Don’t Care Wires in Logical /Physical Design

Philip Chong, Yunjian Jiang, Sunil Khatri, Fan Mo, Subarna Sinha, Robert Brayton
EECS, U.C. Berkeley

March 12, 2000

Abstract

A layout is obtained before the complete functionalities
of individual cells are set. In particular, given an ini-
tial decomposition of a logic module, we determine, for
each input to the nodes of the multi-level network, a
set of “compatible” alternate wires, i.e. for every pin of
the network, there is a set of sources. These sets are
compatible, like don’t cares in logic; any combination
can be used (as long as there is exactly one source for
each pin) and each combination determines a different
set of functionalities within the cells. SPFDs [12, 1, 9]
are used to find compatible sets of alternate wires. We
use this wiring flexibility to construct a wireplan; the
final assignment of sources to pins depends on the ease
with which the resulting netlist can be placed and wired.
Once an assignment is chosen, the logic within each cell
1s determined. This partially reverses the classical ap-
proach of doing logic synthesis first, followed by physical
layout and leads to an “information” driven placement
methodology. We show results demonstrating total wire
length improvements using this new flexibility.

1 Introduction

Recent studies point to the growing importance of wire
delays as IC technologies continue to advance. This
leads to the notion of wireplanning in place of floor-
planning [8]; i.e. create a plan about how individual
blocks may communicate, perhaps without fully know-
ing the functionality of those blocks. In pure wireplan-
ning, this concept is taken to the extreme, by merely
looking at dependencies to determine what connections
ultimately have to be made, but not deciding a priori
what particular computations are made in a block or
even which blocks are to be built. After a plan for the
information flow is made, logic functionalities are deter-
mined. An example of this is the work of Gosti et al.
[4].

In this paper, we explore the concept of don’t care
wires which partially reverses the classical approach of
doing logic synthesis first, followed by physical layout.

A layout is obtained before the complete functionalities
of individual blocks are set. In particular, given an ini-
tial decomposition of a logic module, we determine, for
each input to the nodes of the multi-level network, a set
of alternate wires. Thus for every pin of the network,
there is a set of sources. These sets are like don’t cares
in logic; any combination can be used (as long as there
is exactly one source for each pin) and each combina-
tion determines a different set of functionalities. In this
sense the sets are compatible, i.e. can be used inde-
pendently, just like don’t cares in logic synthesis must
be able to be used independently. Once an assignment
of sources to pins is chosen, based on some wiring opti-
mization, the logic within each block is determined.

We can make the final assignment of sources to pins
dependent on the ease with which the resulting netlist
can be placed and wired, or a combination of this and
some delay constraints. Thus a wireplan is chosen for
the blocks, and then the logic functions in the blocks
are finalized.

We show how to use SPFDs (Sets of Pairs of Func-
tions to be Distinguished) [12, 1, 9] to find compatible
sets of alternate wires. We use this wiring flexibility to
construct a wireplan. After some notation in Section
2, Section 3 gives some methods for the initial logic de-
composition and the motivation for the particular ap-
proach used. Section 4 gives a brief discussion of SPFDs
and their relation to information flow, and then gives
a method for constructing compatible wire sets. Sec-
tion 5 poses an assignment problem of sources to pins
which minimizes the total wire length, given a place-
ment of modules. We show that this ”alternate wire
choice” problem is NP-complete and give a heuristic
that works well with the problem instances that arise.
Section 6 gives two methods for using don’t care wires in
placement algorithms that we have experimented with
so far. Section 7 gives the details and results on some
experiments on a few benchmark examples. Section 8
concludes and describes future work that needs to be
done in this area.

2 Notation

We focus on the implementation of a combinational
logic module. The logic is assumed to have an initial
decomposition into a multilevel Boolean network which
is a netlist with primary inputs denoted z; and primary
outputs, zx. The network consists of nodes j with im-
mediate inputs, F'I;, the fanins of j, and a single output.
Associated with a node j is a logic function f; and a
Boolean variable y; whose value is given by y; = f;(y?).
The 37 is a vector of inputs, called the fanins of node j.
A node k such that there is a path from & to j is said to
be in the transitive fanin of j, TFI;. Similarly, j is said
to be in the transitive fanout of k. All nodes for which
there is a path from k to that node is the transitive
fanout of k, TFOy. Variables y; are called interme-
diate variables. The graph of the network is assumed
to be acyclic. The function f;(y’) can be rewritten in
terms of the primary inputs only, by recursively substi-
tuting its intermediate fanin variables by their functions
until only primary input variables are left. This gives a
function g;(z) called the global function at node j.

We measure information flowing through a function
by the number of input minterm pairs “distinguished”
by the function. Thus if m; and mj are two minterms
in the input space X = {z1,...,2,}, and g;(m;) #
gj(my), we consider this a bit of information provided
by g;. This information must be provided to node j ei-
ther directly by a primary input or indirectly by one of
the fanins from an intermediate function. The specifica-
tion for the network module can be considered to be the
information required at each of the network’s primary
outputs. If a particular input minterm mj does not
need to be distinguished at any of the outputs from all
other minterms, then it is a don’t care for the network.

3 Networks of PLAs and Initial
Decompositions

Recent work on noiseless fabrics [5] led to a re-
examination of the use of multi-level networks where
each logic node is implemented as a PLA. This is a
general logic synthesis technique, and has been shown
to have advantages even for implementations where
noise is not a concern. At the same time, we observed
that a technique that quantifies the information flow-
ing through a network, called SPFDs, were more ef-
fective when given logic nodes that have more logic in
them. In some sense the PLAs are similar to the ini-
tial application of SPFDs to FPGAs; each node con-
tains a significant logic function, and if that logic func-
tion changes, the area requirement for implementing the
function does not change much. For FPGAs, the area

does not change at all if the number of inputs does not
change. For PLAs, the area may change, but typically
if the number of inputs does not change we can control
the area (we can use bit pairing, folding, etc to keep
the area within bounds). PLAs offer some additional
advantages in that the layout for each PLA is regular
and can be accurately characterized in terms of its elec-
trical characteristics (delay, noise, etc.).

An initial network can be minimized using the usual
logic synthesis methods. Then it is decomposed and
clustered into PLAs with the target of absorbing as
many connections as possible internally in each PLA
with the constraint that the resulting PLA network has
no cycles. During this clustering no placement infor-
mation is known, so a heuristic is used that the smaller
the number of connections, the better the decomposi-
tion. This usually leads to a smaller number of PLAs.
During clustering, the logic is minimized and the PLA
folded. Then the result is assessed for being within
given bounds in the number of rows and columns (dic-
tated mainly by delay and noise constraints within the
PLA).

After clustering, a set of compatible alternates is gen-
erated for each local input connection. We use the con-
cepts of SPFDs and information flow to generate alter-
nate wires. These alternates are used in a floorplanning
algorithm where during each move the best choice of
alternate wires for each local input is used to evaluate
the move. Once the final placement and final netlist are
chosen, the logic inside a PLA may change and may no
longer fit within the row and column bounds; however,
we experimentally determined that the PLA areas are
usually well controlled in this process. Note that the
number of inputs and outputs does not change for a

given PLA.

We experimented with the following method as shown
in Figure 1: after the usual logic synthesis (we use
script.rugged in SIS), we decompose and cluster a net-
work into a set of PLAs of medium size (e.g. 10-15
inputs, 1-5 outputs, 15-25 cubes). These PLAs then
are the nodes in our logic network. A set of compatible
alternate wire sets is generated using SPFDs. These are
fed to a placement tool that selects the best set of al-
ternate wires. The final placement and the best choices
of source wires are fed back to the logic synthesis pro-
gram which determines the logic functionality of each
PLA, and then minimizes and folds it. The final areas
and logic functionalities are returned to placement for
a final optimization of the placement.

PLA-based decomposition ‘

1

SPFD-based don’t care e
wire generation

Wire choices]

Placement based on
wire choices

Best choices),

Resynthesis ‘

Final PLA area *

Final placement ‘

Figure 1: Don’t care wire-based logic/physical design
flow

il

4 SPFDs and Compatible Wire
Sets

We give an intuitive description of the concept of SPFDs
(for a formal discussion, refer to [12, 1, 9]). Consider a
multi-level network of combinational nodes. Each fanin
of a node provides information to that node. The out-
put of a node has a similar role; it must provide infor-
mation to its fanouts. As long as each node plays its
role, the particular logic function at the node is irrele-
vant for the functionality of the module. Several inputs
of a node often distinguish the same pair of minterms.
Hence there is some freedom in choosing which pairs
to assign to which inputs; the only requirement is that
the union of all the pairs of minterms distinguished by
all the fanins covers the pairs of minterms required to
be distinguished at the output of that node. An SPFD
for an input wire (pin) of a node is a particular choice
of pairs of minterms which are assigned to be distin-
guished by that input. An SPFD is simply the set of all
minterm pairs which must be distinguished by a wire
or node. It can be represented by a graph whose nodes
are minterms and an edge connects two minterms if the
function associated with the SPFD (wire or node) must
have different values for the two minterms. An SPFD
is just a way to represent the information required of a
wire or node.

Once the SPFD choices have been made, there may
be different sources (nodes in the circuit) which can
supply the required information, i.e. have enough dis-
tinguishing power. This allows for different sources for
a pin and has the same sense as don’t cares for logic in
that we can choose one of several elements from a set
for optimizing an implementation. For don’t cares the

set is the set of values {0,1} and for a pin, we have a
set of sources to choose from. Thus we call the set of
sources "don’t care wires”.

The actual logic function at the node will depend on
which sources were assigned to which input pins since
the information coming through each pin depends on
the source chosen. However, once the information sup-
plied by each pin is known, the logic functions inside
the node (PLA) can be determined. Even then, there is
a lot of flexibility for the function, since there are still
many logic don’t cares that can be used. Further flex-
ibility is available if the SPFD graph is disconnected.
For example, suppose there are only 4 minterms in an
SPFD graph given by the pairs, {(m1,mz2), (ms,m4)}.
Then a function implementing this can have my, mg in
its onset and msy, my in its offset or vice versa for the
complement, or my,my4 in the onset and mso, m3 in the
offset or vice versa.

Since we want the freedom to choose the source for
each pin, independent of the choices made for the other
pins, we need the sets of alternate wires to be compat-
ible, like logic don’t cares, where we want to be able
to choose the value for a particular node independent
of the values chosen for the other nodes. So compatible
sets must guarantee that the union of information com-
ing into a node through its input pins is always enough
to supply the information required for that node’s in-
formation output requirements.

Let Ry denote the set of alternate sources for pin k.

Definition 1 Given a set of sets of nodes R = {Ry}, a
selection is a ordered set of nodes {n,...,n g} such
that n € Ry.

Definition 2 A set of sets R = {Ry} is compatible
if for each selection, there exist logic functions at each
node such that the implied netlist for that selection can
implement the specifications at the primary outputs.

We can create compatible sets of alternate wires using
the following procedure.

Procedure 1 (Constructing a Compatible Set)

1. Starting from the outputs and proceeding in a back-
ward topological order, for each node n in the net-
work, and each of its input pins, o, assign SPFDs,
SPFD,, and SPFD, so that the required informa-
tion is supplied. Once this is done, each SPFD
represents the set of minterms which must be dis-
tinguished by that node or pin. In this paper, we
will not go into the details of this computation (see
[9]) of distributing the output information to the
mput pins.

2. Initialize for each mode n,

ex(n) = {n} U TFO,

and for each input pin, o of n, let R, = {n'} where
n' is the initial choice of source for pin o. R, will
eventually represent the set of alternate wires for
.

3. Starting from the inputs and proceeding in some
topological order, at each node n, do the following:

(a) Let C = ex(n)
(b) For each fanin wire o of n:

e Find an 7' € C such that SPFD, C
SPFD,,.

e Include 0’ in R,, R, = R, U{n'}.

e Update ex(n') = ex(n) U ex(n'). (This is
done to avoid cycles in the resulting net-

work.)

o This continues until no more nodes can
be added to R, .

The set {R, } obtained by the procedure has the follow-
ing property.

Lemma 1 For any selection of {R,}, the resulting net-
work s acyclic.

Although the above procedure produces a particular set
{R,}, any set with the following two properties will
suffice for compatibility.

Theorem 1 Any set of sets of nodes {R,} satisfying

1. for any selection, the resulting netlist is acyclic,
and

2. n € R, — SPFD, C SPFD,,
is compatible.

Thus to form a compatible set of alternate wires it is
sufficient to make sure that whatever netlist is chosen,
it is acyclic, and that each alternate’s SPFD covers the
original input’s SPFD.

Lastly, we would like to illustrate why we chose
SPFDs as a technique to generate alternate wires as
opposed to previous approaches to find alternate wires
based on redundancy addition and/or removal [11, 10].
We believe SPFDs provide more flexibility than any of
the previous approaches. Let us consider the following
example.

21 = gb+gb
g = ab+ab
z29 = b+tec

Let us find alternates for the wire, (g,2z1). The
SPFD of the wire (g,z1) is given by the set A =
{(00,10),(01,11)}. (In the set A, each minterm is of

the form g¢b). Now, if we express the minterms of
A in terms of the primary inputs, a and b, we get
A" = {(00,10),(11,01)}. (The minterms in A’ are of
the form ab). Both the edges can be distinguished by
the primary input, a. Thus, (a,z1) can be a compati-
ble alternate for (g,z1). On the other hand, the tech-
niques in [11, 10] cannot find this alternate. This is
because of the presence of the XOR gates. Redundancy
removal based techniques work by trying to make a path
untestable. This is not possible if there is an XOR (or
XNOR) gate along the path because the output of an
XOR is sensitive to the both its inputs. SPFDs, on
the other hand, look for the actual information content
and are not affected by the kinds of gates. Moreover,
SPFDs provide more flexibility for implementing the
function. Any function that distinguishes all the edges
of the SPFD is a suitable implementation. This is a ma-
jor source of flexibility in SPFDs as we can swap onset
and offset minterms in the original function to get many
different functions, many of which cannot be obtained
by redundancy removal techniques.

5 An Assignment Problem

In our initial experiments, we used total wire length
as the cost function to be minimized. Note that indi-
rectly, this controls total area, routability, and power,
but not necessarily worst case delay. For example, a sig-
nificant area increase will result in an increase in total
wire length. Evaluating the total wire length of a place-
ment requires that a best selection of alternate wires be
made for that placement. We thus have the following
problem.

Alternate Wire Choice Problem (AWC) Given
a point placement of pins, and a set {R,} of candidate
sources for each pin, find the selection which minimizes
the sum of the half perimeters of the bounding bozes of
the nets.

Theorem 2 The Alternate Wire Choice (AWC) Prob-
lem s NP-complete.

Proof. (see appendix) O

Branch and bound techniques can be applied to solve
AWC exhaustively. However, for efficiency we propose
the following algorithm.

Procedure 2 (Semi-greedy Algorithm for AWC)
PHASE I

1. For each pin with alternate wires, temporarily dis-
connect it from the current net.

2. For each net form the bounding boxes of the cur-
rently connected pins. These partial bounding boxes
form a lower bound on the total wire length.

3. For each pin with alternate wires, if its pin posi-
tion is inside one of the partial bounding boxes for
its candidate wires (the original wire plus its alter-
nates), assign it to that net. No increase has been
caused by this assignment, and hence the partial as-
signment seen so far must be part of an optimum
assignment.

4. For each remaining pin with alternate wires, com-
pute the “delta” costs if it is assigned to each of the
candidate nets. There is a net assignment which
increases the total net length by the least amount.
Choose this assignment and update the chosen net.

5. Continue step 4 until all pins have been assigned.
PHASE 11

1. For each pin which is an extreme of the bounding
box of its currently assigned net, temporarily release
it from its assignment, and compute the best net to
put it in and its delta decrease cost in doing this.
Note that the delta decrease is nonnegative.

2. Choose the pin with the mazimum delta decrease
and reassign the pin to the new net.

3. Repeat 1 and 2 until the best delta is 0.

Notes:

e After PHASE I, there may be pins that can be
moved to different nets to improve the total cost.

o After step 2 in PHASE II, the deltas need to be
updated efficiently.

e During PHASE II, a pin may be reassigned more
than once. To speed up the process, one may want
to “lock” a pin once it is reassigned once.

e After PHASE II (with no locking), the solution is
locally optimal, in that there is no pin which can
be moved to a new net such that the total cost is
decreased. However, there might be a set of pins
that can be reassigned all at once which decreases
the cost.

6 Two Placement Algorithms

For this work, we chose total wirelength, measured by
the half-perimeter bounding box for each net, as the
metric for the final design. By minimizing overall wire-
length, we reduce the total wiring utilization for the
design, and hence minimize overall congestion.

Note that the half-perimeter bounding box metric is
affected by the locations of the pins on the PLAs. How-
ever, since we do not have exact pin locations, we esti-
mate these locations by the center points of blocks.

If we consider the alternate wire choices for each input
pin and optimize for both area and total wire length, we
have a two dimensional solution space: physical place-
ment and logical connection. Given a physical place-
ment of the blocks as points in the physical dimen-
sion, choosing the best set of logical connections is NP-
complete (Section 4). Similarly, given a set of connec-
tions, choosing the best placement is also hard. Here we
give two approaches to tackling this combined problem.

6.1 Mincut Placement Approach

One of our approaches uses a mincut placement algo-
rithm [2] to evaluate the placement of a netlist with
alternate wires. Our method differs from traditional
mincut placement techniques by using alternate wires
to change the cut costs during the recursive biparti-
tioning of the design. Choosing alternates for wires on
a cut net may prevent that particular net from being
cut at all, thus reducing the cost. We therefore evalu-
ate the cost of a partition by accounting for such effects.
This reduction in cut cost will generally translate to a
reduction in wire length for the final placement; alter-
nate choices which prevent nets from being cut during
bipartitioning will generally correspond to the selection
of shorter local wires.

We modified the FM partitioning algorithm [3] to ac-
count for alternate wires. After recursive bipartition-
ing is applied to a design, partitions are adjoined in a
quadrature fashion [2] to obtain a placement. As well,
additional wire length minimization heuristics are used
to guide the placement.

After mincut partitioning, a low-temperature simu-
lated annealing, based on a sequence pair representa-
tion [7], is used to further improve the layout. In the
annealing process, after each random move on the se-
quence pair, the layout is derived and the greedy AWC
algorithm is applied to give the best wire length based
on the wire choices. Once annealing is done, a greedy
compaction method is applied, which evaluates the best
location for each cell for minimal wire length. Finally,
the AWC problem is solved for this layout using branch
and bound to obtain the final wire choices.

6.2 Force-Directed Approach

We also implemented a force-directed placement algo-
rithm. Our force-directed placer is incremental, so the
AWC subroutine can be easily embedded. At each step
the new position of the cells is computed in terms of the
forces acting on the cells, where the forces are generated

from the existing wires attached to each PLA. Then
AWC is invoked to determine if better wire choices exist.
All input and output ports are fixed on the chip bound-
ary so that no trivial solution (all cells collapse into one
single point) will be derived. To overcome cell overlaps,
we adopt the algorithm introduced in [13] while some
modifications are made to improve speed. The basic
idea is to form a density field in the chip area. Cells in
this field tend to move towards those areas with lower
density and away from areas with higher density.

7 Experimental Results

We performed two experiments to investigate the con-
tribution of alternate wires.

Experiment I: The first experiment was to decom-
pose each example into a set of PLAs as described in
Section 3. Table 1 shows the results of this decomposi-
tion. The number following the design name is related
to the maximum physical width allowed for each PLA
in the decomposition [5]. The resulting number of PLAs
for each design is shown in the PLAs column, and the
total number of input pins on these PLAs is shown in
the IPins column.

We then generated alternate wire sets for each of
these examples. The number of pins with alternate
wires for each example is shown in the APins column
under the Regular heading (the Mazimum columns are
described in Experiment II below). The percentage (in
parentheses) of input pins which have alternate choices
is also shown. The average number of alternate choices
for each of these pins is shown in the Alts column.

We then did the following comparisons:

1. We placed the PLAs without using alternate wires.
The total wire lengths for these initial placements
(using the two placement methods) are shown in
the Init column of Tables 2 and 3.

2. We applied the same placement algorithms on the
PLAs using alternate wires. The percentage im-
provement in wire length over the initial placement
is shown in the Reg column in the two tables.

3. The chosen best wires were returned to logic syn-
thesis and the functionalities of the PLAs were de-
termined according to the wire choices. Another
placement was performed using the new PLA ar-
eas, and the resulting wire lengths were compared
to the initial results. The improvement in wire
lengths over the initial placement is shown in the
Resyn column in the tables.

Experiment II: In the results for Experiment I, we
see a fairly high correlation between the improvement in

wire length and the percentage of wires that have alter-
nates. Note that the percentage of wires with alternates
for the examples is small (on average about 7.5%). As
an additional experiment, we wanted to see what would
happen if there were more wires with alternates. To this
end, we ignored the acyclic constraint when generating
alternates. In addition, for each wire, we computed its
minimum SPFD [9] and designated another wire as an
alternate if its SPFD covered this minimum SPFD. The
resulting number of pins with alternate wires and the
average number of choices for each of these is shown
in the Mazimum columns of Table 1. This generated
only a few more wires with alternates (their average
increased to 9%), although the average number of al-
ternates on wires with at least one alternate increased
substantially.

The wire length improvement over the initial place-
ment using these extended sets of alternate wires are
shown in the Maz columns of Tables 2 and 3. This
figure loosely indicates an upper bound on the possible
improvement due to alternate wires alone, and should
be compared to the Reg column since resynthesis was
not done. As expected, the results obtained correlate
with the increased number of wires with alternates.

7.1 Discussion

Although not presented in Tables 2 and 3, we also noted
the change in total areas of the placed designs when al-
ternate wires are used. For all experiments, the worst-
case final placed area increase was 8%. This small in-
crease in area is partly due to our choice of total wire-
length as a metric; since we are not actively minimizing
area, we expect the final design area to vary somewhat.
As well, after selection of alternate wires we must resyn-
thesize the network, and so we may have a change in
the PLA areas at this stage.

As noted, the gains in wirelength achieved is very
much correlated with the percentage of pins which have
alternates. When these were increased from 7.5% (Reg-
ular) to 9% (Mazimum) in Experiment III, the gain
in wire length went from 7.5% to 8.7% for the min-
cut placement, and 5.1% to 5.4% for the force-directed
technique.

In some cases, there is an increase in wire length when
alternate wires are introduced. There are two explana-
tions for this. First, the placement algorithms do not
guarantee a global minimum, so different local minima
can be obtained. Second, using the mincut placement
technique, there is no direct relation between the cut
sizes in the recursive bipartitioning and the final place-
ment wirelengths. Thus a selection of alternate wires
which reduces the cost of a cut may in fact increase the
total wirelength. For cases where using alternate wires

Regular Maximum
PLAs/ APins Alts APins Alts
Design | IPins #(%) # #(%) #
alu2-5 | 18/233 | 32(13.7) 28.44 | 37(15.9) 37.43
apex6-5 | 37/553 | 21(3.8) 16.10 | 27(4.9) 81.56
apex7-4 | 12/157 | 9(5.7) 22.22 | 12(7.6) 38.75
apex7-5 | 11/146 | 5(3.4) 14.40 | 6(4.1) 55.83
count-4 | 6/67 4(6.0) 1275 | 4(6.0) 30.25
count-5 | 6/68 3(4.4) 21.67 | 3(4.4) 35.00
terml-4 | 15/186 | 23(12.4) 19.61 | 29(15.6) 37.03
terml-5 | 12/170 | 11(6.5) 32.55 | 15(8.8) 44.00
ttt2-4 | 7/73 7(9.6) 14.00 | 7(9.6) 15.29
ttt2-5 | 8/85 | 9(10.6) 15.22 | 10(11.8) 18.30
x4-5 | 24/269 | 19(7.1) 34.05 | 28(10.4) 32.64

Table 1: Characterization of Examples

Design Init | Reg Resyn | Max
alu2-5 6143.5 | 19.8 16.8 | 20.9
apex6-5 | 18053.5 0.0 3.3 0.0

apex7-4 2843.5 2.2 13.9 13.3
apex7-5 2512.0 6.2 15.5 7.0
count-4 758.0 4.2 8.0 0.0
count-5 849.0 0.0 0.0 0.0
term1-4 4748.0 8.9 34.3 14.2
term1-5 4057.0 4.2 16.4 | 16.0
ttt2-4 1251.0 224 23.1 22.4
ttt2-5 1116.0 | 14.2 0.0 0.0
x4-5 4590.5 0.0 0.0 0.0
average 4265.6 7.5 12.0 8.7

Table 2: % Wirelength Improvement, Mincut

increases the total wirelength, we ignore the results and
instead use the initial placement generated without al-
ternate wires.

8 Conclusions and Future Work

We presented initial experiments using don’t care wires.
We used a combined sequence-pair simulated annealing
and mincut partitioning approach to placement to take
advantage of don’t care wires. We also modified a force
directed placement method which also solves an AWC
problem at each step. In the future we will look at
larger examples; currently we are constrained by our
SPFD implementation which uses BDDs, but a differ-
ent approach using SAT is now being evaluated and
looks promising. We will also experiment with different
methods for clustering to get the initial decomposition.
For now we have used total wire length as the cost met-
ric, but a more realistic metric would be a combination
of this and worst case delay. Finally, the greatest ad-
vantage will come from the ability to generate more al-
ternate candidate wires. However, the results obtained
so far are interesting and definitely show an advantage
in using don’t care wires.

To generate more alternate wires, one possibility is

Design Init | Reg Resyn | Max
alu2-5 6492.0 6.4 7.6 7.4
apex6-5 | 22253.0 7.7 1.1 9.9
apex7-4 3097.0 1.8 0.7 3.3
apex7-5 2688.0 9.5 5.7 | 104
count-4 788.0 5.1 4.7 3.9
count-5 823.0 0.8 1.5 1.1
term1-4 5374.0 11.9 2.8 4.2
term1-5 6112.0 0.8 1.5 1.8
ttt2-4 1111.0 3.5 3.1 11.4
ttt2-5 1649.0 5.3 12.4 3.8
x4-5 6148.0 3.4 1.5 1.9
average 5139.5 5.1 3.9 5.4

Table 3: % Wirelength Improvement, Force Directed

to decrease the size of the PLAs. In our current exper-
iments, the PLAs have up to five outputs each. This
means that each input furnishes this information to all
five outputs. Hence a wire can be replaced only if an-
other wire also can furnish all this information. It is as if
for each input there are five wires internal to the PLA,
and an input can be replaced only if all five internal
wires can be replaced by another wire.

Relaxing the acyclic constraint and using the mini-
mum SPFD merits further exploration. The rationale
is that although the alternate wires generated are not
valid in the sense that they contain all the information
required, they may contain most of the information.
This would lead to a type of information driven place-
ment; thus a placement is seen to be good if for each
node, the information it requires is nearby. Once a good
placement is obtained, a node can be implemented by
gathering enough of the nearby information to cover the
information required. One can imagine possibly increas-
ing the number of inputs to a node but still improving
the wiring, since the inputs are local.

Acknowledgements

This research was supported partially by the SRC, the
GSRC/Marco Center at Berkeley, and the California
Micro program with our industrial sponsors, Motorola,
Fujitsu, Synopsys, and Cadence.

Appendix 1.

Theorem 3 The Alternate Wire Choice (AWC) Prob-
lem s NP-complete.

Proof. The associated decision problem is to: de-
termine if there exists a choice of alternate wires such
that the sum of wire lengths is at most k. Clearly this
problem lies in NP; a certificate for this problem is the
choice of alternates for each input pin. Given this, the

total wire length can be evaluated in polynomial time
and compared to k.

To show NP-completeness, consider a reduction of
SAT to AWC. Take a SAT formula F in conjunctive
normal form. Let vy,...,v, be the variables which ap-
pear in F. In the corresponding AWC problem, cre-
ate a cell located at coordinates (0,0) with outputs
01,0}, ...,0n,0, corresponding to the literals v; and
their complements. Now create a cell at coordinates
(2,0) with inputs ay, ..., a,, and for each input a; con-
struct two alternate wires, one from o; and one from

o,. This structure represents the assignment of values

1
to the variables v;; the wire from o; to a; is chosen if v;
is assigned to 1, or the wire from o} to a; is chosen if v;
is assigned to 0.

Finally create a cell at coordinates (1,0) with inputs
by, ...,by; each input b; corresponds to a clause C; in
F. For each input b;, construct alternate wires corre-
sponding to the literals in C;; b; has an alternate wire
from o; (0}) iff C; contains the literal v; (v}).

Now consider the choices of alternates for each b;,
given some choice of alternates for the a;s, i.e. under
some assignment to the variables v;. If some literal v;
(v}) of C; was given a value of 1 under the assignment,
then the alternate for b; may be chosen to be the corre-
sponding o; (o). Thus, if all the clauses can be satisfied
under the given assignment of variables, then there ex-
ists a choice of alternates for the inputs b; such that for
all 1 < j < n, either output o; or o;- has no connecting
wire chosen. Then there is a choice of alternate wires
for b; which gives a total wire length of exactly 2n.

Conversely, if the given assignment does not satisfy
C;, then some alternate wire for b; must be chosen from
an unselected output, say 09. The net attached to o;.
then has length 1, and the length of the net attached
to 0; is 2, so the total wire length must be greater than
2n.

Thus a satisfying assignment of the variables exists
iff the constructed AWC problem has a solution with
wire length less than or equal to 2n. This reduction can
be done in polynomial time, so AWC is NP-complete. O

References

[1] R.Brayton. Understanding SPFDs: A new method
for specifying flexibility. In Workshop Notes, Inter-
national Workshop on Logic Synthests, 1997.

[2] Melvin A. Breuer. Min-cut placement. Journal of
Design Automation and Fault-Tolerant Computing,

1(4):343-362, October 1977.

3]

[13]

C.M. Fiduccia and R.M. Mattheyses. A linear-
time heuristic for improving network partitions. In
IEEE Design Automation Conference, pages 175—
181, 1982.

W. Gosti, A. Narayan, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. Wireplanning in logic
synthesis. In Proceedings of the International Con-
ference on Computer-Aided Design, pages 26-33,
1998.

S. Khatri, R. Brayton, and A. Sangiovanni-
Vincentelli. A VLSI design methodology using a
network of PLAs embedded in a regular layout fab-
ric. Technical Report UCB/ERL M99/50, Elec-
tronics Research Laboratory, University of Califor-
nia, Berkeley, May 1999.

S. Khatri, S. Sinha, A. Kuehlmann, R.K. Brayton,
and A.L. Sangiovanni-Vincentelli. SPFD based
wire removal in a network of PLAs. In Interna-
tional Workshop on Logic Synthesis, 1999.

H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kaji-
tani. VLSI module placement based on rectangle-
packing by the sequence-pair. IEEE Transaction
on CAD, 1996.

R.H.J.M. Otten and R.K. Brayton. Planning for
performance. In Proceedings of the 35th Design
Automation Conference, pages 122—-127, 1998.

S. Sinha and R. K. Brayton. Implementation and
use of SPFDs. In Proceedings of the International
Conference on Computer-Aided Design, 1998.

S. Chang, K.T. Cheng, N. Woo and M. Marek-
Sadowska, “Layout Driven Logic Synthesis for FP-
GAs”, in Proceedings of Design Automation Con-
ference, pp. 308—13, June 1994.

L.A. Entera and K.T. Cheng, “Sequential logic op-
timization by redundancy addition and removal”,in
Proceedings of the International Conference on
Computer-Aided Design, pp. 310-15, Nov 1993.

S. Yamashita, H. Sawada, and A. Nagoya. A
new method to express functional permissibili-
ties for LUT based FPGAs and its applications.
In Proceedings of the International Conference on
Computer-Aided Design, 1996.

H. Eisenmann, F.M. Johannes. Generic Global
Placement and Floorplanning. In Proceedings of
Design Automation Conference, pp. 269-274, 1998.

