84 264.81 0.104 0.027 M3 0.21
cml162a 157.88 228.34 173.2 0.217 0.097 M1 0.04
cmlB3a 151.72 213.44 165.62 0.225 0.092 M1 .05
cmb 119.87 203.63 130.61 0.128 0.090 M1 0.03
comp 523.47 691.71 563.31 0.237 0.076 M3 1.63
count 483.50 624.68 488.97 0.039 0.011 M3 .81
cu 159.71 276.39 184.16 0.210 0.153 M3 0.14
example2 10679.71 1396.58 908.44 -0.256 -0.075 M3 9.49
frgl 362.57 499.46 377.66 0.110 0.042 M3 0.6
il 124.17 234.66 127.47 0.030 0.027 M1 .05
i3 705.68 823.34 672.36 -0.283 -0.047 M1 2.94
i4 624.79 951.79 539.9 -0.260 -0.136 M3 4.29
i5 16906.40 1417.71 909.120 -0.554 -G.166 M2 9.44
lal 357.52 B87.27 389.02 0.096 0.088 M3 .94
mux 287.66 400.43 304.31 0.148 0.058 M1 0.22
parity 213.38 271.10 221.56 0.142 0.038 M2 .08
pcle 219.48 316.58 229.22 0.100 0.044 M1 0.07
pcler8 307.10 397.61 31G.9 0.042 0.012 M3 .18
pml 92.63 285.76 95.66 0.016 0.033 M3 0.07
rot 2294.48 2658.33 2321.8 0.075 0.012 M3 63.35
tcon 139.77 190.54 139.77 0.000 0.000 M1 0.04
ttt2 857.95 1222.36 919.51 0.169 0.072 M2 3.43
unreg 473.89 615.77 497.68 0.168 0.050 M1 0.51
x1 1156.81 1708.28 1273.85 0.212 0.101 M1 1G6.65
x3 3219.92 4274.29 3528.949 0.293 0.096 M1 167.64
x4 1690.86 2471.53 1919.870 0.293 0.135 M3 30.27
AVG 0.0746 0.037

Table 4: Leakages for Large Circuits

5. Conclusions

We have developed a probabilistic method to perform input vec-
tor assignment for leakage minimization in a combinational circuit.
We start by computing signal probabilities throughout the circuit.
These probabilities are used to guide the selection of the next gate
to assign. The selected gate is the one with the probabilistic high-
est leakage value. Once this gate is selected, it is assigned a state,

5Although the R metric is more rigorous, our comparisons to ex-
isting approaches utilize the R,;4 metric since these approaches
utilize the R,iq4 metric.

2244

again in a manner which probabilistically minimizes its leakage.
The implications induced by such a state selection are computed.
A satisfiability solver is invoked, to validate the state selection
before our algorithm commits to this assignment. The algorithm
terminates when all inputs have been assigned or are implied.
The method is fast, flexible and provides accurate results. On
average, for small examples, our method found minimum leakage
values which were 5.3% from the minimum circuit leakage. For
larger examples, it was impractical to compute the minimum cir-
cuit leakage exactly. We computed our statistics on the basis of
running 10,000 samples of circuit leakage computation. For these
examples, our method produces MLVs with leakage within 3.7%
from the minimum. The runtimes of our method are much lower
than existing techniques which produce results of similar quality.

References
[1] “BSIM3 Homepage.” http://www-device.eecs.berkeley.edu/~bsim3/archftp.ht
[2] “The International Technology Roadmap for Semiconductors.”

http://public.itrs.net/, 2003.

J. T. Kao and A. P. Chandrakasan, “Dual-threshold voltage techniques
for low-power digital circuits,” IEEE Journal of Solid-State Circuits,
vol. 35, pp. 1009-1018, Jul 2000.

S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Ya-
mada, “l-v power supply high-speed digital circuit technology with
multithreshold-voltage CMOS,” IEEE Journal of Solid-State Clircuits,
vol. 30, pp. 847-854, Aug 1995.

N. Jayakumar and S. Khatri, “An ASIC design methodology with pre-
dictably low leakage, using leakage-immune standard cells,” in Proceed-
ings of the International Symposium on Low Power Electronics and
Design, pp. 128-133, Aug 2003.

H. Kawaguchi, K. Nose, and T. Sakurai, “A super cut-off CMOS (SC-
CMOS) scheme for 0.5-v supply voltage with picoampere stand-by cur-
rent,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1498-1501,
Oct 2000.

F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko, and C. Hu,
“Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage
VLSIL,” IEEE Transactions on Electron Devices, vol. 44, pp. 414-422,
Mar 1997.

Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “New paradigm
of predictive MOSFET and interconnect modeling for early circuit
design,” in Proc. of IEEE Custom Integrated Clircuit Conference,
pp- 201-204, Jun 2000. http://www-device.eecs.berkeley.edu/ ptm.

J. Halter and F. Najm, “A gate-level leakage power reduction method for
ultra low power cmos circuits,” in Proceedings of CICC, pp. 475478,
1997.

Z. Chen, M. Johnson, L. Wei, and W. Roy, “Estimation of standby leak-
age power in CMOS circuit considering accurate modeling of transistor
stacks,” in International Symposium on Low Power Electronics and
Design, pp. 239-244, 1998.

M. Johnson, D. Somasekhar, and K. Roy, “Models and algorithms
for bounds on leakage in CMOS circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 18,
pp. 714-725, June 1999.

F. Gao and J. Hayes, “Exact and heuristic approaches to input vec-
tor control for leakage power reduction,” in Proceedings, International
Conference on Computer-aided Design, pp. 527-532, Nov 2004.

K. Chopra and S. Vrudhula, “Implicit pseudo Boolean enumeration al-
gorithms for input vector control,” in Proceedings, Design Automation
Conference, (San Diego), pp. 767-772, June 2004.

K. Gulati, N. Jayakumar, and S. Khatri, “An Algebraic Decision Di-
agram (ADD) based technique to find leakage histograms of combi-
national designs,” in Proceedings, International Symposium on Low
Power Electronic Design (ISLPED), (San Diego, CA), August 2005.
R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi, “Algebraic decision diagrams and their appli-
cations,” Formal Methods in Systems Design, vol. 10, no. 2/3, pp. 171-
206, 1997.

R. Rao, F. Liu, J. Burns, and R. Brown, “A heuristic to determine
low leakage sleep state vectors for CMOS combinational circuits,” in
Proceedings, International Conference on Computer-aided Design,
pp. 689-692, Nov 2003.

M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems
Testing and Testable Design. Computer Science Press, 1990.

F. Aloul, S. Hassoun, K. Sakallah, and D. Blauuw, “Robust SAT-based
search algorithm for leakage power reduction,” in Proceedings, Power
and Timing Models and Simulation (PATMOS), 2002.

E. Goldberg and Y. Novikov, “BerkMin: A fast and robust SAT-solve,”
in Proceedings, Design Automation and Test in Europe (DATE) Con-
ference, pp. 142-149, 2002.

S. Naidu and E. Jacobs, “Minimizing stand-by leakage power in static
CMOS circuits,” in Proceedings, Design Automation and Test in Eu-
rope (DATE) Conference, pp. 370-376, March 2001.

(12]

(13]

(14]

(15]

[16]

(17]

(18]

Authorized licensed use limited to: Texas A M University. Downloaded on May 20, 2009 at 07:10 from IEEE Xplore. Restrictions apply.

