A Hightly Testable Pass Transistor based Design
Methodology

Abstract

In this paper, we describe a highly testable structured
ASIC design methodology which utilizes a regular, pre-
fabricated array of pass transistor logic based if-then-else
(ITE) cells as the building block for the circuit. Given a
logic netlist, we first construct Reduced Order Binary De-
cision Diagrams (ROBDDs) for the circuit in a partitioned
manner, thereby allowing the approach to handle large de-
signs. Test generation for of each of these partitions can
be performed extremely efficiently. Using scan techniques,
the ATPG problem is made independent across partitions.
Also, the fault excitation and fault propagation problem
within any partition are both performed in linear time (in
the size of the ROBDD of the partition). Additionally,
the fault excitation and fault propagation problems have
non-overlapping variable supports, thereby simplifying the
problem further. Finally, we place the ROBDD nodes in
a manner that minimizes crossings in the ROBDD graph.
Our placement also effectively ’folds’ the ITE cells of dif-
ferent variables into a single row, so as to obtain a lay-
out with a more uniform distribution of ITE cells along
each physical row of ITE cells. The design methodology
has been demonstrated to implement sequential as well as
combinational designs, with low area and delay overheads
compared to an ASIC approach.

1. Our Approach

In the rest of this section, we describe the various aspects
of our approach. Our low-NRE, METAL and VIA mask
programmable PTL based circuit design approach consists
of a pre-fabricated array of ITE cells, implemented in an
area and delay-efficient manner. The details of these cells
are provided in Section 1.1.

Given a logic netlist, we create a partitioned ROBDD [1,
2] for this circuit, using a bottom-up construction. When
the size of any ROBDD exceeds a user-specified bound B,
a new ROBDD variable is created, and used in construct-
ing subsequent ROBDDs. This partitioned construction
approach enables the construction of ROBDDs for very
large designs. Our synthesis approach is described in Sec-
tion 1.2. Alternate recursive bi-partitioning based meth-
ods for ROBDD construction for PTL based designs [3, 4]
could be utilized as well.

Each ROBDD node is implemented as an ITE cell. Be-
fore this is done, we replicate ITE cells if their correspond-
ing ROBDD node has more than a user-specified number p
of incoming edges. Next we rearrange the ROBDD nodes
into rows of the array, such that each row is assigned at
most a user-specified number k of variables. This ensures
that each row has a balanced number of ROBDD nodes as-
signed to it, for area efficiency. The resulting circuit graph
is next placed so as to minimize the number of edge cross-
ings. Finally, the placed design is routed, using up to 4

METAL layers. The details of our placement and routing
approaches are described in Section 1.4.

1.1 ITE Cell Design

The ITE cell we utilize in our pre-fabricated array is
based on a NMOS pass-gate structure shown in Figure 1.
The outputs of the NMOS MUX is used to generate a
buffered output and its complement. In Figure 1, T' and
FE represent the THEN and ELSE branches respectively
of the ITE cell. The mux control input is . The ITE
cell generates both the output, out and its complement,
out. The corresponding layout of the ITE cell is shown in
Figure 2.
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Figure 1: ITE Cell Circuit
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Figure 2: ITE Cell Layout

Note that in the layout, the mux control signals (in
polysilicon) run along the length of the cell. Also, each
ITE cell has three variable signals and three complemented
variable signals that traverse over it horizontally in METALS3.
By appropriately placing stacked vias at the horizontal



wire of the appropriate variable (and its complement), the
ITE cell can be connected to any one of the three vari-
ables in the corresponding row of the array. The ITE cell
uses METAL1 and METAL2 for the layout, and METAL3
to route the variables and their complements. Routing is
done using all 4 metal layers.

We performed experiments with a complementary pass
gate structure, to test its utility in our problem. It turns
out that the delay of the complementary pass-gate is about
the same as that of the NMOS pass-gate shown in Figure 1.
This is because of the increased diffusion capacitance of
the additional PMOS transistor. Also, since the output of
every NMOS pass-gate is buffered, the delay variation of
an ITE cell due to V variations is low. Further its area
was more than that of the circuit in Figure 1. Hence, we
decided to use NMOS pass-gates instead of complementary
pass-gates in our experiments.

1.2 Partitioned ROBDD Construction

Logic synthesis in our approach is performed using a
partitioned ROBDD construction approach. Initially, the
primary input variables of the design are ordered using a
DEF'S ordering. We enable dynamic variable ordering before
building ROBDDs. At this point, we begin a bottom-up
construction of ROBDDs. At any point in the construc-
tion, assume that the set of variables in the ROBDD man-
ager is V. During ROBDD construction, if the size of
any ROBDD increases beyond a user-specified threshold
B, we introduce a new variable v (which is the output of
the ROBDD that reached the threshold B), and continue
building ROBDDs, after setting V'« V Uwv. At the end
of the ROBDD construction process, we have a series of
ROBDDs, each of size bounded by B. The output f; of
these ROBDDs either represents a primary output of the
circuit, or an intermediate ROBDD variable v;. Using this
partitioned approach to ROBDD construction allows us to
handle large designs easily.

Figure 3 illustrates how the intermediate variables in the
partitioned ROBDD construction are treated in the ITE
array. Consider the multi-level logic network 7n of Figure 3
a). This network consists of 4 primary input variables X =
{z1,22,x3,24}. As the bottom-up ROBDD construction
proceeds, assume that new variables y; and y» are created.
Then the output z is built in terms of y1, y2 and X. Note
that in the example shown in Figure 3, z is not directly
dependent on the primary input variables X. The logic
functions of y1 and y2 are in turn built in terms of X. For
this partitioned set of ROBDD nodes representing the logic
network 7, the corresponding ITE based array is shown
in Figure 3 b). In this figure, we note that the primary
inputs are presented to the circuit such that if z; < z; in
the ROBDD variable ordering, then z; is above z; in the
ITE array. Also, the two variables y; and y2 are produced
as the outputs of some ITE cells (c1 and c2 respectively)
whose inputs are a subset of X. The outputs of these cells
are driven out as the variables y; and y; respectively. In
Figure 3 b), we have assumed that each row of the array
corresponds to a single variable. In practice, each row of
the array in our design can contain ITE cells which depend
on one of k variables. Also, the outputs ¢; are buffered
and driven to the variable drivers y;. All y; variables are
located above the X variables in the ITE array. The task
of routing the output of ¢; to the corresponding variable
drivers y; is left to the routing algorithm.

1.3 Efficient ATPG

The proposed approach yields an extremely efficient Au-
tomatic Test Pattern Generation (ATPG) algorithm. In
traditional standard-cell based circuits, even after utiliz-
ing scan techniques, the resulting combinational ATPG
problem is NP-complete.

In our approach, we scan the output nodes of all ROBDD
partitions. In functional mode, these outputs may be the
inputs of other ROBDD partitions. In test mode, these
outputs are scanned, allowing for different ROBDD par-
titions to be tested independently. In other words, in
test mode, all variables of all partitions are independent.
Hence, the ATPG problem of each partition is indepen-
dent.

Also, recall that each ROBDD partition has a maximum
size B. This partitioned approach allows the construction
of (partitioned) ROBDDs even in circuits for which mono-
lithic ROBDDs cannot be computed. Now since each node
in the partitioned ROBDD corresponds to a ITE cell in
our approach, the ATPG problem is significantly simpli-
fied. Consider the ATPG problem for an internal node x
stuck at v. Here z is the output of an ITE cell in our ap-
proach, and v € {0,1}. Let the output of the partition be
I
Then a test for x stuck at v is given by:

T stuck—at—v = (x = 6) . (%)

In the above expression, the first parenthesized expres-
sion is the fault excitation condition, while the second ex-
pression is the fault propagation condition (the boolean
difference of f with respect to ). The efficient computa-
tion of each of these conditions is performed as follows.

e The fault excitation condition consists of the exercise
of setting = to U. In our approach, this is simply
performed by computing a path of the logic function
.

In the ROBDD of the function f (which was com-
puted at the time of logic synthesis), we find the node
corresponding to x. Then we find a path rooted at
this node, to the v terminal vertex. This can be done
in linear time, using a simple ROBDD based recur-
sive algorithm.

e The fault propagation condition is computed in lin-
ear time as well, in the following manner. In the
partitioned ROBDD of f, we find a path from the
node f to the node x. This is performed in linear
time.

An important observation is that the support variables
for both the above conditions are non-overlapping, making
the ATPG problem extremely easy.

1.4 Placement and Routing

After partitioned ROBDD construction, we obtain sev-
eral ROBDDs representing the decomposed logic netlist.
We first replicate ITE cells whose outputs are heavily loaded
(this corresponds to ROBDD nodes which have high in-
degrees). If the in-degree of ROBDD node is k, we repli-
cate it [k/K']—1 times. We use K = 3 in our experiments.
This limited the fanout of any ITE cell to a maximum of
3.

Suppose we have a total of N ITE cells (after duplication
of high-fanout nodes). We then compute the number of
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Figure 3: Partitioned ROBDD construction and its corresponding ITE Cell based Realization

ITE cells n in any row of the ITE array, and the number
of rows of the ITE array m as follows:

T-m~y-m

n-m > N, where x and y are the width and height
respectively of the ITE cell.

In this way, we find an initial estimate of the number of
rows m of the ITE array, and the number of ITE cells n
in each row.

Now we sort the N ITE cells in an increasing order of
their ROBDD variable index. Assume that if variable v;
is closer to the root than variable v;, then index(v;) <
index(v;). Now ITE cells are assigned to rows of the ITE
array. In order to do this, we consider two situations:

e Suppose there are n; ITE cells with ROBDD variable
index vj, such that n; > n. In this case, these ITE
cells need to span [n;/n] rows in the ITE array. We
sort these n; ITE cells in decreasing order of the cost
C. The cost C for a ITE cell c is:

C = 3 j([index(c)—index(c;)]—[index(c;) —index(c)])
where ¢; corresponds to children of the node ¢, and
¢; corresponds to the parents of nodes c.

If the nodes of the ITE array were planarized, nodes
¢ with high cost C are nodes which would induce
more edge crossings if they were placed in lower ITE
rows. Conversely, a lower cost indicates that a node
¢ would induce more crossings if they were placed in
higher ITE rows.

e Suppose there are n; ITE cells with ROBDD variable
index vj, such that n; < n. In this case, we will
attempt to populate the corresponding row of the
ITE array with additional ITE cells with variables
vj4+1. If the corresponding row still is not full, we will
add ITE cells with variables vj;2 as well. Any row
of the ITE array has ITE cells which depend on at
most 3 variables in it (since the number of variables
that can be routed over any ITE cell is 3).

After the initial sorting of the N ITE cells in an increas-
ing order of their ROBDD variable index, and a subsequent
sorting of the ITE cells of variables v; in terms of the cost
C, we have a sorted array A of ITE cells. Now we simply
assign these ITE cells to rows of the ITE array, starting
from the top row, until rows are fully populated.

Finally, the placement of the ITE cells within a row is
done in a manner that minimizes edge crossings in the
induced graph. We use a graph visualization tool DOT [5]
to perform this crossing minimization. The output of DOT
effectively re-arranges cells in each ITE row, in a manner
that minimizes edge crossings’. DOT is not allowed to
modify the assignment of ITE cells to rows of the ITE
array.

The result of DOT induces the placement we use for our
design. At this point, we invoke a routing tool (WROUTE
in SEDSM [7]) to route the ITE cell array. The lowest 4
METAL layers and their associated VIA layers are utilized
in the routing, allowing us to realize a design using changes
only to the METAL and VIA layers.

Sequential designs are handled by co-locating a bank of
flip-flops along the edge of each row of the ITE based array
(3 flip-flops per row since each row has at most 3 variables
in it). The outputs of any of these flip-flops can drive one
of the inputs of the corresponding row of the ITE array, by
means of a METAL and VIA mask change. If the input
of a flip-flop is computed by the combinational logic in
the design, then this routing connection is made (using
METAL and VIA mask changes only) during the routing
phase.

2. Experimental Results

In our experiments, a 0.1um process was assumed. Our
approach was implemented using several tools. Partitioned
ROBDD construction was performed using the frontier
method in VIS [8]. For each of the examples we tried dif-
ferent values (5, 10, 15, 20 and 1000) of the partitioning
threshold number B. Partitioning is invoked when the
size of a ROBDD exceeds this bound B. We then took the
result that gave the smallest number of ROBDD nodes.
The resulting ROBDDs, along with an array consisting of
pairs of values representing the correspondence between
an ROBDD f; and its internal variable y;, are supplied to
a pre-placement routine, which performs initial ITE cell
replication as necessary, as well as assignment of ITE cells
to rows of the ITE array. This pre-placed design is passed
to DOT, which minimizes the crossings in the graph in-

'Details on the algorithms used by DOT can be found
in [6]



duced by the interconnections among the ITE cells. In
other words, DOT is only allowed to re-arrange ITE cells
within a row, in a manner that minimizes edge crossings.
The result of DOT is used as the final placement of our
design, and used to perform routing of the final design
using the WROUTE router within SEDSM [7]. Sequen-
tial designs are handled as well, as described in Section 1.
The only mask layers that require customization in our
approach are METAL (lowest 4 layers) and VIA layers.

Table 1 describes the delay and area comparisons of our
method versus standard cells. The circuits in the table
are from the MCNC91 benchmark suite. The top half of
the table reports the delays and areas for combinational
designs, while the bottom half of the table reports delays?
and areas for sequential designs. For standard cell based
comparisons, we first performed technology independent
optimizations using script.rugged in SIS. We then mapped
our design to a library consisting of a total of 20 standard
cells (including a DFF). Placement and routing for the
standard cell based designs was performed using the same
0.1pm process, using SEDSM [7].

Delays for the ITE-cell based design were computed by
doing a topological sort of the ITE array, from inputs to
outputs. The delay at any node was computed as

D(node) = Max[D(leftchild), D(rightchild)] +

D(ITEblock).

The delay of the ITE cell was characterized in SPICE
for a 0.1pm BPTM process [9] assuming a fanout of 3.
Since the maximum load that the output of any ITE cell
drove was equal to the load we used in SPICE, the de-
lay estimates are conservative. Further, when variables
are internal nodes in the design the delay computation is
performed as:

D(node) = Max|[D(variable), D(leftchild),

D(rightchild)] + D(ITEblock).

This is true since the variable needs to be computed and
driven in case the ITE blocks were built in a partitioned
manner.

For delay estimates of the standard cell implementation,
we used the sense [10] package in SIS [11]. This package
returns the longest sensitizable path in a design (as op-
posed to static timing analysis which returns potentially
false paths). For both styles of implementation, intercon-
nect delay was not considered.

Note that in spite of our method being a mask pro-
grammable solution, its delay is quite competitive, being
just 1.5x larger (on average) than the standard cell de-
lay for sequential designs. The delay overhead for com-
binational designs , compared to the standard cell value,
is slightly larger (2.01x). The area penalty of our scheme
over standard cells is on average 3.41x (6.08x) for sequen-
tial (combinational) designs. Combinational designs have
higher overheads since they have unused resources in the
form of flip-flops.

Figure 4 illustrates the placed-and-routed result for the
alu2 benchmark circuit. Note the presence of the flip-flop
regions on either side of the array. These flip-flops are not
used for combinational designs, but contribute to the area
penalty of these designs.

The overheads associated with our technique are compa-
rable with similar structured ASIC methodologies. In [12],
the authors report an average area overhead of 3.44x (4.96x)

2For sequential designs, the delay reported is for the com-
binational part of the circuit.

for sequential (combinational) designs and an average de-
lay overhead of 3.58x (2.89x) for sequential (combina-
tional) designs.

Figure 4: ITE Array for alu2

3. Conclusion

With the increasing cost and complexity of fabrication
masks in modern VLSI processing technologies, there is a
strong need for VLSI design approaches that amortize the
non-recurring expense (NRE) associated with mask gener-
ation, over a large number of designs. In this paper, we
have proposed a structured IC design methodology which
is customizable using METAL and VIA masks only. Our
approach utilizes a pre-fabricated array of pass transistor
logic based if-then-else (ITE) cells as the building block
for circuit. It differs from other approaches, such as those
in [13, 14, 15, 12], primarily in the granularity of the logic
block used.

Given a logic circuit, we first construct ROBDDs for
the circuit in a partitioned manner. We then place the
ITE cells (which correspond to ROBDD nodes) in a man-
ner that minimizes crossings in the ROBDD graph. Our
placement also effectively ’folds’ the ITE cells of different
variables into a single row, so as to obtain a layout with a
more uniform distribution of ITE cells along each physical
row of the ITE array. Also, ITE cells with high fanout
are replicated. Experimental results demonstrate that our
methodology implements combinational designs with an
overhead of 2.01x (in speed) and 6.08x (in delay) com-
pared to a standard-cell based approach. For sequential
designs, the corresponding overheads are 1.55x and 3.41x
respectively.
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