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Abstract

In this paper, we describe a BDD-based hierarchical don’t care
computation algorithm. In contrast to traditional don’t care com-
putation techniques, our method retains the hierarchy in the design
netlist during the don’t care computation. Although this may re-
duce some of the flexibility inherent in the optimization process,
it allows our technique to handle large designs. Our method com-
putes don’t cares at input and output interfaces of different mod-
ules in the hierarchy by an image computation process. In case
an exact image image cannot be computed, our method computes
the largest approximate image. Once the don’t cares at the input
and output interfaces are computed, the hierarchical instances are
optimized separately using a traditional optimization flow. Exper-
imental results demonstrate that our technique can achieve a 36%
reduction in literal count for large hierarchical designs, with rea-
sonable runtimes. Our method can complete for several examples
in which flattened optimization fails.

1. Introduction

Logic synthesis typically begins by producing a flat netlist for
a circuit, collapsing hierarchy in the process. SIS [1], for exam-
ple, does not retain hierarchy in its internal data structures even
though the blif input format for SIS can represent hierarchy. Even
VIS [2], which retains the hierarchy in a network, has as its cen-
tral data structure a multi-level network constructed by flattening
hierarchy. Flattening an entire circuit may result in a representa-
tion which is too large to work with effectively, even if the original
hierarchy had been carefully partitioned to avoid such a problem.
Without such flattening, synthesis may be somewhat constrained
since some don’t care conditions are not exposed. However, in
practice, we find that this is not a major problem.

A synthesis flow which retains hierarchy during the optimization
flow can be useful in several ways.

e [t can enable existing tools to handle larger designs, increas-
ing their effectiveness.

e The retention of hierarchy can enable the designer to focus
their attention in optimizing those modules in the hierarchy
which are critical in terms of the optimization objective. If
the hierarchy was flattened, the absence of the separate in-
formation on the relative effect of the optimization on each
hierarchical module makes this hard to do.

o A design may consist of several instances of the same hierar-
chical module. In the absence of separate don’t care informa-
tion for the different instances, a designer would be forced to
optimize them as a unit, with no don’t cares at the I/O in-
terfaces. However, with hierarchical don’t care information,
available separately for each instance, the designer could op-
timize each module separately, obtaining a better optimized
design. In case there is a requirement that a single module
be used after optimization, the don’t cares at the input inter-
faces of the different instances can be intersected, resulting
in a better optimized design.

In our approach, we extract don’t care conditions from a hierar-
chical circuit while leaving that hierarchy intact. Since a recursive
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flattening is not performed, there is no need to build a represen-
tation of the entire circuit. At any given level of the circuit, don’t
care minterms are extracted for each subcircuit by performing an
image computation starting from that level’s primary inputs. This
resulting image is then utilized recursively by other levels of the
design hierarchy. Since subcircuit outputs may feed other subcir-
cuits, don’t care conditions on outputs are also computed, and can
be used by the the other subcircuits. The don’t cares are recorded
in blif files associated with each subcircuit, and used to optimize
each subcircuit separately.

Of course, if the design has been poorly partitioned, the don’t
care image computations may end up building a representation of
the majority of the circuit anyway. We assume that the design
hierarchy has been created with care, and that this situation is
therefore avoided. Also, by separating the hierarchy into separate
files, some optimality may be sacrificed. This is a consequence of
no longer being able to extract satisfiability and observability don’t
cares across hierarchical boundaries. However, we find that the loss
in optimality due to the use of hierarchical design optimization is
minimal.

The remainder of this paper is organized as follows. Section 2
describes previous work in this area, while Section 3 describes our
approach. Section 5 describes our experimental results. Finally, in
Section 6, we make concluding comments and discuss further work
that needs to be done in this area.

2. Previous Work

To the best of our knowledge, little research has been written on
this practical technique for logic optimization. The only relevant
article seems to be [3], which at this point is nearly 14 years old. In
this work, a hierarchical optimization technique was proposed, but
the effectiveness of this approach was not shown. Other research
has concentrated on optimization in the presence of subcircuits
treated as “black boxes” [4]. Our work, in contrast, exploits the
functionality of the subcircuits in the hierarchy to infer don’t cares
at the input and output interfaces of other subcircuits in the de-
sign.

Hierarchy has been exploited to compute don’t cares in very re-
strictive (mux-based) networks in [5]. In this work, the authors
extract don’t cares from the datapath portion of a design, and use
them to optimize the control portion. The circuit model in this
case is therefore also restricted. In contrast, our approach works
for arbitrary hierarchies, with arbitrary logic networks in the sub-
circuits of the hierarchy. In [6], the authors report a technique for
sequential optimization, which exploits the partitioning between
the datapath and control portions of a design.

3. Our Approach

3.1 Formulation

The core of the paper is a recursive image computation to com-
pute the don’t cares at the interfaces of blocks in the hierarchy. Let
us begin by considering the acyclic, combinatorial circuit shown in
Figure 1. It depicts a circuit A containing a child circuit B, which
in turn has a child circuit C. It is acyclic in the sense that no loop,
either sequential or combinatorial in nature, exists among subcir-
cuits. Note that if any node in the hierarchy has latches, we make
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Figure 1: Computation of Interface Don’t Cares

subcircuit primary outputs. Let A’s primary inputs be denoted
by z = 21,22, ..., Zn (note that some of these may correspond to
outputs of B). Let y = y1,¥2,...,Ym denote B’s primary inputs.
Suppose, for the moment, that the transitive fanin for y consists
solely of x. Then, each y; is given by some function fi(x). We
may capture the fact that y; never differs from fi(x) by writing
1:&fi(z). The characteristic function of B’s primary inputs can
be found by conjoining such terms over all 4,

y) = H yi®fi(x)

Let D(x) denote the external don’t care set for z, i.e., the minterms
which do not appear on the inputs of A. The minterms which
will appear can be denoted C(x) = D(z). Conjoining C(z) with
T(z,y) yields the characteristic function for y given constraints
on the values that = can assume. Finally, existentially quantifying
(smoothing out) the variables in 2 from this characteristic function
yields an expression C(y) which represents the care points on the
input interface of B.

(1)

Cly) = Img[C(@)] = 3. [([uBh@) AC@)] (@)

Equation (2) characterizes the minterms which can appear at
the input interface of subcircuit B. It is also precisely the same as
the forward image computation used in formal verification [7, 8].
Applying this formulation recursively yields the input care set, and
hence the don’t cares at the input interfaces of all subcircuits in
the hierarchy. In our example, the next step in the recursion yields
the don’t cares on the inputs of C. When the recursion reaches the
leaves of the hierarchy, a similar image computation yields the care
(don’t care) set at the output interfaces of the subcircuits in the
design. Specifically, if y denotes the leaf circuit’s inputs, w denotes
its outputs, and g;(y) the output functions, we have

N=3 [([TwBew)rcw)] @)

Here C(y) is the care set image on the input interface of the
input interface of the leaf block being operated upon.
Using a similar notation as in Equation 1, we denote

= H wiBgi (Y)

As the recursion unwinds, we combine the care sets of differ-
ent subcircuits at the same level of the hierarchy, by computing
their conjunction. We make appropriate variable substitutions to
change the support of the don’t cares from the formal variables
of a block to its actual variables (or vice versa). In this way, we
determine the care sets of the output interfaces all the way up the
hierarchy. These output care sets are necessary since some subcir-
cuit outputs feed parent subcircuits; they thus become care sets at
the input interface of parent subcircuits, for further recursion.

C(w) = Img[C(y

(4)

We extended this technique to handle sequential circuits, by
considering each latch output as another free input for the logic it
feeds, and a latch input as an output of the logic that drives it.
Alternatively, one could perform limited sequential analysis on the
latch outputs and use those results.

Finally, it should also be possible to handle circuits with loops
between subcircuits. We conjecture that a fixpoint-like computa-
tion of the care sets of the design should be able to handle the
presence of loops correctly. Our goal in this paper was to han-
dle loop-free circuits, and to break the loops induced by memory
elements.

3.2 Approximate Computation

The formulation described in Section 3.1 does not lend itself to
robust ROBDD [9, 10] based computations. The characteristic
functions T'(z,y) and T(y, w) described in Section 3.1 may have
large ROBDDs, causing the computation to fail.

To alleviate this problem, we compute approximate character-
istic functions T"(z’,y) and T"(y’, w) in our approach. Note that
there may be common variables between = and z’, and also between
y and /. Our approximate computation computes the character-
istic functions such that the size of the ROBDDs of these functions
is bounded by a value S.

Our approximate computation is schematically illustrated in Fig-
ure 2. Consider the task of computing the input interface care set
for subcircuit B. From node y; € y, we perform a reverse topo-
logical traversal until we reach outputs of latches or outputs of
subcircuits of A, or primary inputs of A. The variables found in
this manner comprise z. We then attempt to compute the char-
acteristic function T'(z,y). If any step in this computation results
in a ROBDD which has a size greater than S, we abort the com-
putation. Then, from nodes z; € z, we compute the fanouts f;.
The set of fanout nodes now comprise the set z’. We again try
to construct T'(z’,y), and if this attempt fails as well, we update
the set =’ as described above. At the end of this exercise, we ob-
tain the characteristic function of the input interface variables of
subcircuit B.

A similar approximate computation is used for the computation
of T'(y,w). These approximate computations are integrated into
the recursive computation of care points for subcircuit input and
output interfaces, described in Section 3.1.

The approximate computation of C’(y) and C’(w) based on the
use of T'(z’,y) and T'(y',w) is conservative.

LEMMA 3.1. C'(y) = 3. [T(z',y) A C(z")]
Az. [T(x,y) A C(x)]

:_) Cezact (y) -

Proor. Let C=*< (') = 3z. [T'(z,2') A C(z)]. Using C==** ()
we can compute the exact care set image (RHS) as: C°"%“(y) =
32’ [T(a',y) AN C*(2')]. However, in the expression for the
LHS, C(z') D C***¢* ('), yielding the result.

O

In a similar manner, we can prove that the computation of the
care image based on the use of T'(y’,w) is conservative.

In most cases, the variable sets  and ', as well as y and ' have
common variables, allowing the care functions found during the in-
put interface care set computation to be utilized during the output
interface care set computations, even though the computation is
approximate.

In actual designs, the presence of input don’t cares is less likely
on datapath elements such as adders and multipliers. While our
implementation correctly identifies this situation, it could be ex-
pensive to run the algorithm on such designs. It thus seems more
appropriate for random control logic. The examples we have used
to test our approach are based on datapath primitives, since it was
not possible to obtain true hierarchical random logic blif bench-
marks in the public domain. The benchmarks we did obtain were
from the VIS-2.0 benchmark suite, and had a significant datapath
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Figure 2: Approximate Computation of Interface Don’t
Cares

3.3 An Example

Consider the circuit shown in Figure 3. It consists of a top
level block P with two subcircuits 1 and @2, both instances of a
module Q.

k] M
@ X 1> X
A [>o b
24 Y 2
Q1
Q
B a x zZ
C b
D é Y
g For Block Q:
x=ab
y=ab+ ac + be
Figure 3: Example - Computation of Interface Don’t

Cares

Our computation first does a topological sort of blocks @1 and
@2. Since @2 has an output y which is an input to @1, we first
process (2. The don’t care set on the input interface of Q2 is
empty. The don’t care set on the outputs (x,y) of @2 is { 10 }.
Then we compute the don’t care set on the inputs (a, b, ¢) of the
block @1, and this gives us { 00-, 11- }. Finally, we compute the
output image of @1, and get the don’t cares at the top level of the
circuit, on the space (Qly, Qlx, Q2.y, Q2x) as (0001, 100-, -10-,
-11-).

4. Implementation

The work described in this paper was implemented in VIS [2].
Since VIS retains hierarchy information, and since it contains pack-
ages for image computation, the don’t care computations were im-
plemented as a VIS extension. SIS was then used, without mod-
ification, to optimize the resulting blif files, each with attached
external don’t cares specified.

While VIS retains hierarchy information and makes it accessible
to the programmer, many of VIS’ algorithms still concentrate on
flattened designs. In our approach, we construct non-flattened
data structures within VIS, in order to compute input and output
interface don’t cares of subcircuits within the hierarchical design.

The algorithms we used to construct the interface don’t cares are
described in Section 3. We compute the output care set (henceforth
called the outputimage) of a given level of the design based on
the output care sets of all subcircuits at that level. Of course,

input care set for each subcircuit. Since each subcircuit may itself
contain hierarchy, the procedure is recursive. It is invoked at the
current node of the design with tautology as the initial careSet.

Algorithm 1 Function ComputeDontCares(hrecNode,careSet)

Create network for hrcNode, i.e., the current level

Order children

for each child do
inputImage + Compute child’s input care set given careSet
outputprelmage <« outputprelmage A ComputeDont-
Cares(child,inputImage)

end for

outputImage «+ Compute this level’s output care set given out-

putprelmage

write out blif file

return outputImage

Network creation is accomplished via almost the same route as
in VIS. The key difference is that all recursion has been removed.
Additionally, some network restructuring is performed. All signals
which has subcircuit inputs become primary outputs of that level,
and all subcircuit outputs become primary inputs. A similar idea
is used for latches in the design. Special care is taken for signals
which do nothing but connect a subcircuit directly to its parent’s
primary inputs or outputs. In such cases, we create “buffers”, so
that some logic exists within the parent network.

The computation of input and output care sets for each child
subcircuit also takes advantage of the constructed network. The
care set or image computation is performed by calling functions
in the VIS image package. By using the image package, all of
the algorithms and flexibility constructed into VIS for image com-
putation is utilized. All constructed ntk_network_t’s utilize the
same MDD manager, which is passed down through the recursion.
This enables the results of the image computation to be utilized
meaningfully throughout the design.

It is also worth noting how the constraints of the computed
care sets are communicated to each subcircuit’s logic. When the
recursion encounters a new subcircuit, some manipulation of MDD
ID’s is performed. Each formal input of the subcircuit is given the
same MDD ID as its corresponding actual input. The connectivity
is establish like this, rather than using bdd_substitute, since the
mapping from parent signals to subcircuit inputs is highly flexible.
It is possible, after all, to instantiate a subcircuit and connect
one signal to ewery input. Output connectivity, in contrast, is
established using bdd_substitute, since there is a guaranteed one-
to-one signal correspondence in that direction. The connectivity
between formal inputs and outputs on one level and the actual
signals in the parent are made via name.

5. Experimental Results

We performed several experiments to compare our technique (hi-
erarchical, using interface don’t cares) with a flattened optimiza-
tion approach (no hierarchy used) and a hierarchical technique
using no interface don’t cares. We used benchmark designs from
the VIS-2.0 [2] distribution. Of the benchmarks in the VIS-2.0
distribution, we selected those which had hierarchy, and did not
have non-deterministic variables in any subcircuit of the design.
In general, these benchmarks had a good fraction of arithmetic
circuits in them. We expect better results with random-logic style
hierarchical benchmarks, but unfortunately it is difficult to obtain
such designs in the public domain. We also performed experiments
on randomly generated examples. Starting with flat blif files from
the MCNC benchmark suite, we generated hierarchy by instantiat-
ing the designs in different files at any level of hierarchy. Half the
instantiated files were collapsed, resulting in a hierarchical design.
This was repeated, to create deeper hierarchies. The randomly
generated examples are named with a prefix "rex”.

During hierarchical don’t care computation we set the threshold

to determine those output care sets, one must first determine th30395 to be 50,000 ROBDD nodes. Also, in case the cover of the ex-
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Ckt Hierarchical Opt. Flat Opt [
Lits before | With DC I Without DC Lits before | Lits after | Time(ms)
| Lits after | VIS Time (s) || SIS Time (s) | Lits after | SIS Time (s) | |
dp32 575 0.74 0 2 0.75 0 1177 0.74 19
dp8 143 0.71 0 0 0.75 0 222 0.88 0
gedl6 1706 0.88 8 7 0.91 1 2017 1 spaceout
ged12 1042 0.85 1 3 0.89 0 1269 1 spaceout
ged8 863 0.88 0 1 0.91 0 1009 1 timeout
ged4 439 0.86 0 1 0.91 0 505 0.67 0
Vcordic 7149 0.47 40 11 0.48 38 9624 1 spaceout
Huff 8543 0.32 112 38 0.34 107 8600 0.28 295
rexl 2046 0.635 48 2 0.743 3 2054 0.48 40
rex2 4293 0.608 4 3 0.745 2 4301 1 spaceout
rex3 1812 0.48 0 0 0.582 0 1814 0.32 2
rex4 4527 0.580 58 2 0.67 3 4545 1 spaceout
rex5 2046 0.563 39 2 0.583 3 2054 0.48 40
rex6 3908 0.570 118 2 0.67 3 4545 1 spaceout
rex7 1812 0.512 2 1 0.939 1 1814 0.32 2
AVG 2726.9 0.64 28.7 5 0.72 10.7 3036.7 0.74

Table 1: Comparison of Hierarchical and Flattened Don’t Care Computation

ternal don’t cares was too large, we limited the number of cubes
written out to the blif files to 500. For flattened SIS optimization,
the timeout value was set to 10 minutes, which is quite high com-
pared to the hierarchical runtimes. All experiments were run on a
Compaq Presario 2100, with a 2.4GHz Celeron CPU and 512MB
of RAM, running the Linux operating system.

Our optimization approach was implemented in VIS [2]. After
traversing the hierarchy of the design and computing the interface
don’t cares as described in Section 3, we wrote out the blif files
corresponding to each subcircuit. These files were then read into
SIS [1] and optimized. These results are indicated in Table 1 under
the column Hier. with DC.

We also wrote out blif files corresponding to each subcircuit, but
without any interface don’t cares. These results are indicated in
Table 1 under the column Hier. without DC.

For hierarchical optimization, the run-time reported consists of
the sum of the SIS run-times for each subcircuit in the design. In
case of the Hier. with DC method, we also include the time taken
to compute the interface don’t cares.

Finally, we performed a flattened optimization in SIS, and these
results are indicated in Table 1 under the column Flattened. Note
that for flattened SIS optimization, some examples failed due to
timeout or spaceout conditions, as indicated in Table 1. Also, the
total number of literals before optimization was larger than in the
case of hierarchical optimization, since the flattened design may
have several copies of the same subcircuit of the hierarchy.

In all cases, we assumed the design was a loop-free combinational
circuit. Sequential designs were optimized as well, but this was
done by making their latch inputs as circuit primary outputs, and
the latch outputs into circuit primary inputs.

In Table 1, the first column reports the circuit being optimized.
The second column reports the number of literals (in the factored
form) in the hierarchical design. This is computed as a sum over all
subcircuits in the hierarchy. The third column reports the literals
after optimization using our method (as a fraction of the literals
before optimization). The fourth column reports the run-time in
VIS (spent computing the interface don’t cares) while the fifth
column reports the total SIS run-time (over all sub-circuits of the
design). The sixth and seventh columns represent the literals after
optimization and the SIS run-time, in case hierarchical interface
don’t cares are not used.

The last three columns represent the literals before optimization,
literals after optimization, and run-time for SIS in a flattened op-
timization approach. Literals after optimization are represented
as a fraction of the literals before optimization.

We observe that our method achieves a better literal count re-
duction (about 36%) compared to flattened optimization. This
is because the flattened optimization method either times out or
spaces out on several large examples. Our literal count reduction
is increased by 12.5% over the the Hier. without DC method, with

a nominal increase in run-time. Additionally, we can complete th3040

optimization for some examples in which flattened optimization is
not possible due to timeout or spaceout conditions.

6. Conclusions

In this paper, we describe a BDD-based don’t care computation
algorithm, which is applicable even to large hierarchical combina-
tional designs. Our method retains the hierarchy in the design
netlist during the don’t care computation, unlike existing meth-
ods. Although this may reduce some of the flexibility inherent
in the optimization process, this reduction is minimal and so the
approach allows our technique to handle large designs.

Our method computes don’t cares at input and output interfaces
of different modules in the hierarchy by an image computation
process. In case an exact image image cannot be computed, our
method computes the largest approximate image. Once the don’t
cares at the input and output interfaces are computed, the hier-
archical instances are optimized separately using a traditional op-
timization flow. Experimental results demonstrate that our tech-
nique can achieve a 36% reduction in literal count for large hierar-
chical designs, with reasonable runtimes. Our method completes
for some examples in which flattened optimization is infeasible.
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