
Forbidden Transition Free Crosstalk Avoidance CODEC
Design

Chunjie Duan
Mitsubishi Electric Research

Labs
201 Broadway

Cambridge, MA 02052, USA
duan@merl.com

Chengyu Zhu
Polaris Microelectronics
3000 Long Dong Avenue

Pudong, Shanghai 201203,
China

cy1zhu@yahoo.com

Sunil P. Khatri
Department of Electrical

Engineering
Texas A&M University

College Station, TX 77843
USA

sunilkhatri@tamu.edu

ABSTRACT
In this work, we present a CODEC design for the forbid-
den transition free crosstalk avoidance code. Our mapping
and coding scheme is based on the Fibonacci numeral sys-
tem and the mathematical analysis shows that all numbers
can be represented by FTF vectors in the Fibonacci numeral
system (FNS). The proposed CODEC design is highly effi-
cient, modular and can be easily combined with a bus par-
titioning technique. We also investigate the implementation
issues and our experimental results show that the proposed
CODEC complexity is orders of magnitude better compared
to the brute force implementation. Compared to the best
existing approaches, we achieve a 17% improvement in logic
complexity. A high speed design can be achieved through
pipelining.

Categories and Subject Descriptors
B.7 [Hardware]: Integrated Circuits

Keywords
crosstalk, on-chip bus, Fibonacci number, CODEC

1. INTRODUCTION AND PREVIOUS WORK
The performance of bus-based global interconnects has

become a bottleneck to the overall system performance in
Deep Sub-Micron (DSM) designs, and the trend is wors-
ening with the advance of fabrication processes. Since the
inter-wire coupling capacitance is significantly larger than
the wire-to-substrate capacitance and the intrinsic load ca-
pacitance of the driver [8], crosstalk induced delay and power
consumption have become a major determinant of the sys-
tem performance [2, 6, 3]. Reducing crosstalk can greatly
boost the system performance.

Among the many different crosstalk reduction schemes
proposed [11, 6, 7, 5, 14, 3], some focus on reducing the en-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM ACM 978-1-60558-115-6/08/0006 ...$5.00.

ergy consumption, some focus on minimizing the delay and
others address both. Different data transition patterns can
be classified based on the severity of the crosstalk they im-
pose on the bus [6, 7]. Most of the crosstalk reduction tech-
niques involve removing or lowering the probability of unde-
sired patterns, and inevitably incur area overhead from the
additional wires in the bus, additional circuitry or both. The
efficiency of a crosstalk reduction scheme should be judged
not only by the performance boost it brings about, but also
by its area overhead as well. As an example, passive shield-
ing requires a doubling of the number of wires, and hence
incurs a 100% area overhead and therefore is not deemed
efficient.

Bus encoding schemes can achieve the same amount of
bus delay improvement as passive shielding, with a much
lower area overhead [6, 7, 10, 5]. These codes are commonly
referred to as Crosstalk Avoidance Codes (CACs). CACs
can be memory-less [7, 6, 5] or memory-based [10]. Memory-
based coding approaches generate a codeword based on the
previously transmitted code and the current dataword to be
transmitted [7, 10]. Although these type of codes need fewer
additional bus wires, the CODEC complexity is generally
considered too high for these coding schemes to be used in
practice. The memory-less coding approaches, on the other
hand, use a fixed code book to generate a codeword, solely
based on the current input data. The CODECs for memory-
less codes are projected to be simpler.

Several different types of memory-less CACs have been
proposed [6, 7, 5]. All these codes offer the same degree of
delay performance improvement. The area overhead caused
by the additional wires ranges from 44% to 68%, which is
much better than passive shielding. Two of the most ef-
ficient memory-less codes are forbidden-pattern-free (FPF)
CACs [1] and forbidden-transition-free (FTF) CACs. Their
overhead performance is near identical, and both methods
approach the theoretical lower bound. The FPF is slightly
better, but by no more than one wire.

Unfortunately, efficient CODEC designs are not available
for either of these codes. Due to the non-linear nature of
these codes, researchers have struggled to find a mapping
scheme that is mathematically systematic and efficient to
implement. Attempts through brute force logic optimiza-
tion have shown that the CODEC gate count becomes pro-
hibitively large for a bus of reasonable size, since its com-
plexity grows exponentially with the bus size [5, 10].

We have recently proposed several systematic mapping

986

53.3

schemes in [1] for FPF-CACs. The proposed mapping schemes
enable highly efficient, highly structured CODEC implemen-
tations. Our analysis and experimental results show that the
CODEC complexity grows quadratically with bus width in-
stead of exponentially. We can implement an encoder for a
32 bit data bus with less than 2700 gates (2-input equiva-
lent) as opposed to over 20K gates for a 12-bit bus reported
previously [1, 5].

In this work, we focus on the CODEC design for the
FTF-CAC. We give the mathematical analysis of the map-
ping scheme and the coding algorithm based on the map-
ping scheme. We also investigate implementation issues and
compare the complexity of the CODEC with the CODECs
for FPF-CACs. The comparison shows that the FTF-CAC
CODEC is simpler and faster. Circuit complexity is reduced
by more than 17% compared to the FPF-CAC CODECs.
The proposed CODEC is also easier to use in conjunction
with bus partitioning.

The key contributions of this paper are:

• The presentation of a mathematical formula based on
the Fibonacci numeral system (FNS), which introduces
an elegant and efficient mapping between datawords
and codewords.

• CODEC design for FTF-CACs, based on the FNS frame-
works, which scales efficiently with bus size, and has
exponentially less complex circuit realization than ex-
isting brute force implementations.

The remainder of this paper is organized as follows: In
Section 2 we give the delay and power models for an on-chip
bus in the presence of crosstalk, show the relation between
crosstalk and data pattern, and discuss the properties of
FPF-CACs and FTF-CACs. Section 3 provides the math-
ematical basis for the mapping scheme and the coding al-
gorithm for FTF-CACs. In Section 4, we investigate the
circuit implementation details of the proposed CODEC and
present our experimental results. Section 5 summarizes the
paper.

2. BUS MODELS AND CROSSTALK AVOID-
ANCE

2.1 Bus Delay Model
Crosstalk in an on-chip bus has been shown to be depen-

dent on the data patterns on the bus and has a significant
impact on the signal delay as well as the overall energy con-
sumption of the bus [9, 2]. Assuming a bus with load ca-
pacitance CL and inter-wire capacitance CI , The delay τj of
the jth wire in a data bus is given as [2]

τj = k · CL · Vdd · abs(δj + λ · δj,j−1 + λ · δj,j+1) (1)

where k is a constant determined by the driver strength and
wire resistance, Vdd is the supply voltage, δj ∈ {0, 1} is the
normalized voltage change on jth line. δj,j±1 ∈ {0,±1,±2}
is the normalized relative voltage change on jth line (relative
to the j + 1th or j − 1th line). The δj term corresponds to
the intrinsic delay, while δj,j−1 and δj,j+1 correspond to the
crosstalk induced delay. λ = CI/CL and in a DSM process,
λ � 1 is satisfied. Therefore the δj term has a negligible
contribution to the delay [8].

We define the effective total capacitance of the driver of
jth line, Ceff,j as

Ceff,j = CL · abs(δj + λ · δj,j−1 + λ · δj,j+1) (2)

and rewrite Equation (1) as

τj = k · Vdd · Ceff,j (3)

Table 1 lists the values of Ceff for some transition pat-
terns. We can see that the value of Ceff varies from CL to
(1 + 4 · λ)CL. Crosstalk patterns corresponding to the dif-
ferent Ceff,j values are classified as 0C, 1C, 2C, 3C and 4C
patterns. Since the speed of the data bus is determined by
max{Ceff,j} over all the bits in the bus, we observe that by
eliminating 4C crosstalk on ALL lines in the bus, we can in-
crease the maximum speed of the bus by ∼ 33%. If 3C AND
4C crosstalk can be eliminated on all lines, we can speed up
the bus by ∼ 100%.

Class Ceff Transition patterns
0C CL 000 → 111
1C (1 + λ)CL 011 → 000
2C (1 + 2λ)CL 010 → 000
3C (1 + 3λ)CL 010 → 100
4C (1 + 4λ)CL 010 → 101

Table 1: Classes of crosstalk

2.2 Forbidden pattern free CACs
Forbidden patterns are defined as the two 3-bit patterns

“010” and “101”. A forbidden pattern free code is a set of
codewords which do not contain forbidden patterns on any
3 adjacent bus bits. For example, “100110” is FPF while
“10111” is not an FPF code. By eliminating the forbidden
patterns in the codewords, it is guaranteed that Ceff for any
bit in the bus does not exceed (1 + 2λ)CL [6] and hence the
maximum delay is reduced by 50% compared to an uncoded
bus.

The maximum cardinality of FPF codewords is 2fm+1 [6],
where fm is the mth element in the Fibonacci sequence de-
fined as

fm =




0 if m = 0,

1 if m = 1,

fm−1 + fm−2 if m ≥ 2.

(4)

The asymptotic area overhead in terms of additional wires
is calculated to be ∼ 44% for a binary bus using FPF-CACs.

2.3 Forbidden transition free CACs
The forbidden transition is defined as the simultaneous

transition, in opposite directions, on any two adjacent wires
in a bus. A code is forbidden transition free (FTF)
if transitions between codewords do not generate forbidden
transitions on any adjacent bits of the bus. This type of
code was first investigated in [7].

Similar to FPF codes, FTF codes can be generated by
eliminating certain patterns. Not to be confused with the
3-bit forbidden patterns, we refer to these patterns as pro-
hibited pattern. The prohibited pattern is either a “01” or
“10” on two adjacent bus bits.

987

The possible data patterns on two wires in a bus are “00”,
“01”, “10” and “11”. It is easy to see that the elimination of
either “01”or “10”on two adjacent bits will cause the pair to
be forbidden transition free. It has been proven in [7] that
having alternating prohibited patterns on bits d2k, d2k−1 and
d2k+1, d2k yields a set with the maximum number of code-
words (cardinality).

Conversely, by prohibiting “10” on d2kd2k−1 and “01” on
d2k+1d2k, we can produce a different set of FTF-CACs.

The maximum cardinality of FTF-CACs is fm+2, slightly
lower than the cardinality of FPF-CACs. When the bus size
is large, the area overhead of FTF-CACs over an uncoded
bus approaches 44% as well. Table 2 lists the codewords of
one set of the 2, 3,4 and 5 bit FTF-CACs.

2-bit 3-bits 4-bits 5 bit
00 000 0000 00000 10100
01 001 0001 00001 10101
11 100 0100 00100 10111

101 0101 00101 11100
111 0111 00111 11101

1100 10000 11111
1101 10001
1111

Table 2: FPF-CAC codewords for 2,3,4 and 5 bit
busses

Recently, we have showed that there exists a determinis-
tic mathematical mapping for FPF-CACs using FNS, and
proposed two different coding algorithms as well as the cor-
responding CODEC implementations [1]. In this paper, we
present the mathematical framework for FTF-CAC design
using FNS, along with an algorithm for its CODEC.

3. AN EFFICIENT FTF-CAC CODEC DE-
SIGN

Both the FTF-CACs and FPF-CACs were proposed ear-
lier and algorithms were given to generate codewords for
them [7, 6]. However, the CODEC design was not thor-
oughly addressed in the original papers. Since then, there
have been more research results published on designing CODECs
for these CACs. Most of the designs were based on bus par-
titioning techniques, which require additional wires on the
bus. More importantly, none of them addressed the funda-
mental issue of how to map datawords to codewords. This is
partially due to the fact that the CACs are non-linear codes,
and it is difficult to find a mapping using conventional math-
ematical expressions. [5] showed that a brute force look-
up-table implementation is impractical, as the CODEC size
grows exponentially with the bus size. Figure 1 (obtained
from [5]) shows this exponential growth with increasing bus
size.

The Fibonacci numeral system (FNS) was first linked to
the CACs in [4]. However, it was only used for recursive
codeword searching. In this section, we discuss the mapping
for FTF-CACs, as well as the coding algorithm.

3.1 Fibonacci-based numeral system
A numeral system is ”a framework where numbers are

represented by numerals in a consistent manner” [13]. Com-
monly used numeral systems includes decimal, binary, hex-

Figure 1: Encoder size with a brute-force implemen-
tation

adecimal. These systems differ in their basis. The Fibonacci-
based numeral system (FNS) N(Fm, {0, 1}) is the numeral
system that uses Fibonacci sequence as the base. In FNS, a
number v is represented as the summation of some Fibonacci
numbers

v =

m∑
k=1

dk · fk, (5)

where dk ∈ {0, 1} and fk is the kth Fibonacci number defined
in Equation (4).

The Fibonacci-based numeral system is complete but am-
biguous, therefore any number has at least one, but possi-
bly more than one representation in FNS. For example, a
decimal number 19 can be represented by any of the follow-
ing six 7-digit vectors in FNS: {0111101, 0111110, 1001101,
1001110, 1010001, 1010010}. For clarity, we refer to a vector
in the binary numeral system as a binary vector or binary
code and a vector in the Fibonacci numeral system as a Fi-
bonacci vector or Fibonacci code. All the Fibonacci vectors
that represent the same value are defined as equivalent vec-
tors.

We give a very important identity of the Fibonacci se-
quence here. It is used in the following discussions.

fm =

m−2∑
k=0

fk + 1 (6)

From Equation (6), we see that the range of a m-bit Fi-
bonacci vector is [0, fm+2), where the minimum value 0 cor-
responds to all the bits dk being 0 and the maximum value
corresponds to all dk being 1. Therefore a total of fm+2 dis-
tinct values can be represented by m-bit Fibonacci vectors.

3.2 Mapping Scheme

Theorem 1. ∃dmdm−1...d2d1 = v, dmdm−1...d2d1 ∈ N(Fm, {0, 1})
and dmdm−1...d2d1 is forbidden transition free, ∀v ∈ [0, fm+2−
1].

Theorem 1 states that for any number v ∈ [0, fm+2), there
exists at least one m-bit Fibonacci vector dmdm−1...d2d1 =

988

v which represents this number and satisfies the forbidden
transition free property. In other words, a number of any
value in the range of [0, fm+2) can be mapped to an m bit
FTF codeword in the FNS space.

Proof: Let us first define V00 as the set of all the k-bit
Fibonacci vectors with the two most significant bits (MSBs)
of “00”, we have V00 ∈ [0, fk) based on Equation (6). Sim-
ilarly, we define sets V01, V10 and V11. V01 ∈ [fk−1, fk+1),
V10 ∈ [fk, 2fk) and V11 ∈ [fk+1, fk+2). This is also shown in
Figure 2. We can see from Figure 2 that the ranges of these
four sets of vectors overlaps. For any vector v ∈ V01, we can
find an equivalent vector in V00 or V10. Similarly, any vector
v ∈ V10 can be replaced by an equivalent vector in V01 or
V11.

0 fk fk+2fk+1 2fkfk-1

V00

V01

V10

V11

Figure 2: Range of the vectors with MSBs of “00”,
“01”, “10” and “11”

Now for a given number v, we can find an m bit vec-
tor Vin = dmdm−1...d2d1 in FNS that represents this value
(based on the completeness of FNS). Now assuming “01” to
be the prohibited pattern at dkdk−1, we can replace dkdk−1...d1

with an equivalent k bit vector in V00 or V10 to produce a
new m bit vector Veq that is equivalent to Vin. Veq has no
prohibited pattern at dkdk−1.

Also since “01” is the prohibited pattern at dkdk−1, the
prohibited pattern at dk+1dk and dk−1dk−2 is“10”. We know
that

• If Vin does not have the prohibited pattern, Veq does
not have the prohibited pattern either since the manip-
ulation cause the kth bit value to either change from
’0’ to ’1’ or no change.

• Veq does not have the prohibited pattern at dk−1dk−2

since dk−1 in Veq is ’0’.

The first condition guarantees that the manipulation do not
introduce a prohibited pattern into dm..dk. The second con-
dition guarantees that further manipulation does not destroy
the pattern in dkdk−1.

Therefore, by replacing the prohibited pattern recursively
from the MSB to the LSB, the final result is an equivalent
vector to Vin that is prohibited pattern free and therefore it
is a FTF codeword. This proves Theorem 1

3.3 Coding algorithm
To design a coding algorithm that maps each input value

to an FTF codewords in the FNS, we observe that in Figure
2, if dk is coded as

dk =

{
0 if v < fk,

1 otherwise

and dk−1 is coded as

dk−1 =

{
0 if v < fk+1,

1 otherwise

the “01” is eliminated on dkdk−1. Conversely, if dk, is
coded as

dk =

{
0 if v < fk+1,

1 otherwise

and dk−1 coded as

dk−1 =

{
0 if v < fk−1,

1 otherwise

“10” is eliminated on dkdk−1.
Based on the above observations, the coding algorithm

is straightforward. Algorithm 1 generates FTF codewords
with “01” prohibited at d2k+1d2k and “10” prohibited at
d2kd2k−1.

Algorithm 1 FTF encoding algorithm

Input: v;
rm+1 = v;
for k =m downto 2 do

if rk+1 < f2� k
2 �+1 then

dk = 0;
else

dk = 1;
end if
rk = rk+1 − fk · dk;

end for
d1 = r2;
Output: dmdm−1...d1;

�·	: floor operator.

The encoding is carried out sequentially in m − 1 stages,
similar to a division operation. Starting from the MSB,
each stage compares the input to a Fibonacci number and
produces a coded bit as well as a remainder. The remainder
from one stage becomes the input to the next stage.

4. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

A direct implementation of the encoder and decoder based
on Algorithm 1 and Equation (5) is illustrated in Figure 3
(assuming m is even). The encoder, which converts a n bit
binary vector v = bn..b1 to an m bit vector dmdm−1..d1,
consists of m−1 stages. The decoder converts the bus code-
words back to the original n bit binary vector.

For the decoder, even though the block diagram in Figure
3 shows multipliers, the actually implementation does not
require multiplication or AND operations. Instead, the op-
eration of one bit input dj multiplied by a constant fj can be
implemented by simply driving the input bit to the non-zero
bit positions of fj . The m inputs of the summation block
have different numbers of bits with the MSB bit having the
most number of bits (fm) and two LSB inputs having 1 bit
each. The overall complexity is roughly O(m2/2).

989

<fm

<fm

dmrm

dm-1rm-1

<fm-2
dm-2rm-2

<f4
d3r3

<f2
d2
d1

<fm-2

dm-1

dm

fm

fm-1

d3

d2

d1

f3

v

v

encoder decoder

Figure 3: Encoder and decoder block diagram

dk =

{
0 if rk+1 < f2� k

2 �+1,

1 otherwise

rk = rk+1 − fk · dk (7)

The encoder stages implement the arithmetic function
given in Equation (7). Each stage produces a single bit dk

and a remainder rk. For the MSB stage, the input rk+1 is
the input data to be encoded. For other stages, rk+1 is the
remainder of the preceding stage. If m is even, the imple-
mentation requires one comparator, one adder and one 2:1
MUX. If m is odd, the implementation only needs one adder
and one MUX since the adder (subtraction) also functions as
a comparator. Assuming the resources required for a com-
parator are same as an adder, the total resources required
for an m bit bus encoder is 3m

2
adders and m MUXes. The

number of bits reduces monotonically from the MSB stage
to the LSB stage.

If we combine every two stages in the encoder properly,
the logic can be further simplified. Let“10”be the prohibited
pattern for dkdk−1. A two-bit encoder stage implements the
following:

dkdk−1 =




00 if rk+1 < fk,

01 if rk+1 < fk+1,

11 otherwise

rk−1 =




rk+1 if rk+1 < fk,

rk+1 − fk if rk+1 < fk+1,

rk+1 − fk+1 otherwise

(8)

Equation (8) can be implemented using two adders and
two MUXes. Since the single-bit stage implementation re-
quires three adders and two MUXes to encode two bits, this
two-bit stage implementation is simpler. We should point
out that this simplification is only achieved when “10” is the
prohibited pattern. We can not reduce the implementation
complexity if“01” is the prohibited pattern in the two bit im-
plementation. For comparison, the FPF CODEC proposed
in [1] need one adder, one comparator and one MUX for each
stage, almost twice the complexity of the FTF CODEC with
two-bit implementation. The decoders are identical for both
FTF and FPF.

Figure 4: Encoder gate count comparison

To evaluate the complexity of the CODECs, we synthe-
sized the CODEC in a 90nm process [15]. Figure 4 plots the
equivalent gate counts of the encoder for input bus widths
from 4 to 32. For 12-bit input data width, the equivalent
number of 2-input gates is 245. This is nearly two orders
of magnitude lower than the gate count reported in Figure
1. For the input data width of 32-bit, the equivalent gate
count is 2247. The growth of the encoder sizes is quadratic
with respect to the bus size, as we expected.

For comparison, the gate counts of the FPF-CAC encoders
obtained through synthesis [1] are also plotted in Figure 4.
The FPF-CAC encoder gate count for a 32-bit bus is 2640,
which is 17.6% bigger than the FTF-CAC encoder for the
same bus size. On average, the gate count for the FPF
encoder is ∼ 17% higher that the FTF-CAC encoder. The
decoders for both codes are identical.

Without pipelining, the overall delay of the encoder is
the summation of all the stage delays. This total delay can
be be significant. Fortunately, our design allows pipeline
stages to be easily inserted between stages. The speed of the
encoder is determined by the slowest stage, the MSB stage.
It is reported in [16] that a 64-bit adder has a total delay
of less than 250ps using a 65nm process. With additional
delay from the MUX, we estimate that the slowest stage of
our CODEC, the MSB stage, has a delay of no more than
300ps. Therefore, we expect a pipelined implementation of
the CODEC to operated at 3 GHz. It is very important to
point out that pipelining cannot be used on a look-up-table
based design.

The complexity and speed can be further improved by
applying bus partitioning. The maximum input-to-output
delay of an non-pipelined m-bit encoder is τ(m) ∝ O(m2).
The total area has the quadratic relation with the number
of input bits and therefore partitioning the bus will reduce
the total area by close to 50%. Unlike FPF CODECs, which
require either two shield wires between the group boundaries
or some group complement logic for bus partitioning, the
FTF code only needs one grounded wire between two groups.

5. CONCLUSIONS
In this work, we present a CODEC design for the FTF-

CAC based on the Fibonacci numeral system. Our analysis
show that all numbers can be represented by FTF vectors in

990

Fibonacci numeral system. We propose encoder and decoder
designs which have the following features:

• Efficiency: both the encoder and decoder complexi-
ties grow quadratically as opposed to exponentially.
Compared to the CODEC for the FPF-CAC [1], the
arithmetic operations are less complicated, results in
further complexity reduction in implementation.

• Modularity: both the encoder and decoder are con-
structed in a systematic fashion. The encoder consists
of multiple stages and a CODEC design for a larger
bus can be extended from a CODEC of a smaller bus.

• Simplicity: bus partitioning becomes trivial and incurs
less overhead compared to the FPF-CAC CODECs.

Our CODEC design has been verified through actual im-
plementation. Encoders for bus size from 4 to 32 bit are im-
plemented in a 90 nm CMOS process and the results show
a 17% reduction in gate count over the FPF-CAC encoder
for the same bus size [1]. The design can achieve high speed
through pipelining.

6. REFERENCES
[1] C. Duan, V. Cordero and S. P. Khatri, ”Efficient

On-Chip Crosstalk Avoidance CODEC Design”, IEEE
Transactions on VLSI Systems, to appear.

[2] P. Sotiriadis and A. Chandrakasan, ”Low power bus
coding techniques considering inter-wire capacitance”.
Proc. of IEEE-CICC 2000, pp 507-510.

[3] K. Kim, K. Baek, N. Shanbhag, C. Liu, and S.-M.
Kang, ŞCoupling driven signal encoding scheme for
low-power interface design,Ť Proc. of IEEE/ACM
International Conference on Computer-Aided Design,
Nov 2000.

[4] Madhu Mutyam, ”Preventing Crosstalk Delay using
Fibonacci Representation”, Intl Conf. on VLSI Design,
2004, pp 685-688.

[5] S.R. Sridhara, A. Ahmed, and N. R. Shanbhag, ”Area
and Energy-Efficient Crosstalk Avoidance Codes for
On-Chip busses”, Proc. of ICCD, 2004, pp 12-17.

[6] C. Duan, A.Tirumala and S.P.Khatri, ”Analysis and
Avoidance of Cross-talk in On-chip Bus”,
HotInterconnects, 2001,pp 133-138.

[7] Bret Victor and K. Keutzer,”Bus Encoding to Prevent
Crosstalk Delay”, ICCAD, 2001, pp 57-63.

[8] Sunil P. Khatri, ”Cross-talk Noise Immune VLSI Design
using Regular Layout Fabrics”, PhD Thesis, UC
Berkeley, 1999.

[9] C. Duan and S. P. Khatri, ”Exploiting Crosstalk to
Speed up On-chip busses”, DATE 2004, pp 778-783.

[10] C. Duan, K. Gulati and S. P. Khatri, ”Memory-based
Cross-talk Canceling CODECs for On-chip busses”,
ISCAS 2006, pp 4-9.

[11] J. Ma and L. He, ”Formulae and applications of
interconnect estimation considering shield insertion and
net ordering”, ICCAD 2001, pp

[12] Wikipedia,”Fibonacci number”,
http://en.wikipedia.org/wiki/ Fibonacci number.

[13] Wikipedia, ”Numeral System”,
http://en.wikipedia.org/wiki/ Numeral system.

[14] Saraswat, Haghani and Bernard, ”A low power design
of Gray and T0 codecs for the address bus encoding for
system level power optimization”.
www.studentimaster.usilu.net/
saraswap/prabhat/projects/.

[15] TSMC 90 nm process,
“http://www.tsmc.com/english/b technology
/b01 platform/b010101 90nm.htm”.

[16] A. Bastani and C. Zukowski, “A Low-Leakage
High-Speed Monotonic Static CMOS 64b Adder in a
Dual Gate Oxide 65-nm CMOS Technology”, Proc. of
ISQED 2006, pp312-317.

991

