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Abstract—In this paper, we explore the implementation of Monte Carlo
based statistical static timing analysis (SSTA) on a Graphics Processing
Unit (GPU). SSTA via Monte Carlo simulations is a computationally
expensive, but important step required to achieve design timing closure.
It provides an accurate estimate of delay variations and their impact
on design yield. The large number of threads that can be computed in
parallel on a GPU suggests a natural fit for the problem of Monte Carlo
based SSTA to the GPU platform. Our implementation performs multiple
delay simulations at a single gate in parallel. A parallel implementation
of the Mersenne Twister pseudo-random number generator on the GPU,
followed by Box-Muller transformations (also implemented on the GPU)
is used for generating gate delay numbers from a normal distribution.
The μ and σ of the pin-to-output delay distributions for all inputs and
for every gate, are obtained using a memory lookup, which benefits from
the large memory bandwidth of the GPU. Threads which execute in
parallel have no data/control dependencies on each other. All threads
compute identical instructions, but on different data, as required by the
Single Instruction Multiple Data (SIMD) programming semantics of the
GPU. Our approach is implemented on a NVIDIA GeForce GTX 8800
GPU card. Our results indicate that our approach can obtain an average
speedup of about 260× as compared to a serial CPU implementation.
With the recently announced quad 8800 GPU cards, we estimate that
our approach would attain a speedup of over 785×. The correctness of
the Monte Carlo based SSTA implemented on a GPU has been verified
by comparing its results with a CPU based implementation.

I. INTRODUCTION

The impact of process variations is becoming increasingly signif-

icant with the rapidly diminishing minimum feature sizes of VLSI

fabrication processes. In particular, the resulting increase of delay

variations has strongly affected timing yields and maximum operating

frequencies of designs. Processing variations can be random or

systematic. Random variations are independent of the locations of

transistors within a chip. An example is the variation of dopant

impurity densities in the transistor diffusion regions. Systematic

variations are dependent on locations, for example exposure pattern

variations and silicon-surface flatness variations.

Static timing analysis (STA) is used in a conventional VLSI design

flow to estimate circuit delay and the maximum operating frequency

of the design. In order to deal with variations and to move beyond the

limitations of the deterministic nature of traditional STA techniques,

statistical STA (SSTA) was developed. The main idea of SSTA is
to include the effect of variations in order to analyze circuit delay

more accurately. Monte Carlo based SSTA is a simple and accurate

method of performing SSTA. This method generates N samples of
the gate delay random variables and executes static timing analysis

runs for each sample. Finally, the results are aggregated to produce

the full circuit delay distribution. Such a method is compatible with

the process variation data from the fab line, which is essentially

in the form of samples of the process random variables. Further,

the most attractive property of Monte Carlo based SSTA is the

level of accuracy obtained. However, its main drawback is the high

runtime cost. By exploiting the parallelism in the Monte Carlo

approach for SSTA, and exploring its implementation on a graphics

processing unit, we show a 260× speed up in the runtime, with no

loss of accuracy. Our speedup numbers include the time incurred in

transferring data to and from the GPU.

The application of GPUs for general purpose computations has

been actively explored in recent times [1], [2], [3], [4]. The rapid

increase in the number and diversity of scientific communities ex-

ploring the computational power of GPUs for their data intensive

algorithms has arguably had a contribution in encouraging GPU

manufacturers to design GPUs that are easily programmable for

general purpose applications. Additionally, the development of open-

source programming tools and languages for interfacing with the GPU

platforms, along with the continuous evolution of the computational

power of GPUs has further fueled the growth of general purpose

GPU (GPGPU) applications. The peak performance of GPUs has

grown from 50 Gflops for the NV40 GPU in 2004 to more than

500 Gflops for G80 GPU (which is used in the GeForce 8800 GTX

graphic card) in 2007 [5]. Memory bandwidths of the GPU have

grown from 42 GB/s for the ATI Radeon X1800XT to 86.4 GB/s

for the NVIDIA GeForce 8800 GTX GPU. The fully pipelined and

highly parallel architecture of the GPU, along with its extremely high

memory bandwidths, is responsible for its high peak computation

power. However, the performance of a high-end microprocessor today,

like the 3 GHz Pentium4 CPU, is ∼12 Gflops, and it has a memory
bandwidth of 6 GB/s to main memory.

An application which has several instructions that can be issued

in parallel, and independent of each other, is a natural match for the

GPU’s capabilities. Monte Carlo based SSTA fits this requirement

well, since the generation of samples, and the corresponding static

timing analysis for a single gate computation can be executed in

parallel, with no data-dependency. We refer to this as sample paral-
lelism. Further, gates at the same logic level can execute Monte Carlo
based SSTA in parallel. We call this data parallelism, again with zero
data-dependency. Employing sample-parallelism and data-parallelism

simultaneously allows us to maximally exploit the high memory

bandwidths of the GPU, as well as the presence of several processing

elements on the GPU. In order to generate the random samples, the

Mersenne Twister [6] pseudo-random number generator is employed.
This pseudo-random number generator can be implemented in a

SIMD fashion on the GPU, and thus proves to be extremely suitable

for our Monte Carlo based SSTA engine. The μ and σ for pin-to-
output falling and rising delay distribution for every input of every

gate are stored in a lookup table (LUT) in the GPU device memory.

The large memory bandwidth allows us to perform lookups extremely

fast. The SIMD computing paradigm of the GPU is thus maximally

exploited by our Monte Carlo based SSTA implementation.

In this paper we have only considered uncorrelated random vari-

ables while implementing SSTA. Our current approach can be easily

extended to incorporate spatial correlations between the random

variables, by using principal component analysis (PCA) to transform

the original space into a space of uncorrelated principal components.

PCA is heavily used in multivariate statistics. In this technique,

the rotation of axes of a multidimensional space is performed such
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that the variations, projected on the new set of axes, behave in an

uncorrelated fashion. The computational techniques for performing

PCA are implementable in a parallel (SIMD) paradigm, as shown

in [7], [8].

Although our current implementation does not incorporate the

effect of input slew and output loading effects while computing the

delay and slew at the output of a gate, these effects can be easily

incorporated. Instead of storing just a pair of μ and σ values for each
pin-to-output delay distribution for every input of every gate, we can

store K ·P pairs of μ and σ values for pin-to-output delay distributions
for every input of every gate. Here K is the number of discretizations
of the output load and P is the number of discretizations of the input
slew values.

To the best of the authors’ knowledge, this is the first paper which

accelerates Monte Carlo based SSTA on a GPU platform. The key

contributions of this paper are:

• We exploit the natural match between Monte Carlo based
SSTA and the capabilities of a GPU, a SIMD-based device,
and harness the tremendous computational power and memory

bandwidth of GPUs to accelerate the same.

• The implementation satisfies all the key requirements which

ensure maximal speedup on a GPU

– Different threads which generate normally distributed sam-
ples and perform STA computations are implemented so

that there are no data dependencies between threads.

– All gate evaluation threads compute identical instructions
but on different data, which exploits the SIMD architecture

of the GPU.

– The μ and σ for any pin-to-output delay of any gate,
required for a single STA computation, are obtained using a

memory lookup, which exploits the extremely large memory

bandwidth of GPUs.

• Our Monte Carlo based SSTA engine is implemented in a

manner which is aware of the specific constraints of the GPU

platform, such as the use of texture memory for table lookup,

memory coalescing, use of shared memory, use of a SIMD

algorithm for generating random samples etc., thus maximizing

the speedup obtained.

• Our implementation can obtain about 260× speedup compared
to a CPU based implementation. This includes the time required

to transfer data to and from the GPU.

• Further, even though our current implementation has been bench-

marked on a single NVIDIA GeForce GTX 8800 graphics card,

the NVIDIA SLI technology [9] supports up to four NVIDIA

GeForce GTX 8800 graphic cards on the same motherboard. We

show that our performance gains scale with the number of GPU

cards, and hence Monte Carlo based SSTA can be performed

about 785× faster on a quad GPU system than a conventional
CPU based implementation.

Our Monte Carlo based timing analysis is implemented in the

Compute Unified Device Architecture (CUDA) framework [10], [11],

which is an open-source programming and interfacing tool provided

by NVIDIA, for programming NVIDIA GPU devices. The GPU

device used for our implementation and benchmarking is the NVIDIA

GeForce 8800 GTX. The correctness of our GPU based timing

analyzer has been verified by comparing its results against a CPU

based implementation of Monte Carlo based SSTA.

The remainder of this paper is organized as follows. Some previous

work in SSTA has been described in Section II. Section III details

the architecture of the GPU device and the programming tool CUDA.

Section IV details our approach for implementing Monte Carlo based

SSTA on GPUs. In Section V we present results from experiments

which were conducted in order to benchmark our approach. We

conclude in Section VI.

II. PREVIOUSWORK

The approach of [12], [13] are some of the early works in SSTA.

In recent times, the interest in this field has grown rapidly. This is

primarily due to the fact that process variations are growing larger

and less systematic with shrinking feature sizes.

SSTA algorithms can be broadly categorized into block-based
and path-based. In block-based algorithms, delay distributions are
propagated by traversing the circuit under consideration in a levelized

breadth-first manner. The fundamental operations in a block based

SSTA tool are the SUM and the MAX operations of the μ and
σ values of the distributions. Therefore, block based algorithms
rely on efficient ways to implement these operations, rather than

using discrete delay values. In path-based algorithms, a set of paths

is selected for a detailed statistical analysis. While block-based

algorithms [14], [15] tend to be fast, it is difficult to compute an

accurate solution of the statistical MAX operation when dealing with

correlated random variables or reconvergent fanouts. In such cases,

only an approximation is computed, using the upper-bound or lower-

bound of the probability distribution function (PDF) calculation, or

by using the moment matching technique [16]. The advantage of

path-based methods is that they accurately calculate the delay PDF

of each path since they do not rely on statistical MAX operations,

and can account for correlations between paths easily.

Similar to path-based SSTA approaches, our method does not need

to perform statistical MAX and SUM operations. Our method is based

on propagating the frontier of circuit delay values, obtained from the

μ and σ values of the pin-to-output delay distributions for the gates
in the design. Unlike path-based approaches, we do not need to select

a set of paths to be analyzed.

The authors of [17] present a technique to propagate PDFs through

a circuit in the same manner as arrival times of signals are propagated

during STA. Principal component analysis enables them to handle

spatial correlations of the process parameters. While the SUM of 2

Gaussian distributions yields another Gaussian distribution, the MAX

of 2 or more Gaussian distributions is not a Gaussian distribution

in general. As a simplification, and ease of calculation, the authors

of [17], approximate the MAX of 2 or more Gaussian distributions

to be Gaussian as well.

A canonical first-order delay model is proposed and an incremental

block based timing analyzer is used to propagate arrival times and

required times through a timing graph in the approach presented

in [18]. In [19], [20], [21], the authors note that accurate SSTA

can become exponential. Hence, they propose faster algorithms that

compute only the bounds on the exact result.

In [22], a block based SSTA algorithm is discussed. By repre-

senting the arrival times as cumulative distribution functions and the

gate delays as PDFs, the authors claim to have an efficient method

to do the SUM and MAX operations. The accuracy of the algorithm

can be adjusted by choosing more discretization levels. Reconvergent

fanouts are handled through a statistical subtraction of the common

mode. The authors of [23] propagate delay distributions through a

circuit. The PDFs are discretized to help make the operation more

efficient. The accuracy of the result in this case is again dependent

on the discretization. The approach of [24] automates the process of

false path removal implicitly (by using a sensitizable timing analysis

methodology [25]). The approach first finds the primary input vector
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transitions that result in the sensitizable longest delays for the circuit,

and then performs a statistical analysis on these vector transitions

alone.

In contrast to these approaches, our approach accelerates Monte-
Carlo based SSTA technique by using off-the-shelf commercial

graphic processing units (GPUs). The ubiquity and ease of program-

ming of GPU devices, along with their extremely low costs makes

GPUs an attractive choice for such an exercise. We aim at maximally

harnessing the GPU’s computational power in this paper.

In recent times, the implementation of general purpose computa-

tions on GPUs has been actively explored [1], [2], [3]. In [26], the

authors accelerate fault simulation by using GPUs. However, to the

best of our knowledge, the use of GPUs for Monte Carlo based SSTA

has not been reported to date.

III. ARCHITECTURE

We next discuss the architectural aspects of the NVIDIA GeForce

8800 GTX GPU device, which is the GPU used in our implementa-

tion. This brief discussion is provided to enable a better understanding

of our implementation of the Monte Carlo based SSTA engine on the

GPU. Additional details of the 8800 GTX can be found in [10], [11].

A. Hardware Model

The GeForce 8800 GTX architecture has a total of 128 cores, that

are distributed such that there are 16 multiprocessors per chip and

8 processors per multiprocessor. Since the GPU operates in a SIMD

fashion, all the processors (all 128 cores) execute the same instruction

during any clock cycle, but may operate on different data. We next

describe the memory organization of the 8800 device.

B. Memory Model

There are four types of on-chip memories on each multiproces-

sor [10], [11]:

• One set of local 32-bit registers per processor. The total number
of registers per multiprocessor is 8192.

• A shared memory that is shared by all the processors of a mul-
tiprocessor. The size of this shared memory per multiprocessor

is 16 KB and it is organized into 16 banks.

• A read-only constant cache that is shared by all the processors
in a multiprocessor, which speeds up reads from the constant

memory space. The amount of constant cache is 8 KB per

multiprocessor.

• A read-only texture cache that is shared by all the processors
in a multiprocessor. The size of texture cache is 8 KB per

multiprocessor.

Global memory is read/write and is not cached. The global
memory access latency for reading/writing a single floating point

value can be 400 to 600 clock cycles. A considerable amount of this

global memory access latency can be hidden if there are sufficient

arithmetic instructions that can be issued while waiting for a global

memory access to complete. Further, coalesced accesses (i.e. accesses

which are aligned) of 32-bit, 64-bit, or 128-bit quantities should be

performed, in order to increase the throughput and to maximize the

bus bandwidth utilization.

The texture cache is optimized for spatial locality. A texture cache

fetch costs one memory read from device memory on a cache miss,

otherwise it just costs a one cycle read. Device memory reads through

texture fetching (provided in CUDA for accessing texture memory)
present several benefits over reads from global or constant memory.

We next discuss the GPU programming and interfacing tool.

C. Programming Model
The CUDA (Compute Unified Device Architecture), is a new

hardware and software architecture which is used for interfacing with
the GPU device. It allows the user to issue and manage computations

on the GPU without the need of mapping them to traditional graphics

APIs [10], [11].

In CUDA, the GPU is viewed as a compute device capable of

executing a large number of threads in parallel. Threads are the
atomic units of parallel computation. The GPU device operates as

a coprocessor to the main CPU, or host. Data-parallel, compute-

intensive portions of an application running on the host can be off-

loaded onto the GPU device. Such a portion of code is compiled into

the instruction set of the GPU device and the resulting program is

called a kernel. The kernel is executed on the GPU device.
A thread block (also referred to as a block) is a batch of threads
that can cooperate efficiently. They do so by sharing data through

fast shared memory and synchronizing their execution to coordinate

memory accesses. Synchronization points can be specified in the
kernel. During execution, threads in a block are suspended until they

all reach the same synchronization point. Threads are grouped into

warps, which are further grouped in blocks. Threads have one, two
or three dimensional identity numbers or threadIDs. This helps in
accessing the data for problems which have an underlying one, two

or three dimensional geometry.

The GeForce 8800’s synchronization paradigm is efficient, but it is

local to a thread block. Threads belonging to different thread blocks
cannot synchronize. We next discuss our implementation of Monte

Carlo based SSTA on the 8800 GTX GPU.

IV. OUR APPROACH

We accelerate Monte Carlo based SSTA by implementing it on a

graphics processing unit (GPU). The following sections describe the

details of our implementation. The first section discusses the details

of implementing STA on a GPU, and the second section extends this

discussion for implementing SSTA on a GPU.

A. Static Timing Analysis (STA) at a Gate
The computation involved in a single STA evaluation at any gate

in a design is as follows. At each gate, the MAX of the SUM of the

input arrival time at pin i plus the pin-to-output rising (or falling)
delay from pin i to the output is computed. The details are explained
with the example of a NAND2 gate.

Consider a NAND2 gate. Let AT f alli denote the arrival time of a

falling signal at node i and AT risei denote the arrival time of a rising

signal at node i. Let the two inputs of the NAND2 gate be a and b,
and the output be c.
The rising time (delay) at the output c of a NAND2 gate is
calculated as shown below. A similar expression can be written to
compute the falling delay at the output c.

AT risec =MAX [(AT f alla +MAX(D11→00,D11→01)),
(AT f allb +MAX(D11→00,D11→10))]

where, MAX(D11→00,D11→01) is the pin-to-output rising delay from
the input a, while MAX(D11→00,D11→10) is the pin-to-output rising
delay from the input b.
To implement the above computation on the GPU, a look-up table

(LUT) based approach is employed. The pin-to-output rising and

falling delay from every input, for every gate is stored in a LUT.

The output arrival time of an n-input gate G is then computed by
calling the two-input MAX operation n-1 times, after n computations
of the SUM of the input arrival time plus the pin-to-output rising (or
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falling) gate delay. The pin-to-output delay for pin i is looked up in
the LUT at an address corresponding to the base address of gate G
and the offset for the transition on pin i. Since the LUT is typically
small, these lookups are usually cached. Further, this technique is

highly amenable to parallelization as will be shown in the sequel.

In our implementation of the LUT based SSTA technique on a

GPU, the LUTs (which contain the pin-to-output falling and rising

delays) for all the gates are stored in the texture memory of the GPU

device. This has the following advantages:

• Texture memory on a GPU device is cached unlike shared or

global memory. Since the truth tables for all library gates easily

fit into the available cache size, the cost of a lookup will typically

be one cycle.

• Texture memory accesses do not have coalescing constraints

as required for global memory accesses. This makes the gate

lookup efficient.

• The latency of addressing calculations is better hidden, possibly

improving performance for applications like STA that perform

random accesses to the data.

• In case of multiple look-ups performed in parallel, shared

memory accesses might lead to bank conflicts and thus impede

the potential improvement due to parallel computations.

• In the CUDA programming environment, there are built-in

texture fetching routines which are extremely efficient.

The allocation and loading of the texture memory requires non-zero

time, but is done only once for a library. This runtime cost is easily

amortized since several STA computations are done, especially in an

SSTA setting.

The GPU allows several threads to be active in parallel. Each

thread in our implementation performs STA at a single n-input
gate G by performing n lookups from the texture memory, n SUM
operations and n−1 MAX operations. The data, organized as a ’C’
structure type struct threadData, is stored in the global memory
of the device for all threads. The global memory, as discussed in

Section III, is accessible by all processors of all multiprocessors.

Each processor executes multiple threads simultaneously. This

organization thus requires multiple accesses to the global memory.

Therefore, it is important that the memory coalescing constraint

for a global memory access is satisfied. In other words, memory

accesses should be performed in sizes equal to 32-bit, 64-bit, or

128-bit values. The data structure required by a thread for STA at a

gate with 4 input is:

typedef struct align (8){
int offset; // Gate type’s offset
float a; float b; float c; float d; // input arrival times
} threadData;

The first line of the declaration defines the structure type and byte

alignment (required for coalescing accesses). The elements of this

structure are the offset in texture memory (type integer) of the gate

for which this thread will perform STA, and the input arrival times

(type float).

The pseudocode of the kernel (the code executed by each thread)

for static timing analysis is given in Algorithm 1. The arguments to

the routine static timing kernel are the pointers to the global memory
for accessing the threadData (MEM) and the pointers to the global
memory for storing the output delay value (DEL). The global memory
is indexed at a location equal to the thread’s unique threadID = tx, and
the threadData data is thus accessed. The pin-to-output rising (falling)
delay for an input x of an inverting gate is accessed by indexing

the LUT (in texture memory) at the sum of the gate’s base address

and even (odd) offset of the input x for falling (rising) transition.
Similarly, the pin-to-output rising (falling) for an input x for a non-
inverting gate, is accessed by indexing the LUT (in texture memory)

at the sum of the gate’s base address and the odd (even) offset of the

input x for rising (falling) transition.
The CUDA inbuilt single-dimension texture fetching function

tex1D(LUT, index) is next invoked to fetch the corresponding pin-
to-output delay values for every input. The fetched value is added to

the input arrival time of the corresponding input. Then, using n−1
MAX operations, the output arrival time is computed.

In our implementation, the same kernel implements gates with n =
1, 2, 3 or 4 inputs. For gates with less than 4 inputs, the extra memory

in the LUT stores zeroes. This enables us to invoke the same kernel

for any instance of a 2, 3 or 4 input inverting (non-inverting) gate.

Algorithm 1 Pseudocode of the kernel for rising output STA for
inverting gate

static timing kernel(threadData∗MEM, f loat ∗DEL){
tx = my thread id;
threadData Data=MEM[tx ];
p2pdelay a= tex1D(LUT,MEM[tx].o f fset+2×0);
p2pdelay b= tex1D(LUT,MEM[tx].o f fset+2×1);
p2pdelay c= tex1D(LUT,MEM[tx ].o f fset+2×2);
p2pdelay d = tex1D(LUT,MEM[tx].o f fset+2×3);
LAT = fmax f (MEM[tx ].a+ p2pdelay a,MEM[tx ].b+ p2pdelay b);
LAT = fmax f (LAT,MEM[tx ].c+ p2pdelay c);
DEL[tx] = fmax f (LAT,MEM[tx ].d+ p2pdelay d);
}

B. Statistical Static Timing Analysis (SSTA) at a Gate
SSTA at a gate is performed by an implementation that is similar to

the above discussed STA implementation. The additional information

required is the μ and σ of the n Gaussian distributions of the pin-to-
output delay values for the n inputs to the gate. The μ and σ used for
each Gaussian distribution are stored in LUTs (as opposed to storing

a simple nominal delay value as in the case of STA).

The pseudo-random number generator used for generating samples

from the Gaussian distribution is the Mersenne Twister pseudo-

random number generation algorithm [6]. It has many important prop-

erties like a long period, efficient use of memory, good distribution

properties and high performance.

As discussed in [27], the Mersenne Twister algorithm maps well

onto the CUDA programming model. Further, a special offline library

called dcmt (developed in [28]) is used for the dynamic creation of
the Mersenne Twisters parameters. Using dcmt prevents the creation
of correlated sequences by threads that are issued in parallel.

Uniformly distributed random number sequences, produced by the

Mersenne Twister algorithm, are then transformed into the normal

distribution N(0,1) using the Box-Muller transformation [29]. This
transformation is implemented as a separate kernel.

The pseudocode of the kernel for SSTA is given in Algorithm 2.

The arguments to the routine statistical static timing kernel are the
pointers to the global memory for accessing the threadData (MEM)
and the pointers to the global memory for storing the output delay

value (DEL). The global memory is indexed at a location equal to
the thread’s unique threadID = tx, and the threadData data is thus
accessed. The μ and σ of the pin-to-output rising (falling) delay for
an input x of an inverting gate accessed by indexing LUTμ and LUTσ

respectively, at the sum of the gate’s base address and the even (odd)

offset of the input x for falling (rising) transition.
The CUDA inbuilt single-dimension texture fetching function

tex1D(LUT, index) is invoked to fetch the μ and σ corresponding
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to the pin-to-output delay values for every input. Using the μ and σ,
along with the Mersenne Twister pseudo-random number generator

and the Box-Muller transformation, a normally distributed sample of

the pin-to-output delay for every input is generated. This generated

value is added to the input arrival time of the corresponding input.

Then, by performing n−1 MAX operations, the output arrival time
is computed.

Algorithm 2 Pseudocode of the kernel for rising output SSTA for
inverting gate

statistical static timing kernel(threadData∗MEM, f loat ∗DEL){
tx = my thread id;
threadData Data=MEM[tx ];
p2pdelay aμ = tex1D(LUTμ,MEM[tx ].o f fset+2×0);
p2pdelay aσ = tex1D(LUTσ

,MEM[tx ].o f fset+2×0);
p2pdelay bμ = tex1D(LUTμ,MEM[tx ].o f fset+2×1);
p2pdelay bσ = tex1D(LUTσ

,MEM[tx ].o f fset+2×1);
p2pdelay cμ = tex1D(LUT μ,MEM[tx ].o f fset+2×2);
p2pdelay cσ = tex1D(LUTσ

,MEM[tx ].o f fset+2×2);
p2pdelay dμ = tex1D(LUTμ,MEM[tx ].o f fset+2×3);
p2pdelay dσ = tex1D(LUTσ

,MEM[tx ].o f fset+2×3);
p2p a= p2pdelay aμ+ ka× p2pdelay aσ; // ka, kb, kc , kd
p2p b= p2pdelay bμ+ kb× p2pdelay bσ; // are obtained by Mersenne
p2p c= p2pdelay cμ+ kc× p2pdelay cσ; // Twister followed by
p2p d = p2pdelay dμ+ kd × p2pdelay dσ; // Box-Muller transformations.
LAT = fmax f (MEM[tx ].a+ p2p a,MEM[tx ].b+ p2p b);
LAT = fmax f (LAT,MEM[tx ].c+ p2p c);
DEL[tx] = fmax f (LAT,MEM[tx ].d+ p2p d);
}

In our implementation of Monte Carlo based SSTA for a circuit,

we first levelize the circuit. In other words, each gate of the netlist

is assigned a level which is one more than the maximum level of its

fanins. The primary inputs are assigned a level ’0’. We then perform

SSTA at all gates with level i, starting with i=1. Note that we do
not store (on the GPU) the output arrival times for all the gates at

any given time. We reuse the GPU’s global memory for storing the

arrival times of the current level’s gates and their immediate fanins.

We reclaim the memory used by all gates which are not inputs to

any of the gates at the current or a higher level. By doing this we

incur no loss of data since the entire approach is carried out in

a single pass and we don’t revisit any gate. Although our current

implementation simultaneously simulates all gates with level i, the
number of computations at each gate is large enough to keep the

GPU’s processors busy. Hence, we could alternatively simulate one

gate at a time on the GPU. Therefore, our implementation poses no

restrictions on the size of the circuit.

GPUs allow extreme speedups if the different threads being evalu-

ated have no data dependencies. The programming model of a GPU

is the Single Instruction Multiple Data (SIMD) model, under which

all threads must compute identical instructions, but on different data.

Also, GPUs have an extremely large memory bandwidth, allowing

multiple memory lookups to be performed in parallel.

Monte Carlo based SSTA requires multiple sample points for a

single gate being analyzed. By exploiting sample-parallelism, several

sample points can be analyzed in parallel. Similarly, SSTA at each

gate at a specific topological level in the circuit can be performed

independently of SSTA at other gates. By exploiting data parallelism,

many gates can be analyzed in parallel. This maximally exploits the

SIMD semantics of the GPU platform.

V. EXPERIMENTAL RESULTS AND COMPARISONS

In order to perform S gate evaluations for SSTA, we need to
invoke S statistical static timing kernels in parallel. The total DRAM
on an NVIDIA GeForce GTX 8800 is 768 MB. This off-chip

memory can be used as global, local and texture memory. Also

the same memory is used to store CUDA programs, context data

used by the GPU device drivers, drivers for the desktop display and

NVIDIA control panels. With our current implementation, we can

issue 16M threads in parallel. The wall clock time taken for 16M

executions of statistical static timing kernels (by issuing 16M threads
in parallel) is 0.115 seconds. A similar routine using the conventional

implementation on a 3.6 GHz CPU with 3 GB RAM, running Linux,

took 37.158 seconds for 16M calls. Thus asymptotically, the speedup

of our implementation is ∼320×. The allocation and loading of
the texture memory is a one time cost of about 0.65 ms, which

is easily amortized in our implementation. Note that the Mersenne

Twister implementation on the GTX 8800, when compared to an

implementation on the CPU (3.6 GHz CPU with 3 GB RAM), is by

itself about two orders of magnitude faster. On the GTX 8800, the

Mersenne Twister kernel generates random numbers at the rate of

2.33 ×109 numbers/second. A CPU implementation of the Mersenne
Twister algorithm, on the other hand, generates random numbers at

the rate of 2.24 ×107 numbers/second. The results obtained from the
GPU implementation were verified against the CPU results.

We ran 60 large IWLS, ITC and ISCAS benchmark designs, to

compute the per-circuit speed of our Monte Carlo based SSTA engine

implemented on a GPU. These designs were first mapped in SIS [30]

for delay optimality. The Monte Carlo analysis was performed with

64K samples. The results for 30 representative benchmark designs for

our GPU based fault simulation tool are shown in Table I. Column

1 lists the name of the circuit. Columns 2, 3 and 4 list the number

of primary inputs, primary outputs and gates in the circuit. Columns

5 and 7 list the GPU and CPU runtime, respectively. The time taken

to transfer data between the CPU and GPU was accounted for in

the GPU runtimes listed. In particular, the data transfered from the

CPU to the GPU is the arrival times at each primary input, and the μ
and σ information for all pin-to-output delays of all gates. The data
returned by the GPU are the 64K delay values at each output of the

design. The runtimes also include the time required for the Mersenne

Twister algorithm and applying Box-Muller transformations. Column

8 reports the speedup obtained by using a single GPU card.

By using the NVIDIA SLI technology with four GPU chips

on a single motherboard, we can effectively increase the avail-

able global memory by 4×. Hence we can invoke ∼64M calls
of the statistical static timing kernel in parallel. This allows for a
4× speedup in the processing time. The transfer times, however,
do not scale. Column 6 lists the runtimes obtained when using a

quad GPU system and the corresponding speedups against the CPU

implementation is reported in Column 9.

VI. CONCLUSIONS

In this paper, we have presented the implementation of Monte

Carlo based SSTA on a Graphics Processing Unit. Monte Carlo based

SSTA is computationally expensive, but crucial in design timing

closure since it enables an accurate analysis of the delay variations.

Our implementation computes multiple timing analysis evaluations

for a single gate in parallel. We used a SIMD implementation of

the Mersenne Twister pseudo-random number generator, followed by

Box-Muller transformations, implemented on the GPU, for generating

delay numbers in a normal distribution. The μ and σ of the pin-to-
output delay numbers, for all inputs and for every gate, are obtained

using a memory lookup, which exploits the large memory bandwidth

of the GPU. Threads which execute in parallel do not have data

or control dependencies on each other. All threads execute identical

instructions, but on different data. This is in accordance to the SIMD

programming semantics of the GPU. Our results, implemented on a
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Circuit # Inputs # Outputs # Gates GPU runtimes (s) CPU runtime (s) Speedup

Single GPU SLI Quad Single GPU SLI Quad

b14 276 299 9496 4.734 1.404 1303.63 275.394 × 928.408 ×
b15 1 483 518 13781 6.952 2.121 1891.884 272.116 × 892.174 ×
b17 1450 1511 41174 20.736 6.3 5652.45 272.589 × 897.283 ×
b18 3305 3293 6599 6.326 4.013 905.924 143.197 × 225.769 ×
b21 521 512 20977 10.311 2.956 2879.765 279.298 × 974.323 ×
b22 1 734 725 25253 12.519 3.665 3466.783 276.913 × 945.897 ×
s832 23 24 587 0.298 0.092 80.585 270.376 × 873.741 ×

s8381̇ 66 33 562 0.295 0.098 77.153 261.341 × 785.937 ×
s1238 32 32 857 0.432 0.132 117.651 272.248 × 893.594 ×
s1196 32 32 762 0.388 0.121 104.609 269.796 × 867.713 ×
s1423 91 79 949 0.521 0.189 130.281 249.858 × 690.5 ×
s1494 14 25 1033 0.508 0.145 141.812 279.414 × 975.729 ×
s1488 14 25 1016 0.5 0.143 139.479 279.187 × 972.973 ×
s5378 199 213 2033 1.16 0.447 279.094 240.58 × 623.999 ×

s92341̇ 247 250 3642 1.949 0.672 499.981 256.57 × 744.309 ×
s13207 700 790 5849 3.512 1.461 802.963 228.633 × 549.517 ×
s15850 611 684 6421 3.675 1.424 881.488 239.855 × 619.14 ×
s35932 1763 2048 19898 11.318 4.341 2731.638 241.349 × 629.197 ×
s38584 1464 1730 21051 11.544 4.163 2889.924 250.335 × 694.158 ×
s38417 1664 1742 18451 10.341 3.871 2532.991 244.958 × 654.326 ×
C1355 41 32 715 0.366 0.115 98.157 268.363 × 853.062 ×
C1908 33 25 902 0.446 0.13 123.828 277.46 × 952.312 ×
C2670 233 140 1411 0.797 0.303 193.705 242.906 × 639.891 ×
C3540 50 22 1755 0.842 0.227 240.93 286.1 × 1062.439 ×
C432 36 7 317 0.155 0.044 43.518 280.605 × 990.414 ×
C499 41 32 675 0.347 0.11 92.665 267 × 839.445 ×
C5315 178 123 2867 1.461 0.456 393.588 269.323 × 862.843 ×
C6288 32 32 2494 1.197 0.323 342.381 285.927 × 1060.055 ×
C7552 207 108 3835 1.899 0.555 526.477 277.214 × 949.424 ×
C880 60 26 486 0.253 0.082 66.719 263.923 × 809.761 ×
Avg 258.994 × 788.014 ×

TABLE I
MONTE CARLO BASED SSTA RESULTS

NVIDIA GeForce GTX 8800 GPU card, indicate that our approach

can provide about 260× speedup when compared to a conventional
CPU implementation. With the recently announced quad 8800 GPU

cards, our projected speedup is ∼785×.
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