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Abstract—Interconnect delay has become a limiting factor
for circuit performance in deep sub-micrometer designs. As
the crosstalk in an on-chip bus is highly dependent on the data
patterns transmitted on the bus, different crosstalk avoidance
coding schemes have been proposed to boost the bus speed and/or
reduce the overall energy consumption. Despite the availability
of the codes, no systematic mapping of datawords to codewords
has been proposed for CODEC design. This is mainly due to the
nonlinear nature of the crosstalk avoidance codes (CAC). The lack
of practical CODEC construction schemes has hampered the use
of such codes in practical designs. This work presents guidelines
for the CODEC design of the ‘“forbidden pattern free crosstalk
avoidance code” (FPF-CAC). We analyze the properties of the
FPF-CAC and show that mathematically, a mapping scheme exists
based on the representation of numbers in the Fibonacci numeral
system. Our first proposed CODEC design offers a near-optimal
area overhead performance. An improved version of the CODEC
is then presented, which achieves theoretical optimal performance.
We also investigate the implementation details of the CODECs,
including design complexity and the speed. Optimization schemes
are provided to reduce the size of the CODEC and improve its
speed.

Index Terms—CODEC, crosstalk, Fibonacci number, on-chip
bus.

1. INTRODUCTION

S VLSI technology has marched into the deep sub-mi-

crometer (DSM) regime, new challenges are presented
to circuit designers. As one of the key challenges, the perfor-
mance of bus based interconnects has become a bottleneck to the
overall system performance. In large designs [e.g., systems-on-
chip (SoCs)] where long and wide global busses are used, inter-
connect delays often dominate logic delays.

Once negligible, crosstalk has become a major determinant
of the total power consumption and delay of on-chip busses.
The impact of crosstalk in on-chip busses has been studied as
part of the effort to improve the power and speed characteristics
of the on-chip bus interconnects. Fig. 1 illustrates a simplified
on-chip bus model with crosstalk. C';, denotes the load capac-
itance seen by the driver, which includes the receiver gate ca-
pacitance and also the parasitic wire-to-substrate parasitic ca-
pacitance. Cfy is the inter-wire coupling capacitance between
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Fig. 1. On-chip bus model with crosstalk.
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adjacent signal lines of the bus. In practice, this bus structure is
electrically modeled using a distributed resistance-capacitance
(RC) network, after including the parasitic resistance of the wire
as well (not shown in Fig. 1). For DSM processes, C is much
greater than C'f, [7]. Based on the energy consumption and delay
models given in [1], the energy consumption is a function of
the total crosstalk over the entire bus. The delay, which deter-
mines the maximum speed of the bus, is limited by the max-
imum crosstalk that any wire in the bus incurs. It has been shown
that reducing the crosstalk can boost the bus performance sig-
nificantly [1], [5].

Different approaches have been proposed for reducing
crosstalk by eliminating specific data transition patterns. Some
schemes focus on reducing the energy consumption, while
others focus on minimizing the delay. Certain schemes offer
improvements in both. In this paper, we focus on crosstalk
avoidance for delay reduction.

As the crosstalk is dependent on the data transition patterns
on the bus, patterns can be classified based on the severity of
the crosstalk they impose on the bus. A more detailed explana-
tion of pattern classification is given in Section II-A. The gen-
eral idea behind techniques that improve on-chip bus speed is
to remove undesirable patterns that are associated with certain
classes of crosstalk. Among the proposed schemes, some are
more aggressive than others (they remove more patterns and
achieve higher speed improvements). Different schemes incur
different area overheads since they requires additional wires,
spacing between wires or both.

As one of the simplest techniques to eliminate the crosstalk
induced delay penalty, passive shielding inserts passive (e.g.,
grounded) shield wires between adjacent active data lines [10].
This technique can reduce the bus delay by nearly 50%. How-
ever, it requires doubling the number of wires and hence incurs
a 100% area overhead. Crosstalk can also be exploited to speed
up the bus. Techniques such as active shielding can reduce the
bus delay by up to 75% at the price of 200% or more area over-
head [8], [11].
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It has been discovered relatively recently that encoding the
bus can eliminate some classes of data patterns with much lower
area overhead compared to the shielding techniques [5], [6].
These codes are commonly referred to as crosstalk avoidance
codes (CACs). CACs can be further divided into two categories:
memory-less and memory-based. The memory-based coding
approaches generate a codeword based on the previously
transmitted code and the current dataword to be transmitted
[6], [9]. On the receiver side, the data is recovered based on
the received codewords from the current and previous cycles.
The memory-less coding approaches use a fixed code book to
generate a codeword to transmit, solely based on the input data.
The corresponding receiver decoder uses the current received
codeword as the only input to recover the data.

The theoretical lower bound of the area overhead for
memory-based codes is lower compared to memory-less codes.
However, the memory-based CODECs are much more com-
plex and the only known codeword generation method is an
exhaustive search and pruning-based method.

Several different types of memory-less CACs have been pro-
posed. The code designs are discussed in [3]-[6]. These codes
offer the same degree of delay reduction as the passive shielding
technique, with much less area overhead (ranging from 44% to
62.5%). Unfortunately, none of the referred papers addresses the
mapping between datawords and codewords for the CODECs.
So far, all the CODEC design approaches are based on bus par-
titioning (which breaks a big bus into a number of small groups
(lanes) and applies CAC coding on each group independently).
Such an approach has to deal with the crosstalk across the group
boundaries. Several different schemes are proposed to handle
this inter-group crosstalk, such as group inversion and bit over-
lapping [4], [5]. In all cases, more wires are needed and there-
fore the overall area overhead is higher than the theoretical lower
bound.

In this paper, we offer a systematic CODEC construction
solution for the forbidden-pattern-free crosstalk avoidance code
(FPF-CAC). The mapping scheme we propose is based on the
representation of numbers in the Fibonacci numeral system. We
show that all datawords can be represented in the Fibonacci-based
numeral system with FPF vectors. We propose several different
coding schemes that allow the CODECs to be constructed for
any arbitrary bus size. With such a systematic mapping, the
CODEC for a wider bus is constructed by a simple extension
of the CODEC for a smaller bus. The first CODEC proposed
in the paper is proven to have near-optimal area overhead
performance. We further offer an improved coding scheme
that achieves optimal overhead performance. We also propose
modifications to our near-optimal CODEC that will reduce
the complexity and improve the delay performance of the
CODEC.

The key contributions of this paper include the following.

e We define a deterministic mapping scheme for the
FPF-CAC-based on the Fibonacci-based binary numeral
system.

* Based on the mapping scheme, we propose coding algo-
rithms that allow systematic CODEC constructions so that
the CODEC for a wider bus is obtained as an extension of
the CODEC for smaller bus.

*  We show that the CODEC gate count grows quadratically
with bus size as opposed to the exponential growth for the
existing approaches.

The remainder of this paper is organized as follows. Section II
first provides some background on delay and power analysis
of the bus in the presence of crosstalk. The classification of
crosstalk is given in Section II-A. In Section II-C, the for-
bidden-pattern-free cross avoidance code is defined and its
performance is discussed, including codeword generation and
overhead computation. A lower bound of the area overhead
is established. Section III focuses on the construction of the
CODEC for FPF-CAC. We give the mathematical basis for the
CODEC construction and discuss the overhead performance
of different CODECs. In Section IV, we investigate the circuit
implementation details of the proposed CODECs. Experimental
results are also presented. Conclusions are drawn in Section V.

A. Notation

For clarity, throughout this paper, unless specified otherwise,
an n bit bus is represented by a vector b,b, 1, ...,b2b1, with
b,, being the most significant bit and b; the least significant bit.

II. FORBIDDEN PATTERN-BASED CAC

A. Crosstalk Classification

As stated in Section I, the degree of crosstalk in an on-chip
bus is dependent on data transition patterns on the bus. Based
on the model shown in Fig. 1, the delay 7; of the jth wire in a
data bus is given as [1]

T = abS(k-CL-AI/}+k-C]-AI/}7j_1~|—k-CI-AV}’j+1) (1)

where k is a constant determined by the driver strength and
wire resistance, AV} is the voltage change on the jth line and
AV, = AV; — AV}, is the relative voltage change between the
Jth and kth line. Since on-chip busses are generally full-swing
binary busses, we can assume that the two output voltage levels
are Vaq and O V and hence AV; € {0,£Vqq} and AV}, €
{0,£V4q,£2-Vaq}. If we let A = C;/CL, (1) can be rewritten
as

Tj:k-CL-Vdd-abs(§j+/\-5j7j_1—}—/\-5]'7]'4_1). 2)

Here §; € {0, 1} is the normalized voltage change on jth line.
;. i+1 € {0,£1,+2} is the normalized relative voltage change
on jth line (relative to the j 4+ 1th or j — 1th line). The ¢; term
corresponds to the intrinsic delay and the remaining two terms
correspond to the crosstalk induced delay. Since A > 1, the first
term has negligible contribution to the delay.

If we define Ceg ; as the effective total capacitance of the
driver of jth line, we have

Oeﬂ‘ﬂ' =C -abS((Sj-f—)\-(Sj’j_l +/\~5j7j+1) 3)
and
Tj =k -Vaa - Cesr ;. “4)

From (4), we get min(Cegr ;) = Cp and max(Cesr ;) =
(1 + 4 - X\)CL depending on the transition pattern on the wire
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TABLE 1
CLASSES OF CROSSTALK

Class | Copy Transition patterns
oc [Cy 000 — 111
1IC | CL(1+X) | 011 =000
2C CrL(1+2)) | 010 — 000
3C | CL(1+3)) | 010 — 100
4C CL(1+4)) | 010 — 101

of interest as well as its immediate neighbors on either side.
Crosstalk patterns are classified as 0C, IC, 2C, 3C, and 4C
patterns, respectively, as shown in Table 1. The last column in
Table I gives example transition patterns on three adjacent bits
of the bus bj+1b]'bj,1.

The speed of the data bus is determined by max{Cleg ;} over
all bits in the bus. An uncoded bus that transmits random data
experiences max{Ceg ; } = (1+4X)Cr, and therefore the speed
of such bus must be designed to accommodate the 4C crosstalk
delay. Based on Table I and (4), when A > 1, by eliminating 4C
crosstalk on ALL lines in the bus, we can increase the maximum
speed of the bus by ~ 33%. If we can eliminate the 3C AND 4C
crosstalk on all lines, the bus can be sped up by ~ 100%. This
has been verified by experiments in [5].

B. Energy Consumption of Busses With Crosstalk

The focus of this paper is on crosstalk avoidance code that
speeds up the busses, we shall, however, point out that the
crosstalk also impacts the average bus power consumption.
A detailed discussion is given in [1] and the overall energy
consumption for a given bus transition is

Etotal:ZEJ'L"i')‘ZEJI‘:ZCeﬂ,]"AVj-Vj (5)
j=1 j=1

i=1

where C.g ; is the effective capacitance on the jth wire defined
earlier.

Equation (5) shows that the bus energy is the summation of
the energy consumption of each given bit and that the crosstalk
also has effect on energy consumption. Therefore, avoiding
crosstalk could result in reduction of the overall energy con-
sumption of a bus as we show later.

C. Forbidden Pattern Based Crosstalk Avoidance

The forbidden pattern-based crosstalk avoidance code was
first proposed in [5]. The forbidden patterns are defined as 3-bit
patterns “101” and “010”. A code is forbidden pattern free
(FPF) if there is no forbidden pattern in any three consecu-
tive bits. As examples, 1101110 is not forbidden pattern free;
1100110 is FPF. It has been shown in [5] that for a code that
contains only FPF codewords, the bus that transmits only these
codewords will experience maximum crosstalk of no greater
than 2 - C. Therefore, by encoding the datawords to FPF code-
words, we can speed up the bus by ~ 100%. This type of code
is referred herein as FPF-CAC.

The FPF-CAC can be generated using an inductive proce-
dure [5]. Let S,,, be the set of m-bit FPF-CAC codewords, an
m-bit vector VniI = bybm—1,--.,b1 is a codeword. Any code-

TABLE II
FPF-CAC CODEWORDS FOR 2-, 3-, 4-, AND 5 BIT BUSSES
2-bit | 3-bits | 4-bits | 5 bit

00 000 | 0000 | 00000 10000
01 001 0001 | 00001 10001
10 011 0011 | 00011 10011
11 100 | 0110 | 00110 11000
110 | 0111 | 00111 11001
111 1000 | 01100 11100
1001 | O1110 11110
1100 | O1111 11111

1110

1111

word V! € S, can be considered as concatenating V! | =
bn—1bm—2, ..., by with bit b,,, where Vi € S,,_;.

The following is the inductive procedure that generates FPF
codewords, where ““-” is the concatenation operator.

Algorithm 1 FPF codeword generation

Sy = {00,01,10,11}
for m > 3 do
S, = {},
for VV, _, € S;,—1 do
if i, b o =00or 11 then
add0-Vi jand1-Vi | toSm;
else if b, b° , = 01 or 10 then

add b,_, - Vi _4 to Sy
end if
end for
end for

Table II lists the codewords of the 3-, 4-, and 5-bit FPF-CACs
generated by Algorithm 1.

From Algorithm 1, we can see that for each m — 1 bit code-
word Vi _; € Sy,_1 with last two digits b, _; = b, _,, two
m-bit codewords can be generated. For V!, | with the last two
digits bi, ; # bi ,, only one m-bit codeword can be gen-
erated. The total number of FPF-CAC codewords can be com-
puted based on the following equations.

Definition 1: For an m-bit vector b,,,b,,_1 . . . bab1, we define
the following quantities:

» T(m) is the total number of distinct m-bit vectors;

* T,(m) is the total number of FPF vectors;

» Ty(m) is the total number of non FPF vectors;

e T,,(m) is the number of FPF vectors satisfy b, = b, _;;

e Ty, (m) is the number of FPF vectors satisfy b%, # b, _;.

For the base case, a 3-bit bus (m = 3):

* T,(3) = 6;
© Ty(3) = 4
© Tp(3) = 2.
For busses with more than 3-bits (m > 3):
Ty(m) =2 % Tye(m — 1) + Typ(m — 1) (6)
Tgg(m) =Tgg(m — 1) + Tgp(m — 1) )
Tgp(m) =Tygg(m — 1). (3)
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Based on Algorithm I and the definitions of T}, T4, and Ty,
we get

Ty(m) =Tyg(m) + Typ(m) ©))
Tyg(m) =Ty(m —1). (10)

Equation (6) can be rewritten as

Ty(m) =2 x Tgg(m — 1) 4+ Tgp(m — 1)
= (Tyg(m — 1) + Tgp(m — 1)) + Tyy(m — 1)

=T,(m — 1)+ Ty(m — 2). (11)

The relationship shown in (11) is the same as the relationship
of elements in the Fibonacci sequence. (A more detailed dis-
cussion about Fibonacci sequence will be given in Section III.)
With the initial conditions T,(2) = 2 - f3 and Ty(3) = 2 - fa,
we have

Tg(m) =2 fmt1

where f,, is the mth element in the Fibonacci sequence.

T, (m) gives the maximum cardinality of the m-bit FPF-CAC
code. To encode an n-bit binary bus into FPF-CAC code, the
minimum number of bits needed 11, is the smallest integer m
that satisfies (13). We can also compute the lower bound of the
area overhead O H (n), which is defined as the ratio between
the additional area required for the coded bus and the area of
uncoded bus

12)

(13)
(14)

n < [logy(2 - fint1)]
OH(n)="""

—
For the Fibonacci sequence, ¢ = klim (fre+1)/fre = 1.618,

also known as the golden ratio, is the asymptotic ratio of two
consecutive elements of the sequence [12]. Hence, klim fr =
— 00

cp®, where c is a constant. Therefore, for large busses, the lower
bound of the overhead is

OHmin >

> — 1 = 44%.
log, ¢

(15)

III. FPF-CAC CODEC DESIGN

As discussed in Section II, the 3C and 4C crosstalk classes
can be avoided if the bus is encoded using the FPF code. We
provided the recursive procedure for generating the codewords
and showed how to compute the total number of codewords and
the lower bound for the area overhead. However, the mapping
scheme between the input datawords and the output codewords
was not discussed, nor was it shown how a CODEC for the
FPF-CAC can be constructed.

Conceptually, the mapping between the datawords and the
codewords is flexible, provided it can be reversed by the de-
coder. In the case when the size of the code book is not a power
of two, a 1-to-1 mapping is not required. A 1-to-many mapping
for certain datawords may reduce the CODEC complexity fur-
ther.

When the data bus width is small, the CODEC can be im-
plemented and the mapping flexibility can be exploited to op-
timize the speed and/or the area of the CODEC. However, as

the data bus width increases, the CODEC size grows exponen-
tially. Fig. 2 shows the number of two-input gates required for
CODECs of data bus widths varying from 3 to 12.! The total
number of mapping permutations also grows rapidly. Even for
a small 4- to 5-bit CAC encoder, there are over 2 x 10*2 possible
mapping permutations. In addition, the CAC codes are non-
linear and therefore it is difficult to extend a mapping scheme
for smaller busses to larger busses. Several different schemes
have been proposed for CODEC construction for FPF-CAC or
other memory-less CACs [4]-[6]. These schemes are all based
on bus partitioning, which breaks up a wide bus into smaller
groups or lanes (typically 3-5 bits) and exhaustively searches
for an optimal mapping that yields the most efficient CODEC
for the groups. Unfortunately, in order to handle crosstalk across
the group boundaries, these schemes all inevitably suffer from
additional area overhead.

In this section, we propose two coding schemes that allow
us to encode data to the FPF-CAC without partitioning the bus.
These coding schemes allow us to systematically construct the
FPF-CAC CODEC:s for busses of arbitrary size. By “systemat-
ically,” we mean that the CODEC for a larger size bus is ex-
tended from the CODEC of a smaller bus. The gate counts of
the proposed CODEC implementation roughly grow quadrati-
cally with respect to the bus size, instead of exponentially for
previous approaches [4]. Both our schemes are based on the Fi-
bonacci numeral system.

A. Fibonacci-Based Binary Numeral System

The Fibonacci binary numeral system was first used in CAC
designs in [3] for crosstalk avoidance coding. The paper pro-
posed an inductive codeword generations algorithm for a type
of CAC called self-shielding code.? The inductive algorithm is
similar to the ones proposed in [5] and [6]. However, none of
these papers address the mapping scheme and CODEC designs
as we do in the rest of this section.

A numeral system is “a framework where numbers are
represented by numerals in a consistent manner” [13]. The
most commonly used numeral system in digital design is the
binary numeral system, which uses powers of two as the base.
A number’s binary representation is defined in (16). The binary
numeral system is complete and unambiguous, which means
that each number has one and only one representation in the
binary numeral system.

Definition 2:

v = ikak_l

k=1
:de'fk dy, € {0, 1}.
k=1

be € {0,1} (16)

a7

The Fibonacci-based numeral system N (F,,,{0,1}) is the
numeral system that uses Fibonacci sequence as the base. The
definition of the Fibonacci sequence is given in (18). A number
v is represented as the summation of some Fibonacci numbers

'Even though the CODEC is for a slightly different crosstalk avoidance code,
we feel that the results can be used as a benchmark.

2In some literatures, this type of code is also called forbidden transition free
code
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Fig. 2. CODEC gate count. (Reprinted from [4] with permission from the
authors.)

and no Fibonacci number is in the summation more that once as
indicated in (17).
Definition 3:

fmZ{l, ifm=1 (18)
fm—1+ fm_o, ifm>2.

Similar to the binary numeral system, the Fibonacci-based
numeral system is complete and therefore any number can be
represented. However, the Fibonacci-based numeral system is
ambiguous. As an example, there are six 7-digit vectors in the Fi-
bonacci numeral system for the decimal number 19: {0111101,
0111110, 1001101, 1001110, 1010001, 1010010}. For clarity,
we refer to a vector in the binary numeral system as a binary
vector or binary code; a vector in the Fibonacci numeral system
as a Fibonacci vector or Fibonacci code. All the Fibonacci vec-
tors that represent the same value are defined as equivalent vec-
tors.

A very important property of the Fibonacci sequence that is
used in the following discussions is given in (19):

m—2
fm =D o+ 1. (19)
k=0

The n-bit binary vector has the range of [0,2" — 1] and a
total of 2™ values can be represented by n-bit binary vectors.
From (19), we know that the range of a m-bit Fibonacci vector
is [0, frt2 — 1], where minimum value O corresponds to all
the bits dy, being 0 and the maximum value corresponds to all
dj. being 1. Therefore, a total of f,,;o distinct values can be
represented by m-bit Fibonacci vectors.

B. Near-Optimal CODEC

We first propose a coding scheme that converts the input data
to a forbidden pattern free Fibonacci vector. The code is near-

optimal since the required overhead is no more than 1 bit more
than the theoretical lower bound given as follows.

Theorem 1: 3dymdp_1,...,dody = v,dpmdm_1,...,dod; €
N(F,,,{0,1}) and is FPE, Vv € [0, fimt2 — 1].

Theorem 1 states that for any number v € [0, fy,, 42 — 1], there
exists at least one m-bit Fibonacci vector d,,,d,,_1, . .., dod; =
v that represents this number and is forbidden pattern free.

In order to prove Theorem 1, we first derive the following
corollaries.

Corollary 1: The following two m-bit Fibonacci vectors
are equivalent: d,,d;—1, - ..,d301 and d,,,dp—1, - .. ,d310. In
other words, d,,,d,—1,...,d301 = d,,d,_1,...,d310.

Proof: Since fo = f1 = 1, it is obvious that the last two

digits are interchangeable. [ |
Corollary 2: For an m-bit Fibonacci vector
dmdm—1 ...dady, if three consecutive bits dpdi_1di_o

have a value 100, replacing them with 011 produces an
equivalent vector.
Proof: This can be proven based on the definition of Fi-

bonacci sequence given in (18). [ |

Corollary 3: For an m-bit Fibonacci vector
Amdm_1,...,dad;, if a number of consecutive bits
(slice) in the vector dpdg_1,...,dr—, have a pattern of

0101, ...,0100 (alternating 0 and 1 except the last two bits),

replacing the slice with the pattern 0011, ...,1111 (all bits are

1 except the first two bits) produces an equivalent vector.
Proof: From the right to left, we can recursively replace

100 with 011 (Corollary 2) until dy_1dy—_2di—3 has been re-

placed. ]
Corollary 4: For an m-bit Fibonacci vector d,,,dyp,_1, . . ., d1,
if a slice in the vector dydy_1,...,d_, has a pattern of

1010, ...,1011 (alternating 1 and O except the last two bits),
replacing the slice with the pattern 1100, ...,0000 (first two
bits are 1’s and the other bits are 0’s) produces an equivalent
vector.

Proof: From the right to left, we can recursively replace
011 with 100 (Corollary 2) until dy_1dj_2dj_3 has been re-

placed. ]
The proof of Theorem 1 is given as follows.
Proof:
d Hdmdm_l,...,dl = v, dmdm—17~--7d1 S

N(F,,,{0,1}), Vv € [0, frnt2 — 1].

In other words, for any number v € [0, f,,,42 — 1], there ex-

ists at least one m-bit Fibonacci vector d,,d,,_1, ..., d1.

This follows from the completeness of the Fibonacci

number system.

» Ifthe vectord,,d;,—1,- . ., dq is not FPF, we can produce at
least one equivalent vector that is FPF by performing some
or all of the following procedures.

— If the vector ends with a forbidden pattern (101 or 010),
there exists an equivalent vector that ends with 110 or
001 (Corollary 1 ).

— If any slice in the vector contains forbidden pattern, they
can be replaced with a pattern that is forbidden pattern
free using Corollary 3 and 4. ]

By proving Theorem 1, we show the existence of an FPF Fi-

bonacci vector for any number v in the range [0, fr,42 — 1].
The coding algorithm that encodes a given number v to an FPF
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Fibonacci vector is given in Algorithm 2.

Algorithm 2 Near-Optimal FPF-CAC Encoder

FPE-CAC(v)
\\ MSB stage:
if v > f,,41 then

dm = 1;

Tm = U — fm;
else

dm = 0;

Tm = U;
end if

\\ other stages:
fork =m—1to2do
if Tk+1 Z fk-l—l then
dk = 1;
else if 7,1 < fi then
dk = 0;
else
dp = dpy1;
end if
Tk = Tkt1 — fr - di;
end for
\\LSB
di = 73;
return (dy,dpm—1 ... d1);

Algorithm 2 shows that an m-bit FPF vector is generated in
m stages. Each stage outputs one bit of the output vector (dy)
and the remainder (r) that is the input to the following stage.
In the kth stage, the input r441 is compared to two Fibonacci
numbers fry1 and fr. If 741 > fr41, di is coded as 1; If
Tk4+1 < fk, di is coded as 0; If the value 71 is in between, dy,
is coded to the same value as dj41. The remainder is computed
accordingly based on the value of dj. We shall refer the ranges
[fr+1s fet2)s (fr, fr41), and [0, fi) as the force-1 zone, gray
zone, and force-0 zone of the kth stage, respectively. The most
significant bit (MSB) stage is slightly different from other stages
since no bit proceeds it. It encodes d,,, by comparing the input
v with only one Fibonacci number f,,41.

The decoder is a straightforward implementation of (17),
which converts the Fibonacci vector back to the binary vector.
Fig. 3 shows the encoder and decoder structures based on
Algorithm 2.

The correctness of Algorithm 2 can be proven by showing
that if after the kth stage, the partially generated output vector
dm, - . ., dry1dy, is FPE adding the output of the (k —1)th stage,
d—1 will not introduce a forbidden pattern.

We first recognize that if d = dj41, no forbidden pattern
will be produced regardless of the value of dj_;. Therefore,
we only need to show that when dy, # djy1, di,—1 will satisfy
dp—1 = dj. Based on Algorithm 2, di. # dg41 occurs only
when dj, is forced to be 0 or 1. The proof is reduced to proving
that when dj, is forced to one particular value, dj_; will be
coded the same value as dj. The proof is given as follows.

'U d’!ﬂ
— 2 fmi 1 |Tm (lm
> .[nz dm—l -t
< fm—l Tm-1
L. ——
d
di [ i ds 3
T4 <7/ 3
dy
> f3 dg (11
< fa
dy
Encoder Decoder

Fig. 3. CODEC structure (based on Algorithm 2).

Proof:
o Ifdy, =1 and dy # di41 [dy in force-1 zone]
= Tht1 2 frrrand 1y = Te41 — i
= Tk 2 fet1 — fis
= 1, > fr—1 [dr—1 not in force-0 zone]
= dp_1 = 1;
e If dy, = 0 and dy, # di41 [dy in force-0 zone]
= TEpt1 < fk and r, = Thi1s
= 1 < fi [dr—1 not in force-1 zone];
= dp_1 = 0. |

In Table III the complete 6-bit codewords generated using
Algorithm 2 are listed as CODE-1. As stated earlier, the MSB
stage is different from other stages since there is no preceding
bit and, for the values in the gray zone, d,,,—1 can be coded to
be either value. In Algorithm 2, we arbitrarily choose to code
the MSB (d,,,) to be 0 when the input value is in the gray zone.
If we code d,,, to be 1 for all values in the gray zone, we end
up with a different set of codewords as listed in CODE-2 in the
table. All codewords in both CODE-1 and CODE-2 are FPF.
For clarity, we only list codewords in CODE-2 that are different
from codewords in CODE-1.

Based on (19), we can easily see that the total numbers of
codewords in both CODE 1 and CODE-2 are f,, 2, slightly
smaller than the maximum cardinality of 2 - f,,,; 1 given in (14).
Since fr42 < 2+ fr41 < fm+s, we know for a given size
input data vector n, the number of bits needed for the proposed
CODEC is no more than 1 bit more than the minimum number
of bits required mp¢. Table IV lists the number of bits needed to
encode the binary data from 3 to 32 bits: ny;,, denotes the number
of bits for the input binary bus; m,,« the number of bits required
for the optimal code; m,, the number of bits needed for the
proposed CODEC and A(m) the difference between the two.

C. Optimal CODEC

A quick examination shows that ALL the valid FPF-CAC
codewords are actually listed in Table III. There are a total
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TABLE III
7-B1T CODE BOOK
Input CODE-1 CODE-2
Decimal | f f5 fa f3 fo fr | fo fs fa fs fo r
value 853211 853211
20%* 111111
19%* I 11110
18* 111100
17* 111001
16%* 111000
15 110011
14 110001
13 110000
12 011111 100111
11 011110 100110
10 011100 100011
9 011001 100001
8 011000 100000O0
7 001111
6 001110
5 001100
4 000111
3 000110
2 000011
1 00000O01
0 00000O00O0
TABLE 1V
OVERHEAD COMPARISON
Nin | Mopt | Mno A(m) Nin | Mopt | Mpo A(m)
3 4 4 0 18 | 26 26 0
4 5 6 1 19 27 28 1
5 7 7 0 20 | 29 29 0
6 8 9 1 21 | 30 30 0
7 10 10 0 22 | 31 32 1
8 11 12 1 23 | 33 33 0
9 13 13 0 24 | 34 35 1
10 | 14 15 1 25 | 36 36 0
11 16 16 0 26 | 37 38 1
12 |17 17 0 27 | 39 39 0
13 | 18 19 1 28 | 40 41 1
14 20 20 0 29 42 42 0
15 |21 22 1 30 |43 43 0
16 23 23 0 31 44 45 1
17 | 23 23 1 32 | 46 46 0

of (fm+1 — fm) codewords in CODE-2 that are not included
in CODE-1. The total number of codewords in CODE-1 is
fm+2. Therefore, the total number of distinct codewords in
both CODE-1 and CODE-2 is

Tg(m) :fm+2 + fm+1 - fm
:fm-l-l + fm + fm+1 - fm
=2 fmy1-

We can see that the reason that the near-optimal codes do
not reach the maximum cardinality is due to the redundant FPF
Fibonacci vectors for the values in the gray zone. For a coding
scheme to reach the optimal overhead performance, we need to
remove this redundancy.

Table V shows how such modification is done. We simply
move the codewords in the CODE-2 gray zone to the top of
CODE-1. In doing so, the values these codewords represent are
shifted by f,.42 — fm = fim+1. The MSB stage of the CODEC

(20)
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TABLE V
CODE BOOK FOR OPTIMAL CODEC

Input | XB
Decimal | fr
value 13
25%
24%*
23%*
22%
21%
20%*
19%
18*
17*
16*
15
14
13
12
11
10

OPT ENC

Io fa fs fo S
53211

Encoder 2

Jo fs fa f3 f2
8 53211

[eReNoNoNel
[eReNoNeNel
[eReNeoN S
SO = ==

coococococod|—m——~mr it mr e e e sl OO
R =R =N = e e L R R e e e e = RN )
cCoo~R =00~~~ 0 00O~ ~~=lCcOo O =~
CoO—~m—m—mOmm-loo0o~~loOo—~00O0O~=0CO =~~~
O——~0O~0OO0O—~lOo~0cOoO~lO—~—~0O—~0O~=OC~m~oO~

[eNeoloNoBoNol-NolloBoRololol loNo oo Nol ool = L i

O =N WAk WLV IO

is modified to reflect this value shift in the new mapping scheme

dmzl,’l“m:’l}—fm+2, if’(}me+2
dm:17Tm:U_fm7 iffm+2>Ume+1 2n
dm:07’l“m:’l), if’U<fm+1.
The decoder is modified accordingly
m—1
2 dy, - fk + fm+1, if by,byn—1 = 10
v =0 (22)

m—1
> di - fr, otherwise.
k=0

Table V gives the codewords based on the optimal CODEC
and the value each codeword represents. We can consider the
codewords as having an extra bit as shown in the second column
(XB) in the table. This bit is not transmitted on the bus since its
value can be recovered by the decoder based on the values of
dy, and d,p,—1.

The overhead performance of the optimal coding scheme
reaches the theoretical lower bound given in (15). Compared
to the CODEC with near-optimal overhead performance, the
optimal CODEC has added complexity. Using the optimal
CODEC does not offer additional gain in overhead in the
example here as the total number of distinct codewords in-
creases from 21 to 26. As shown in Table IV, only when
fm +2 < 2" <2 fy1 does the optimal coding offer saving
of one bit.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULT

The encoder and decoder based on Algorithm 2 can be im-
plemented using the structure illustrated in Fig. 3. The encoder
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f k41
SUB %& dy,
dy 11 D‘r
Sk SUB r SEL T
Tk+1

Fig. 4. Internal logic of the kth block.

by, dn [

|
> fm
Dt o} < frnm

L .

——

i oy

AT

[

Fig. 5. CODEC structure with MSB optimization.

converts a n-bit binary vector v = b,,, ..., by to an m-bit vector
dmdm—1,...,d1.

The encoder consists of m stages. Fig. 4 depicts the details
inside the kth stage, where k < m. The inputs of the stage are
outputs from the previous stage: dj1 and 7,1 and the outputs
are dj and . There are subtractors and a 2-to-1 MUX.

For the near optimal encoder, the MSB stage is simpler than
the other stages. For CODE-2, the MSB stage requires only
one subtractor and one selector. The MSB stage of the near-op-
timal CODEC can be modified to further simplify the logic. Let
bnbn—1,-..,b1 be the binary input vector, if we let d,,, = b,
and r,, be b,_1b,_2,...,b;. The mathematical expression of
this mapping is

m—1
v="b, 2" + de'fk-

k=1

(23)

This modification is to simply code the output MSB bit to the
input MSB bit. The outputs are still FPF codes because to code
an-bit binary code to an m-bit Fibonacci code, n and m satisfy:
2" < fm42 and we have

2" < frg2 <2+ fng1 = 2" < frag1. (24)

Therefore, the n bit input binary data can be broken into the
MSB bit and a (n—1) bit vector. We simply construct an encoder
for the n— 1 bit vector. The MSB bit controls the output bit value
when the (n — 1) bit input value is in the gray zone.

Fig. 5 shows the modified CODEC with the simplified MSB
stage. On the encoder side, the MSB of the input b,, is mapped
directly to the MSB of the output d,,,. The rest of the input vector
bp—1bn—2,...,b1 becomes the input of the (m — 1)th stage.
On the decoder side, the first input of the summation stage is
dy, - 2771, instead of d,, - f., as in Fig. 3.

To evaluate the complexity of the CODECs, we implemented
the near-optimal CODEC in both a field-programmable gate
array (FPGA) (Xilinx XC4VLX15-12 [15]) and ASIC (both a
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Fig. 6. Resource count and delay of the proposed encoder for different input
bus sizes (FPGA implementation).
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Fig. 7. Gate count and delay of the proposed encoder for different input bus
sizes (TSMC 90-nm implementation).

TSMC 90-nm process [16] and a TSMC 130-nm process). Fig. 6
plots the resource and delay of the FPGA implementation and
Fig. 7 plots the equivalent gate counts of the encoder for input
bus widths from 8 to 32 implemented using a TSMC 90-nm
process [16]. For an input data width of 12 bits, the equivalent
number of two-input gates is 369. This is roughly two orders of
magnitude lower than the gate count reported in Fig. 2 [4]. For
the input data width of 32-bit, the total area is 17 865 um2 and
the equivalent gate count is 2762. The sizes grow quadratically
with the bus size, as we expected. The gate count for the 130 nm
are very close to the 90-nm process.

Fig. 8 compares the gate count for three different encoder im-
plementations: a single level lookup table (LUT) implementa-
tion using random mapping, a single level LUT with Fibonacci
numeral system mapping and the staged design proposed in this
paper. All the designs are implemented using the same TSMC
90-nm process. We can see clearly that the size of the LUT-
based designs grow exponentially. Fig. 8 shows that the map-
ping schemes affect the encoder complexity: on average, a LUT-
based encoder using the Fibonacci mapping is 50% smaller than
arandomly mapped encoder. It also shows that for small busses,
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Fig. 8. Gate count comparison for different encoder implementations in a
TSMC 90-nm process: a single level LUT-based implementation using Fi-
bonacci mapping, a single level LUT using random mapping and the proposed
staged encoder.

the proposed design is not advantageous compared with LUT-
based design. However, for busses with 8 or more bits, the pro-
posed staged designs offer significant savings in terms of gate
count.

Figs. 6 and 7 also show the delays of the encoder. Understand-
ably, the delay increases as the input bus size goes up since the
total delay is the accumulated delay of all stages. Unlike the
single level implementation, our design allows pipeline stages
to be inserted between stages to mitigate this problem.

Bus partitioning can also be used to reduce the total size and
improve the speed of the decoder. Our experiment confirmed
that the maximum input-to-output delay of an non-pipelined
m-bit encoder is 7(m) oc O(m?). Reducing the bus in half can
improve the bus speed by approximately a factor of 4. Similarly,
the total area has the quadratic relation with the number of input
bits and therefore partitioning the bus will reduce the total area
by ~ 50%.

The decoder structure is simpler than the encoder and has no
ripple delay. However, as the bus width grows, the summation
stage size goes up and more delay will be incurred. Note that
there is no multiplication or AND operation in the actual imple-
mentation. Since fj is a constant, it is a simple case of con-
necting dy, to the nonzero bit positions of f.

Fig. 9 illustrates a structure where an n-bit input bus is split
into two n/2-bit groups. Each group is encoded and decoded
independently. The maximum delay of the encoder and decoder
stages are Tenc(n/2) and Tgec(n/2), instead of 7enc(n) and
Tdec (n) .

The crosstalk that occurs across the boundary must be dealt
with when the bus partitioning technique is employed. In Fig. 9,
we simply duplicate the boundary lines. This requires two extra
wires for each added partition. Other approaches that can be ap-
plied to minimize the number of additional wires, such as group
inversion as proposed in [5]. One additional wire has to be used
as an inversion indication. The tradeoff between area/speed and
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Fig. 9. Bus partition for delay and area improvement.

TABLE VI
POWER CONSUMPTION COMPARISON BETWEEN CODED AND UNCODED BUSSES

bus size | E, o, uncoded | E, ., coded | saving
8 35075 27825 20.7 %
12 55004 44222 19.6 %
16 74999 61456 18.6 %
32 154191 124148 19.5 %

overhead can be balanced to achieve the required speed while
minimizing the additional area overhead.

The FPF code is originally proposed to improve the bus speed.
However, our simulations show that by applying the FPF en-
coding, the bus energy consumption can be reduced as well. We
randomly generated 10000 input vectors for 8-, 12-, 16-, and
32-bit data and transmitted these randomly generated data on an
uncoded bus and a coded bus, respectively. For each bus width, a
normalized total energy consumption, F,,.,, is computed based
on (5) with Vg4 and C}, both set to 1. Table VI gives the nor-
malized energy consumption for coded and uncoded busses. The
comparison is technology independent and is also independent
of bus configurations, i.e., bus length, wire sizing, provided that
A > 1 is guaranteed. The results indicate that even with ~ 44%
more wires, coded busses have lower total energy consumption.
It is important to point out that such saving is achieved using
random sequences. For busses that transmit data with regularity,
the results may vary. We also would like to point out that in
our simulation, we do not include the power consumption of the
CODEC.

V. CONCLUSION

Crosstalk avoidance codes are shown to be able to reduce the
inter-wire crosstalk and therefore boost the maximum speed on
the data bus. They have the advantage of consuming less area
overhead than shielding techniques. Even though several dif-
ferent types of codes have been proposed in the past few years,
no mapping scheme was given which facilitates the CODEC
implementation. Compounded by the nonlinear nature of the
CAC, the lack of a solution to the systematic construction of
the CODEC has hampered the wide use of CAC in practice.

In this paper, we give what we believe is the first solution to
this problem. We showed that data can be coded to a forbidden
pattern free vector in the Fibonacci numeral system. We first
give a straightforward mapping algorithm that produces a set
of FPF codes with near-optimal cardinality. The area overhead
of this coding scheme is near the theoretical lower bound. The
CODEC based on this coding scheme is systematic and has very
low complexity. The size of the CODEC grows quadratically
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with the data bus size as opposed to exponentially in a brute
forced implementation. Our systemic coding scheme allows the
code design of arbitrarily large busses without having to resort
to bus partitioning.

We further proposed an improved coding scheme which
yield a set of FPF codes with maximum cardinality. The area
overhead of this optimal coding scheme matches the theoretical
lower bound. We gave the corresponding modification in the
CODEC design as well.

This paper also discusses issues associated with CODEC
implementations. We proposed a modified coding scheme that
eliminates the MSB stage in the encoder and simplifies the
decoder side as well. The modification reduces the total gate
count and improves the CODEC speed.

We implemented the near-optimal CODEC in both an FPGA
and a 90-nm ASIC process. The reported results show that the
size of our CODEC is several orders of magnitude lower than a
previously reported design for a 12-bit bus. We also investigated
the possibility of combining our approach with bus partitioning
in very large busses to address the propagation delay issue as
well as to reduce the total size of the CODEC.

We compared the average bus energy consumption of un-
coded and FPF coded busses in simulation. Our experimental
results show that FPF coding offers on average ~ 20% power
saving.

Even though this work is strictly limited to one class of
crosstalk avoidance code (the FPF-CAC), we believe that the
approach can be easily adapted to other varieties of crosstalk
avoidance codes as well.
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