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Abstract flattening is not performed, there is no need to build a represen-
In this paper, we describe a BDD-based hierarchical don't care tation of the entire circuit. At any given level of the circuit, don't

computation algorithm. In contrast to traditional don't care com- care minterms are extracted for each subcircuit by performing an

putation techniques, our method retains the hierarchy in the design image computation starting from that level's primary inputs. This
netlist during the don't care computation. Although this may re- resulting image is then utilized recursively by other levels of the
duce some of the flexibility inherent in the optimization process, design hierarchy. Since subcircuit outputs may feed other subcir-
it allows our technique to handle large designs. Our method com- cuits, don't care conditions on outputs are also computed, and can

putes don't cares at input and output interfaces of different mod- be used by the the other subcircuits. The don't cares are recorded
ules in the hierarchy by an image computation process. In case in blif files associated with each subcircuit, and used to optimize
an exact image image cannot be computed, our method computes each subcircuit separately.
the largest approximate image. Once the don't cares at the input Of course, if the design has been poorly partitioned, the don't
and output interfaces are computed, the hierarchical instances are care image computations may end up building a representation of
optimized separately using a traditional optimization flow. Exper- the majority of the circuit anyway. We assume that the design
imental results demonstrate that our technique can achieve a 36% hierarchy has been created with care, and that this situation is
reduction in literal count for large hierarchical designs, with rea- therefore avoided. Also, by separating the hierarchy into separate
sonable runtimes. Our method can complete for several examples files, some optimality may be sacrificed. This is a consequence of
in which flattened optimization fails. no longer being able to extract satisfiability and observability don't

cares across hierarchical boundaries. However, we find that the loss
in optimality due to the use of hierarchical design optimization is1. Introduction minimal.

Logic synthesis typically begins by producing a flat netlist for The remainder of this paper is organized as follows. Section 2
a circuit, collapsing hierarchy in the process. SIS [1], for exam- describes previous work in this area, while Section 3 describes our
ple, does not retain hierarchy in its internal data structures even approach. Section 5 describes our experimental results. Finally, in
though the blif input format for SIS can represent hierarchy. Even Section 6, we make concluding comments and discuss further work
VIS [2], which retains the hierarchy in a network, has as its cen- that needs to be done in this area.
tral data structure a multi-level network constructed by flattening
hierarchy. Flattening an entire circuit may result in a representa- 2 Previous Work
tion which is too large to work with effectively, even if the original
hierarchy had been carefully partitioned to avoid such a problem. To the best of our knowledge, little research has been written on
Without such flattening, synthesis may be somewhat constrained this practical technique for logic optimization. The only relevant
since some don't care conditions are not exposed. However, in article seems to be [3], which at this point is nearly 14 years old. In
practice, we find that this is not a major problem. this work, a hierarchical optimization technique was proposed, but
A synthesis flow which retains hierarchy during the optimization the effectiveness of this approach was not shown. Other research

flow can be useful in several ways. has concentrated on optimization in the presence of subcircuits
treated as "black boxes" [4]. Our work, in contrast, exploits the

* It can enable existing tools to handle larger designs, increas- functionality of the subcircuits in the hierarchy to infer don't cares
ing their effectiveness. at the input and output interfaces of other subcircuits in the de-

sign.
* The retention of hierarchy can enable the designer to focus Hierarchy has been exploited to compute don't cares in very re-

their attention in optimizing those modules in the hierarchy strictive (mux-based) networks in [5]. In this work, the authors
which are critical in terms of the optimization objective. If extract don't cares from the datapath portion of a design, and use
the hierarchy was flattened, the absence of the separate in- them to optimize the control portion. The circuit model in this
formation on the relative effect of the optimization on each case is therefore also restricted. In contrast, our approach works
hierarchical module makes this hard to do. for arbitrary hierarchies, with arbitrary logic networks in the sub-

circuits of the hierarchy. In [6], the authors report a technique for
* A design may consist of several instances of the same hierar- sequential optimization, which exploits the partitioning between

chical module. In the absence of separate don't care informa- the datapath and control portions of a design.
tion for the different instances, a designer would be forced to
optimize them as a unit, with no don't cares at the I/O in- 3. Our Approach
terfaces. However, with hierarchical don't care information,
available separately for each instance, the designer could op-
timize each module separately, obtaining a better optimized 3.1 Formulation
design. In case there is a requirement that a single module The core of the paper is a recursive image computation to com-
be used after optimization, the don't cares at the input inter- pute the don't cares at the interfaces of blocks in the hierarchy. Let
faces of the different instances can be intersected, resulting us begin by considering the acyclic, combinatorial circuit shown in
in a better optimized design. Figure 1. It depicts a circuit A containing a child circuit B, which

in turn has a child circuit C. It is acyclic in the sense that no loop,
In our approach, we extract don't care conditions from a hierar- either sequential or combinatorial in nature, exists among subcir-

chical circuit while leaving that hierarchy intact. Since a recursive cuits. Note that if any node in the hierarchy has latches, we make
O-7803-9390-2/06/$20.OO ©C2006 IEEE 3037its latch outputs as subcircuit primary inputs, andl ASi2~ as
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X;;A / We extended this technique to handle sequential circuits, by
considering each latch output as another free input for the logic it
feeds, and a latch input as an output of the logic that drives it.
Alternatively, one could perform limited sequential analysis on the
latch outputs and use those results.

Finally, it should also be possible to handle circuits with loops
r----1------ ---------------------------------/ between subcircuits. We conjecture that a fixpoint-likecomputa-

tion of the care sets of the design should be able to handle the
presence of loops correctly. Our goal in this paper was to han-

B ------------,;7w dle loop-free circuits, and to break the loops induced by memory
elements.

----------------------

3.2 Approximate Computation
c The formulation described in Section 3.1 does not lend itself to

---------------------- robust ROBDD [9, 10] based computations. The characteristic
functions T(x,y) and T(y,w) described in Section 3.1 may have
large ROBDDs, causing the computation to fail.

Figure 1: Computation of Interface Don't Cares To alleviate this problem, we compute approximate character-
istic functions T'(x', y) and T'(y', w) in our approach. Note that

subcircuit primary outputs. Let A's primary inputs be denoted there may be common variables between x and x', and also between
by x = Xl, X2, .. . Xn (note that some of these may correspond to y and y'. Our approximate computation computes the character-
outputs of B). Let y = y, Y2, ... , ym denote B's primary inputs. istic functions such that the size of the ROBDDs of these functions
Suppose, for the moment, that the transitive fanin for y consists is bounded by a value S.
solely of x. Then, each yi is given by some function fi (x). We Our approximate computation is schematically illustrated in Fig-
may capture the fact that yi never differs from fi(x) by writing ure 2. Consider the task of computing the input interface care set
Yiefi(x). The characteristic function of B's primary inputs can for subcircuit B. From node yi C y, we perform a reverse topo-
be found by conjoining such terms over all i, logical traversal until we reach outputs of latches or outputs of

subcircuits of A, or primary inputs of A. The variables found in
T(x,y) =flIyjEfj(x) (1) this manner comprise x. We then attempt to compute the char-

2 acteristic function T(x, y). If any step in this computation results
Let D(x) denote the external don't care set for x, i.e., the minterms in a ROBDD which has a size greater than S, we abort the com-
which do not appear on the inputs of A. The minterms which putation. Then, from nodes xi c X, we compute the fanouts fj.
will appear can be denoted C(x) = D(x). Conjoining C(x) with The set of fanout nodes now comprise the set x'. We again try
T(x,y) yields the characteristic function for y given constraints to construct T(x', y), and if this attempt fails as well, we update
on the values that x can assume. Finally, existentially quantifying the set x' as described above. At the end of this exercise, we ob-
(smoothing out) the variables in x from this characteristic function tain the characteristic function of the input interface variables of
yields an expression C(y) which represents the care points on the subcircuit B.
input interface of B. A similar approximate computation is used for the computation

of T(y,w). These approximate computations are integrated into

C =nC =xyfx AC
the recursive computation of care points for subcircuit input and

C(y) = Img[C(x)] =±3x [ (,zylYiefi(x)) A C(x)] (2) output interfaces, described in Section 3.1.
The approximate computation of C'(y) and C'(w) based on the

Equation (2) characterizes the minterms which can appear at , ,
the input interface of subcircuit B. It is also precisely the same as use of T(x', y) and T(y', w) is conservative.
the forward image computation used in formal verification [7, 8]. LEMMA 3.1. C'(y) = axl. [T(x', y) A C(x')] exact (Y)
Applying this formulation recursively yields the input care set, and 3Sx. [T(x, y) A C(x)]
hence the don't cares at the input interfaces of all subcircuits in
the hierarchy. In our example, the next step in the recursion yields PROOF. Let Cexact(XI) = x. [T(x,x') A C(x)]. Using Cexact (XI)
the don't cares on the inputs of C. When the recursion reaches the we can compute the exact care set image (RHS) as: Cexact(y) =
leaves of the hierarchy, a similar image computation yields the care ax/. [T(x', y) A Cexact (X')]. However, in the expression for the
(don't care) set at the output interfaces of the subcircuits in the LHS, C(X) D Cexact(X') yielding the result.
design. Specifically, if y denotes the leaf circuit's inputs, w denotes
its outputs, and gi(y) the output functions, we have C

C(w) = Img[C(y)] =y. [( wiEDgi(y)) A C(y)] (3) In a similar manner, we can prove that the computation of the
care image based on the use of T(y', w) is conservative.

Here C(y) is the care set image on the input interface of the In most cases, the variable sets x and x', as well as y and y' have
input interface of the leaf block being operated upon. common variables, allowing the care functions found during the in-
Using a similar notation as in Equation 1, we denote put interface care set computation to be utilized during the output

interface care set computations, even though the computation is
T(y, w) f wiegi(y) (4) approximate.

In actual designs, the presence of input don't cares is less likely
As the recursion unwinds, we combine the care sets of differ- on datapath elements such as adders and multipliers. While our

ent subcircuits at the same level of the hierarchy, by computing implementation correctly identifies this situation, it could be ex-
their conjunction. We make appropriate variable substitutions to pensive to run the algorithm on such designs. It thus seems more
change the support of the don't cares from the formal variables appropriate for random control logic. The examples we have used
of a block to its actual variables (or vice versa). In this way, we to test our approach are based on datapath primitives, since it was
determine the care sets of the output interfaces all the way up the not possible to obtain true hierarchical random logic blif bench-
hierarchy. These output care sets are necessary since some subcir- marks in the public domain. The benchmarks we did obtain were
cuit outputs feed parent subcircuits; they thus become care sets at from the VIS-2.0 benchmark suite, and had a significant datapath
the input interface of parent subcircuits, for further recursion. 3O38component in them.
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input care set for each subcircuit. Since each subcircuit may itself
XI /contain hierarchy, the procedure is recursive. It is invoked at the

current node of the design with tautology as the initial careSet.

-=- --- /Algorithm 1 Function ComputeDontCares(hrcNode,careSet)
Create network for hrcNode, i.e., the current level
~~~Order children
for each child do
inputlmage -- Compute child's input care set given careSet
outputprelmage -- outputprelmage A ComputeDont-

Figure 2: Approximate Computation of Interface Don't Cares(child,inputlmage)
Cares end for

outputlmage <- Compute this level's output care set given out-
3.3 An Example putprelmage

Consider the circuit shown in Figure 3. It consists of a top write out blif file
level block P with two subcircuits Ql and Q2, both instances of a return outputlmage
module Q.

Network creation is accomplished via almost the same route as
in VIS. The key difference is that all recursion has been removed.
Additionally, some network restructuring is performed. All signals
which has subcircuit inputs become primary outputs of that level,
and all subcircuit outputs become primary inputs. A similar idea

a x / -X is used for latches in the design. Special care is taken for signals
A b :b y which do nothing but connect a subcircuit directly to its parent's

primary inputs or outputs. In such cases, we create "buffers", so
Q- that some logic exists within the parent network.

The computation of input and output care sets for each child
subcircuit also takes advantage of the constructed network. The
care set or image computation is performed by calling functions

B- a z in the VIS image package. By using the image package, all of
C- b the algorithms and flexibility constructed into VIS for image com-
D c putation is utilized. All constructed ntknetwork-t's utilize the

Q2 same MDD manager, which is passed down through the recursion.
For Block Q: This enables the results of the image computation to be utilized
x = ab meaningfully throughout the design.
y= ab + ac + bc It is also worth noting how the constraints of the computed

care sets are communicated to each subcircuit's logic. When the
recursion encounters a new subcircuit, some manipulation of MDD
ID's is performed. Each formal input of the subcircuit is given the

Figure 3: Example - Computation of Interface Don't same MDD ID as its corresponding actual input. The connectivity
Cares is establish like this, rather than using bdd-substitute, since the

mapping from parent signals to subcircuit inputs is highly flexible.
Our computation first does a topological sort of blocks Ql and It is possible, after all, to instantiate a subcircuit and connect

Q2. Since Q2 has an output y which is an input to Ql, we first one signal to every input. Output connectivity, in contrast, is
process Q2. The don't care set on the input interface of Q2 is established using bdd-substitute, since there is a guaranteed one-
empty. The don't care set on the outputs (x,y) of Q2 is { 10 }. to-one signal correspondence in that direction. The connectivity
Then we compute the don't care set on the inputs (a, b, c) of the between formal inputs and outputs on one level and the actual
block Q,, and this gives us { 00-, 11- }. Finally, we compute the signals in the parent are made via name.
output image of Q,, and get the don't cares at the top level of the
circuit, on the space (Ql y, QlKx, Q2 y, Q2 x) as (0001, 100-, -10-, 5. Experimental Results
-11-). We performed several experiments to compare our technique (hi-

erarchical, using interface don't cares) with a flattened optimiza-
4. Implementation tion approach (no hierarchy used) and a hierarchical technique
The work described in this paper was implemented in VIS [2]. using no interface don't cares. We used benchmark designs from

Since VIS retains hierarchy information, and since it contains pack- the VIS-2.0 [2] distribution. Of the benchmarks in the VIS-2.0
ages for image computation, the don't care computations were im- distribution, we selected those which had hierarchy, and did not
plemented as a VIS extension. SIS was then used, without mod- have non-deterministic variables in any subcircuit of the design.
ification, to optimize the resulting blif files, each with attached In general, these benchmarks had a good fraction of arithmetic
external don't cares specified. circuits in them. We expect better results with random-logic style
While VIS retains hierarchy information and makes it accessible hierarchical benchmarks, but unfortunately it is difficult to obtain

to the programmer, many of VIS' algorithms still concentrate on such designs in the public domain. We also performed experiments
flattened designs. In our approach, we construct non-flattened on randomly generated examples. Starting with flat blif files from
data structures within VIS, in order to compute input and output the MCNC benchmark suite, we generated hierarchy by instantiat-
interface don't cares of subcircuits within the hierarchical design. ing the designs in different files at any level of hierarchy. Half the
The algorithms we used to construct the interface don't cares are instantiated files were collapsed, resulting in a hierarchical design.

described in Section 3. We compute the output care set (henceforth This was repeated, to create deeper hierarchies. The randomly
called the outputImage) of a given level of the design based on generated examples are named with a prefix "rex".
the output care sets of all subcircuits at that level. Of course, During hierarchical don't care computation we set the threshold
to determine those output care sets, one must first determine th3O39S to be 50,000 ROBDD nodes. Also, in case the cover of the ex-
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Ckt Hierarchical Opt. Flat Opt
Lits before With DC Without DC Lits before Lits after Time(ms)

Lits after VIS Time (s) SIS Time (s) Lits after SIS Time (s)
dp32 575 0.74 0 2 0.75 0 1177 0.74 19
dp8 143 0.71 0 0 0.75 0 222 0.88 0
gcd16 1706 0.88 8 7 0.91 1 2017 1 spaceout
gcd12 1042 0.85 1 3 0.89 0 1269 1 spaceout
gcd8 863 0.88 0 1 0.91 0 1009 1 timeout
gcd4 439 0.86 0 1 0.91 0 505 0.67 0

Vcordic 7149 0.47 40 11 0.48 38 9624 1 spaceout
Huff 8543 0.32 112 38 0.34 107 8600 0.28 295
rexl 2046 0.635 48 2 0.743 3 2054 0.48 40
rex2 4293 0.608 4 3 0.745 2 4301 1 spaceout
rex3 1812 0.48 0 0 0.582 0 1814 0.32 2
rex4 4527 0.580 58 2 0.67 3 4545 1 spaceout
rex5 2046 0.563 39 2 0.583 3 2054 0.48 40
rex6 3908 0.570 118 2 0.67 3 4545 1 spaceout
rex7 1812 0.512 2 1 0.939 1 1814 0.32 2
AVG 2726.9 0.64 28.7 5 0.72 10.7 3036.7 0.74

Table 1: Comparison of Hierarchical and Flattened Don't Care Computation

ternal don't cares was too large, we limited the number of cubes optimization for some examples in which flattened optimization is
written out to the blif files to 500. For flattened SIS optimization, not possible due to timeout or spaceout conditions.
the timeout value was set to 10 minutes, which is quite high com-
pared to the hierarchical runtimes. All experiments were run on a 6. Conclusions
Compaq Presario 2100, with a 2.4GHz Celeron CPU and 512MB In this paper, we describe a BDD-based don't care computation
of RAM, running the Linux operating system.ouRAM,ruoptimization LnapIwa i leme i V [ Ater algorithm, which is applicable even to large hierarchical combina-
tra othhiearchyapoche desig adoem uteing the2. .inter tional designs. Our method retains the hierarchy in the designtravering*tehiearchyfthedesig and com g te ierfe netlist during the don't care computation, unlike existing meth-don't cares as described in Section 3, we wrote out the blif files ods. Although this may reduce some of the flexibility inherentcorresponding to each subcircuit. These files were then read into

r 1 . . * 1- 1 * rr1 1 1 1 ~~~inthe optimization process, this reduction is minimal and so theSIS [1] and optimized. These results are indicated in Table 1 under approach allows our technique to handle large designs.the column Hier. with DCU.Whe also w ro outb fCo Our method computes don't cares at input and output interfacesWe also wrote out blif files corresponding to each subcircuit, but ofdfentm ulsithhercybyaiagcmpain
without any interface don't cares. These results are indicated in of different modules in the hierarchy by an image computation

Tabe udeth clun ier wthutDC process. In case an exact image image cannot be computed, ourForle hIunderarhicaluoptimi n, *theut r e cmethod computes the largest approximate image. Once the don't
Forhierarchical optimizatin, th run-time reported concares at the input and output interfaces are computed, the hier-the sum of the SIS run-times for each subcircuit in the design. In archical instances are optimized separately using a traditional op-

case of the Hier. with DC method, we also include the time taken timization flow. Experimental results demonstrate that our tech-to compute the interface don't cares.
nique can achieve a 36% reduction in literal count for large hierar-Finally, we performed a flattened optimization in SIS, and these chical designs, with reasonable runtimes. Our method completesresults are indicated in Table 1 under the column Flattened. Note
for some examples in which flattened optimization is infeasible.that for flattened SIS optimization, some examples failed due to

timeout or spaceout conditions, as indicated in Table 1. Also, the
total number of literals before optimization was larger than in the References
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