
An Algebraic Decision Diagram (ADD) Based Technique to
find Leakage Histograms of Combinational Designs

Kanupriya Gulati Nikhil Jayakumar Sunil P. Khatri

Department of Electrical Engineering, Texas A&M University, College Station, TX 77843

ABSTRACT
In this paper, we present an Algebraic Decision Diagram
(ADD) based approach to determine and implicitly repre-
sent the leakage value for all input vectors of a combina-
tional circuit. In its exact form, our technique can compute
the leakage value of each input vector. To broaden the appli-
cability of our technique, we present an approximate version
of our algorithm as well. The approximation is done by lim-
iting the total number of discriminant nodes in any ADD.
Previous sleep vector computation techniques can find ei-
ther the maximum or minimum sleep vector. Our technique
computes the leakages for all vectors, storing them implicitly
in an ADD structure. We experimentally demonstrate that
these approximate techniques produce results which have
reasonable errors. We also show that limiting the number
of discriminants to a value between 12 and 16 is practical,
allowing for good accuracy and lowered memory utilization.
Categories and Subject Descriptors: B.7.1 [Integrated

Circuits]: VLSI

General Terms: Algorithms

Keywords: ADD, BDD, Leakage

1. INTRODUCTION
The total magnitude of leakage currents in a design de-

pends strongly on the input vector applied. As a conse-
quence, there has been much recent interest in techniques
to find the input vector that results in the lowest leakage
for the circuit. However, with leakage power increasing as
a fraction of the total power of a design, it is no longer
sufficient to simply find the input vector that minimizes cir-
cuit leakage. It is now more important to find the leakage
for all input vectors (of course, the minimum leakage vec-
tor can also be found at the same time). When comparing
candidate implementations of a design with the same min-
imum leakage values, we should prefer the design that has
a leakage histogram with the largest number of input vec-
tors contributing lower leakage values. This would not only

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA
Copyright 2005 ACM 1-59593-137-6/05/0008 ...$5.00.

minimize the leakage during the regular operation of the cir-
cuit, but also ease the task of finding a vector which results
in minimum leakage. It was reported in [1] that the maxi-
mum leakage value of a design can be as high as 2.4× the
minimum value (1.6× on average), again underscoring the
importance of computing the leakage of all input vectors for
implementations and choosing one with a favorable leakage
histogram. This paper is the first to develop a technique
that performs this function. We compute the leakage of the
design for all input vectors by using an Algebraic Decision
Diagram (ADD) [2, 3] based technique, allowing us to rep-
resent the leakage of a design implicitly and compactly.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses some previous work in this area. In Section 3
we describe our ADD based method to compute the leak-
age of an arbitrary mapped design. In Section 4 we present
experimental results, while conclusions and future work are
discussed in Section 5.

2. PREVIOUS WORK
The problem of finding the minimum leakage sleep vector

for a combinational CMOS gate-level circuit has received
some attention recently. In [4], the authors reported a ge-
netic algorithm based approach to solve this problem. The
authors of [5] introduce a concept called leakage observabil-
ity, and based on this idea, describe a greedy approach to
finding the optimal sleep vector. In [6], the authors present
a greedy search based heuristic, guided by node controllabil-
ities and functional dependencies. The work of [1] is based
on an ILP formulation. It makes use of pseudo-Boolean
functions which are incorporated into an optimal ILP model
and a heuristic mixed integer linear programming method
as well.

In [7], the authors use ADDSs to find the leakage of a
channel-connected region (CCR) as a function of its inputs.
The focus in [7] was on full-custom circuitry and the authors
used their technique to find functional failures in CCRs due
to excessive leakage (input vectors that caused leakage to go
above a certain value). Exclusivity constraints were added
to constrain the ADD of a CCR to legal input vectors.

In our approach, we use Algebraic Decision Diagrams
(ADDs) [2, 3] to implicitly represent the leakage of a standard-
cell based design for all input vectors in a single structure.
We use pre-characterized data (leakage values) from the
standard-cell library to construct this leakage ADD. The
inherent sharing of nodes in such a structure allows us to
represent the leakage of the design compactly. In order to
improve the efficiency of the leakage ADD construction, we

111

also bin the values of the leaf nodes to reduce the number
of leaf nodes of the ADD. This reduces the number of dis-
criminants1 (as well as the number of nodes) in the leakage
ADD of the design.

3. OUR APPROACH
Our approach, based on an ADD [2, 3] computation, is

able to compute the leakage for all possible input vectors in
the design. This is useful in several contexts, such as

• It allows us to compute the average, minimum and max-
imum leakage for the design in an accurate manner.

• It allows us to construct the histogram of leakage values
for a design. This can be of use when comparing two
or more candidate implementations (with similar maxi-
mum leakage values) of a single circuit. The design with
a leakage histogram that is skewed toward the lower leak-
age values would be preferred, since it would reduce power
under operating situations. For example, during opera-
tion, the circuit may switch between repeatedly between
a set of vectors. In this case, the implementation which
has a leakage histogram skewed as mentioned above would
be preferred. Figure 1 illustrates this idea. The leakage
histograms of two designs (with similar maximum leakage
values) is shown. The histogram to the right is preferred,
since it has a large number of vectors with low leakage
values.

Leakage Leakage

#vec #vec

Lmin Lmin LmaxLmax

Figure 1: Leakage Histograms for two Implementa-

tions of a Design

3.1 Exact Computation of Leakages of all Vec-
tors

Consider a combinational logic network η, consisting of
logic gates Hj selected from some library P . We refer to
the ROBDD of Hj as hj , and the leakage ADD of Hj as Hj .
This ADD represents the leakage value of each minterm m of
Hj obtained by following the path (from the root) indicated
by the literals of m, until a terminal vertex is reached. The
value of this vertex is the leakage of Hj under the input m.

We assume that for each gate Hj , we have an array called
(lkg array(Hj)) describing its leakage values for all possible
values of its immediate fanins. For example, the if Hj was a
2-input gate, then its leakage array would consist of 4 values,
corresponding to all 4 possible input combinations for the
gate. Let us assume that the 2 fanins are called F and G. We
assume for ease of the exposition that we have these sorted
in numerical order, so that the leakage value of the input
combination 00 appears first, followed by that of the input

1The number of discriminants of an ADD is the number of
unique leaves of the ADD

values 01, and so on. Suppose that under some minterm m,
the ROBDDs f and g evaluate to fval and gval respectively.
The corresponding leakage value for the gate Hj is found
by indexing the (fval : gval)

th value of lkg array(Hj). For
example, if fval = 1 and gval = 0, then we index the second
value of lkg array(Hj) to obtain the appropriate leakage
value.

Our algorithm first finds the ROBDDs of all network nodes.
Next, we find the (global) leakage ADDs of each of the
nodes in the network using Algorithm 1. Suppose we want
to compute the leakage ADD of H. Assume that it has
2 fanins F and G. The leakage ADD of H is found by
the subroutine node compute lkg ADD(f, g, lkg array(H).
In this routine, if the ROBDDs f and g are constant (fval

and gval respectively), then the leakage value for this condi-
tion is simply found by indexing the (fval : gval)

th value of
lkg array(H) and returning an ADD node of this value. If
either of f or g are non-constant, then we find the top vari-
able among these ROBDDs, and recursively compute Hv

and Hv and return H = ITE(v,Hv,Hv).

Algorithm 1 The node compute lkg ADD Algorithm

node compute lkg ADD(f, g, lkg array(H)
// terminal case below
if fval = is constant(f) && gval = is constant(f) then

H = create ADD node(fval : gval)
return H

end if

v = topvar(f, g)
fv = cofactor(f, v)
fv = cofactor(f, v)
gv = cofactor(g, v)
gv = cofactor(g, v)
Hv = node compute lkg ADD(fv , gv, lkg array(H))
Hv = node compute lkg ADD(fv , gv, lkg array(H))
H = ITE(v,Hv ,Hv)
return H

Note that the Algorithm 1 is applicable for gates Hj with
two inputs. Our technology library consisted of at most 4-
input gates. As a result, we require two additional routines
similar to Algorithm 1, for 3 and 4 input gates.

Note that leakage ADDs of the mapped gates of the net-
work need not be computed in any particular order. After
the leakage ADDs of each gate have been computed, we find
the leakage ADD of the entire circuit (we refer to this as
Htotal), by adding each gate’s leakage ADD. The routine to
add two ADDs is shown in Algorithm 2. If the circuit has
n gates, then this operation requires n − 1 addition opera-
tions, since we perform the addition of ADDs in a pair-wise
manner.

Algorithm 2 first tests if the ADDs F and G to be added
are both constants. If this is the case (call the constants Fval

and Gval) it creates and returns an ADD node with value
Fval + Gval. If at least one of F or G are non-constant, then
we find the top variable v among them. We recursively com-
pute Hv = add ADD(Fv ,Gv) and Hv = add ADD(Fv ,Gv),
and return H = ITE(v,Hv,Hv).

Once we have computed Htotal, the sum of all the leak-
age ADDs of the gates in the design, we can find the mini-
mum valued leaf Lmin (which is the minimum discriminant
of Htotal) of the final ADD. This discriminant corresponds
to the lowest leakage state of the design. We find a pri-

112

Algorithm 2 The add ADD Algorithm

add ADD(F , G)
// terminal case below
if fval = is constant(F) && gval = is constant(G) then

H = create ADD node(Fval + Gval)
return H

end if

v = topvar(F ,G)
Fv = cofactor(F , v)
Fv = cofactor(F , v)
Gv = cofactor(G, v)
Gv = cofactor(G, v)
Hv = add ADD(Fv,Gv)
Hv = add ADD(Fv,Gv)
H = ITE(v,Hv,Hv)
return H

mary input vector that results in this leakage value by using
Algorithm 3. A similar exercise can be conducted for any
discriminant, allowing us to build a leakage histogram.

Algorithm 3 Finding an Input Vector with Minimum Leak-
age Lmin

find a minterm with min leakage(Htotal)
Hthresholded = ADD threshold(Htotal, Lmin + δ)
hthresholded = ADD to BDD(Hthresholded)
return BDD find minterm(hthresholded)

Thresholding an ADD consists of the task of converting it
into an ADD with fewer discriminants. ADD threshold(H, val)
makes all discriminants with values greater than or equal to
val point to the 0 discriminant. All discriminants with val-
ues less than val are retained in the result.

Algorithm 3 first thresholds Htotal with the value Lmin+δ.
The value δ is such that there is no leakage value for the de-
sign in the closed interval [Lmin, Lmin + δ]. In other words,
there is no discriminant in the leakage ADD Htotal in the
above closed interval. Therefore the resulting leakage ADD
after thresholding (Hthresholded) consists of exactly two dis-
criminants (Lmin and 0). Next, Hthresholded is converted
into a BDD, by replacing the Lmin discriminant by the 1
discriminant. We now find a path to the 1 terminal node in
this BDD, by using the well known linear-time BDD algo-
rithm to find a single minterm.

In a similar manner, we can find the BDD for any specific
leakage value (i.e. any specific discriminant of the leakage
ADD). For a general leakage value L other than the max-
imum or minimum, we need to do the thresholding with
threshold values L + δ as well as L− δ, where δ is such that
there is no other discriminant of the leakage ADD in the
interval [L+δ, L−δ]. From the resulting BDD of the result,
we can use standard linear-time BDD algorithms to find the
number of minterms for the discriminant of value L. From
this, we compute the leakage histogram for the circuit.

We utilized the CUDD [8] package for all the ADD oper-
ations in this paper. This package has routines to perform
the operations described in the algorithms described in this
paper.

3.2 Approximate Computation of Leakages of
all Vectors

In an exact ADD representation of circuit leakage, the
number of discriminants can be quite large. As a conse-
quence, it is important to compute the circuit leakage ADDs
in an approximate manner. This enables us to reduce the
memory consumption and allows us to handle larger designs.

3.2.1 Binning of Leakage ADD values
Since our library consists of gates with up to 4 inputs, the

maximum number of discriminants for the leakage ADDs of
any gate is limited to 16. However, when we perform the
add ADD operation on two ADDs with D1 and D2 discrim-
inants, the resulting ADD after addition may have as many
as D1 · D2 discriminants. To control the size of the result-
ing ADD after addition, we perform a discretization of the
discriminants of the result. The discretization is driven by
a user-specified constraint k.

Consider the addition of two ADDs F and G, using the
add ADD routine. Let the minimum and maximum dis-
criminant values of F (G) be LF

min and LF
max (LG

min and
LG

max) respectively. As a consequence, the minimum and
maximum discriminant values of the result will be (LF

min +
LG

min) and (LF
max+LG

max) respectively. Let us refer to the in-
terval between these two values as R. Now, we discretize the
interval into k values (LF

min + LG
min), (LF

min + LG
min + R

k−1
),

(LF
min + LG

min + 2R

k−1
), (LF

min + LG
min + 3R

k−1)
, · · · , (LF

min +

LG
min + (k−2)R

k−1
), (LF

max + LG
max).

Now, during the terminal case computation of Algorithm
2, we compute v = Fval + Gval and adjust its value to the
nearest of the k discretized discriminant values described in
the previous paragraph. Let us say that the adjusted value
is vadj . Then, the value returned by Algorithm 2 in the
terminal case is vadj .

This limits the total number of discriminants in the result
of add ADD to k, instead of D1·D2, resulting in significantly
reduced memory utilization in general. Also, the maximum
error introduced by a single step of this addition is 1

2(k−1)
,

allowing the user to trade off the memory utilization and
maximum error.

4. EXPERIMENTAL RESULTS
We applied our technique on a series of MCNC91 bench-

mark designs, using a 0.1µm technology library with 13
gates, with between 1 and 4 inputs. After running technol-
ogy independent logic optimizations (script rugged in SIS [9]),
we mapped these designs for area and delay (again in SIS).

Our leakage computation technique was written in SIS,
and implemented using the CUDD [8] package. When we
applied our approximate technique with discretized discrim-
inants, we were able to compute leakage ADDs for larger
designs.

Table 1 describes the maximum and minimum leakages
(in pA) of four designs, as a function of the value of k (the
number of discretized discriminants we use during ADD con-
struction). Each design was mapped for minimum area as
well as minimum delay. The row labeled ”exact” represents
the leakages with no discretization of leakage values (effec-
tively k = ∞). Note that a good choice of the values of k is
between 12 and 16 for most cases.

We also computed leakage ADDs and computed the asso-
ciated leakage histograms for some designs. Figure 2 shows

113

9symml cc decod alu2
Del Area Del Area Del Area Del Area

min max min max min max min max min max min max min max min max

exact 622.9 734.6 474.1 611.8 193.2 272.5 127.2 227 187.8 238.6 30.6 79.9 1241.9 1382.9 872.8 1060.7
20 bins 540.8 772.3 429.1 633.2 209.6 267.8 131.5 221.1 200.8 239.1 31 83 905.5 1771.4 645.1 1348.5
16 bins 396.7 955.8 402.9 600.8 197.2 261.5 122 209.8 208 241.9 27.6 90.8 700.5 2005.2 576 1563.3
12 bins 285 1064.5 284 821.6 197.5 270.4 117.3 253.5 212.6 235.5 23.6 74.9 536.7 2193.2 484.8 1753.4
8 bins 212.4 1206.6 199.3 964.4 91 360.1 76.4 278 89.3 314.5 33 92.3 511.9 2251.2 382 1856.5
4 bins 212.4 1206.6 199.3 964.4 91 360.1 76.4 278 89.3 314.5 33 92.3 511.9 2251.2 382 1856.5

Table 1: Accuracy versus Bin Size

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18 20

N
um

be
r o

f m
in

te
rm

s

Leakage bin

9symml area mapped

(a) 9symml-a

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 6 8 10 12 14 16 18 20

N
um

be
r o

f m
in

te
rm

s

Leakage bin

9symml delay mapped

(b) 9symml-d

Figure 2: Leakage Histograms for Delay and Area Mapped Circuits

the histogram for one of the circuits. For this experiment,
we used k=20. We found that area-mapped designs were
typically ”better”, with a larger number of minterms having
smaller leakage values.

5. CONCLUSION
In recent times, heuristic as well as exact approaches have

been developed to compute the input vector which mini-
mizes the leakage of a circuit. In this paper, we describe
an approach to compute an ADD based implicit approach
to find the leakage of all vectors in a circuit. The knowl-
edge of the leakage of a circuit over all vectors can be used
in several ways, one of which is to select between compet-
ing implementations of a circuit. Our approach computes
the leakage ADDs of each circuit node, and then adds these
ADDs to compute the leakage ADD of the circuit in terms
of its primary inputs. We also implement an approximate
version of this algorithm, which discretizes the number of
discriminants of an ADD to a user-specified limit k. We
experimentally demonstrate that these approximate tech-
niques produce results which have reasonable errors. We
also show that limiting the number of discriminant nodes
to a value between 12 and 16 is practical, allowing for good
accuracy and lowered memory utilization.

6. REFERENCES
[1] F. Gao and J. Hayes, “Exact and heuristic approaches to input

vector control for leakage power reduction,” in Proceedings,

International Conference on Computer-aided Design,
pp. 527–532, Nov 2004.

[2] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel,
E. Macii, A. Pardo, and F. Somenzi, “Algebraic decision
diagrams and their applications,” Formal Methods in Systems
Design, vol. 10, no. 2/3, pp. 171–206, 1997.

[3] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral transforms for large boolean functions with
applications to technology mapping,” in Proceedings of the 30th
international conference on Design automation, pp. 54–60,
ACM Press, 1993.

[4] Z. Chen, M. Johnson, L. Wei, and W. Roy, “Estimation of
standby leakage power in CMOS circuit considering accurate
modeling of transistor stacks,” in International Symposium on

Low Power Electronics and Design, pp. 239–244, 1998.

[5] M. Johnson, D. Somasekhar, and K. Roy, “Models and
algorithms for bounds on leakage in CMOS circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 18, pp. 714–725, June 1999.

[6] R. Rao, F. Liu, J. Burns, and R. Brown, “A heuristic to
determine low leakage sleep state vectors for CMOS
combinational circuits,” in Proceedings, International

Conference on Computer-aided Design, pp. 689–692, Nov 2003.

[7] H. Y. Song, S. Bohidar, R. I. Bahar, and J. Grodstein,
“Symbolic failure analysis of custom circuits due to excessive
leakage current,” in Proc. of the Intl. Conf. on Computer

Design, pp. 70–75, 2003.

[8] “CUDD: CU decision diagram package.”
http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.html.

[9] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli, “SIS: A System for Sequential Circuit
Synthesis,” Tech. Rep. UCB/ERL M92/41, Electronics Research
Laboratory, Univ. of California, Berkeley, CA 94720, May 1992.

114

