
Minimum Leakage Vector Computation using Weighted Partial MaxSAT
Amrinder Singh† Kanupriya Gulati∗ Sunil P Khatri†

† Department of Electrical & Computer Engineering, Texas A&M University, College Station TX 77843.
∗ Strategic CAD Laboratories, Intel Corporation, Hillsboro OR 97124

Abstract—Aggressive scaling of CMOS technology has enabled faster and

smaller designs but has posed new challenges. In the deep-submicron era,
leakage power has become a major contributor to the overall power dissipation

of an IC. In this paper, we present a weighted partial Max-SAT (WPMax-SAT)

based approach to find the minimum leakage vector (MLV) of a combinational
design. In its exact form, this technique computes the input vector which

gives the lowest leakage for a combinational design. For large designs, the

exact WPMax-SAT based technique may require large runtimes. Therefore,

for such designs, the exact technique is run for a fixed amount of time followed
by a guided random search around the best leakage vector computed by the

WPMax-SAT solver. We also present a variant of our approach in which the

MLV is generated by including the effect of random variations in leakage
due to variations in process, voltage and temperature (PVT). Experimental

results on ISCAS85 and MCNC91 benchmark circuits show that for larger

circuits on average, our method reports a 3.62% improvement in mean, 4.20%

improvement in standard deviation and 3.67% improvement in µ + 3*σ leakage
of the circuit under PVT variations, compared to a random vector based MLV

determination approach (with the same runtime as the random vector based

approach).

I. Introduction

In deep-submicron designs, power dissipation is becoming a major concern

for chip designers. Along with high performance, low power has emerged

as a first order design goal. Static power consumption is caused by the

leakage currents when there is no switching activity in the circuit, and

constitutes a large fraction of the total power consumption of a design.

Leakage currents can be further classified into subthreshold leakage,

reverse-biased junction leakage, gate induced drain leakage and gate

direct-tunneling leakage [1]. In this paper, we concentrate on reducing the

subthreshold leakage of a combinational design in standby mode, although

our approach can be extended to model the other forms of leakage as well.

The expression for the subthreshold leakage current is given by Equation 1,

where I0 and Vof f are constants, VT is the threshold voltage, vt is the

thermal voltage (26mV at 300 K) and n is the subthreshold slope factor.

Note that the subthreshold leakage current increases exponentially with a

decrease in VT .

Ids = I0
W

L
e
(
Vgs−VT −Vo f f

nvt
)(1−e

(−
Vds
vt

)) (1)

Dynamic power is proportional to the square of supply voltage, therefore

lower supply voltages have been used in recent process generations.

However, in order to maintain the performance of the circuit, the threshold

voltage (VT) is also scaled proportionally. Due to this, in deep-submicron

devices, the contribution of the leakage power to the total power is

significant [2]. This is a matter of concern for portable devices which

spend most of their time in the standby mode. Thus, it is crucial to reduce

the leakage power in order to extend battery life. In this paper, we focus

on subthreshold leakage reduction in combinational designs using input

vector control.

A low leakage design technique which involves minimal design over-

head or change in design methodology is input vector control (IVC). In this

approach, the design is ”parked” in its lowest leakage state during standby

mode [3] [4] [5] [6] [7] [8]. If the design is scan enabled, the minimum

leakage vector (MLV) can be scanned in using scan chains, else the inputs

of the circuit can be forced to the MLV using MUXes (with the standby

signal used as the MUX select line). The motivation behind this technique

is that the subthreshold leakage current of a logic gate (combinational

design) in the standby mode heavily depends upon the state of it’s inputs

(primary inputs). Although it may not be possible to have all the gates

of a circuit in their lowest leakage state (due to the connectivity of these

gates within the circuit), we can apply an input vector which minimizes

the total leakage of the combinational design. However, the problem of

finding the minimum leakage vector (MLV) is NP-complete [9]. In this

paper, we propose a weighted partial Max-SAT based algorithm for the

MLV computation for combinational circuits. Additionally, the effect of

random variations in leakage due to PVT variations has been incorporated

in our formulation.

In the deep-submicron era, the effects of PVT variations have become

significant. Since subthreshold leakage has an exponential dependence

on temperature, threshold voltage and power supply, PVT variations

heavily influence the circuit leakage and correspondingly the MLV of

the circuit. In [10], the authors highlighted the importance of considering

within-die variations of channel length and threshold voltage for accurate

subthreshold leakage current estimation. They showed that subthreshold

leakage power can be overestimated or underestimated by 1.5×-6.5× if

these within-die variations are ignored. To account for the significant de-

pendence of circuit leakage on PVT variations, our approach incorporates

the effect of random PVT variations while computing MLV of a circuit.

It can be conjectured that considering PVT variations just leads to

an increased mean value, but the best leakage state remains unaltered.

According to this reasoning, finding the MLV without PVT variations

would lead to the same result. In fact, this conjecture has been proven

false [11]. Thus, finding the MLV with nominal leakage as the cost

function might not be the best in the presence of PVT variations, since this

might result in a higher worst case (µ + 3*σ) leakage of the combinational

circuit.

Boolean Satisfiability (SAT) is the problem of finding a satisfying

assignment of the variables of a Boolean formula expressed in Conjunctive

Normal Form (CNF), if such an assignment exists. There can be multiple

satisfying assignments which satisfy a given Boolean formula, and SAT

returns one such assignment. SAT based approaches are widely used

in VLSI design for equivalence checking, software-verification, timing

analysis and model checking [12]. A Boolean formula expressed in

Conjunctive Normal Form is a conjunction (AND) of various clauses.

Each clause consists of literals (a variable or its complement are both

referred to as literals), which are ORed together.

A variant of SAT is Max-SAT [13], where the objective is to find an

assignment which maximally satisfies the set of clauses of a given CNF.

If the clauses are assigned individual weights, then finding the assignment

which maximizes the sum of the weights of the clauses that are satisfied

is called weighted Max-SAT [14]. Yet another variant of SAT is weighted

partial Max-SAT (WPMax-SAT) [15] in which the set of clauses are

divided into hard clauses and soft clauses. All the hard clauses must be

satisfied. The soft clauses need to be satisfied such that the sum of the

weights of the satisfied soft clauses is maximized. In this paper, we use

WPMax-SAT to compute MLV for a combinational design.

The key contributions of this paper are:

• We propose a novel WPMax-SAT based algorithm for exact MLV

computation.

• For larger circuits, we further propose a post processing technique

which performs a guided random search around the best leakage vector

computed by WPMax-SAT, in order to obtain the MLV.

• We also incorporate the effect of leakage variations due to PVT

variations, while computing MLV.

• Our results show that in comparison with a random vector [3] based

method (using 10K random vectors), for larger circuits, our approach

provides an average improvement of 3.62% in the mean circuit leakage,

4.20% in the standard deviation of the circuit leakage and 3.67% in the

µ + 3*σ leakage of the circuit with identical runtimes as the random

vector based approach.

978-1-4244-7773-9/10/$26.00 ©2010 IEEE 201

The remainder of the paper is organized as follows. Section II discusses

previous work in the field of determining the minimum leakage vector. In

Section III, we discuss the motivation behind computing PVT aware MLV

for a circuit. In Section IV, we describe our approach of MLV computation.

In Section V, we present our experimental results on ISCAS85 and

MCNC91 benchmark circuits, while conclusions are drawn in Section VI.

II. Previous Work

In the past, various techniques have been proposed for MLV computation.

It was reported [3] that a random search over 10,000 vectors gives 99%

confidence that less than 0.5% of the vectors would have a leakage lower

than the minimum leakage value obtained from random search. The major

shortcoming of this technique is that for a higher degree of confidence,

a large number of random vectors are required, which leads to higher

runtime. In [5], the authors propose a greedy heuristic to guide the search.

However, for small circuits (< 20 gates) the leakage for the computed

MLV is worse than that of a random vector based technique [3].

The authors of [16] model the leakage of logic gates using pseudo

Boolean functions, which are linearized and used to formulate an integer

linear programming (ILP) based model for MLV computation. A faster

heuristic using mixed integer linear programming is presented, which

shows better runtime than the ILP based approach, but with an average

degradation of 5.3% in the leakage value.

In [6], the authors make use of an incremental SAT solver to find the

MLV, after a random vector generation step. The problem is formulated

using pseudo Boolean constraints. A runtime of the order of a few hours

has been reported for some circuits having more than 500 gates. In

contrast, our approach is significantly faster.

In [8], the authors use pseudo Boolean enumeration which makes use of

integer valued decision diagrams. The authors report that their technique

failed on 15 out of 75 (ISCAS85 and MCNC91) benchmark circuits.

In [17], the problem of computing MLV is formulated as an integer linear

program (ILP) and a linear relaxation of the formulated ILP is solved.

The authors report very large runtimes for larger circuits. In such cases,

their approach cannot generate a partial or suboptimal MLV result. Our

approach, on the other hand, successfully computes the MLV for all the

benchmark circuits, as described in the sequel.

The technique of [11] is the only other MLV computation technique

which incorporates the effect of PVT variations on the leakage of the

circuit. They report a 3.08% reduction in µ + 6*σ leakage of a circuit

compared to the random vector based approach. On the other hand, for

larger circuits, our technique obtains a 4.14% reduction in the µ + 6*σ

leakage (over 10,000 Monte Carlo runs) over the random vector based

approach.

Several WPMax-SAT solvers have been developed to date. In our

approach, we use a WPMax-SAT solver called IncWMaxSatz [18]. It

makes use of a dynamic variable selection heuristic, advanced inference

rules and lower bound computation based on unit propagation and failed

literals detection.

III. Approach

We cast the problem of determining the exact minimum leakage vector

of a combinational design as a WPMax-SAT problem. A WPMax-SAT

solver takes two sets of weighted clauses as inputs, namely hard clauses

and soft clauses. The WPMax-SAT solver is required to satisfy all the hard

clauses. The soft clauses are satisfied such that the sum of the weights

of the satisfied soft clauses is maximized. The weight of a hard clause

should be more than the sum of the weights of all the soft clauses.

The hard clauses of our WPMax-SAT instance are further classified into

S clauses and T clauses. A detailed description of these clauses is given

next.

A. Hard clauses

1) S clauses

S clauses are the circuit clauses which describe the functional behavior

of the circuit (these must be satisfied by the solver). Let us consider a

2 input AND gate having a, b as input and y as output. The logical

relation between y and a, b can be expressed in CNF form as y⇔ ab ≡
(y′ +a)(y′ +b)(y+a′ +b′). In a similar manner, we can write S clauses

for a logic gate having an arbitrary number of inputs.

Consider the circuit having an INV and a NAND2 gate, described by

the two equations x = INV (a), and c = NAND(x,b). It has 2 inputs a, b

and a single output c. The S clauses for this circuit are (x′+a′)(x+a)(c+
b)(c+x)(c′ +b′ +x′).

2) T clauses

T clauses describe the leakage of the gates for their different input

combinations. For example, consider a 2 input logic gate. The possible

input combinations are 00, 01, 10 and 11. Let each combination be

represented by the variables y1, y2, y3 and y4 respectively. They can be

expressed in CNF form using following clauses:

y1 ⇔ a′b′ ≡ (y1′ + a′)(y1′ + b′)(y1 + a + b)

y2 ⇔ a′b ≡ (y2′ + a′)(y2′ + b)(y2 + a + b′)

y3 ⇔ ab′ ≡ (y3′ + a)(y3′ + b′)(y3 + a′ + b)

y4 ⇔ ab ≡ (y4′ + a)(y4′ + b)(y4 + a′ + b′)

The above idea can be generalized to any logic gate, with an arbitrary

number of inputs. For our example circuit consisting of an INV and a

NAND2 gate, the T clauses are shown below. For the INV, x1 and x2

represent the 2 possible input combinations (1 and 0). For the NAND2

gate, c1, c2, c3 and c4 represent the 4 possible input combinations (00,

01, 10 and 11).

(x1′ + a)(x1 + a′)

(x2′ + a′)(x2 + a)

(c1′ + x′)(c1′ + b′)(c1 + x + b)

(c2′ + x′)(c2′ + b)(c2 + x + b′)

(c3′ + x)(c3′ + b′)(c3 + x′ + b)

(c4′ + x)(c4′ + b)(c4 + x′ + b′)

In order to ensure that an assignment obtained from the WPMax-SAT

solver selects only one input combination for any gate, additional T clauses

are required. The additional T clauses for our example circuit are shown

below:

(x1 + x2)(x1′ + x2′)

(c1 + c2 + c3 + c4)(c1′ + c2′)(c1′ + c3′)(c1′ + c4′)

(c2′ + c3′)(c2′ + c4′)(c3′ + c4′)

We refer to the S and T clauses generated above as hard clauses. We next

model the leakage corresponding to each input combination for a given

logic gate, as explained next.

B. Soft clauses and weights of clauses

The weight of any input combination for a logic gate G is determined by

the leakage of G for the corresponding input combination. For example,

for a NAND2 gate, the weight corresponding to input combination 00 is

determined by the leakage of the NAND2 gate with 00 as inputs. The input

combination with a small leakage value is assigned a higher weight, and

the input combination having a higher leakage value is assigned a lower

weight. In our gate library (which was implemented using a BPTM 100nm

model card [19]), the leakage values over all the gates for all the input

combinations was less than 200nA. The weight for an input combination

was therefore obtained by subtracting it’s corresponding leakage number

from a sufficiently large number (to avoid weights ≤ 0). The result was

then multiplied by a large number to increase the resolution between the

weights of any two input combinations having comparable leakage values.

In particular, we used the formula

wt
j
G = (500nA - leakage

j
G)*1000 for weights. Where leakage

j
G is the

leakage (in nA) for gate G for input combination j. For our example

circuit, the possible input combinations for the INV gate are specified

by x1 and x2 (for input 1 and 0 respectively). Similarly, for the NAND2

gate, the four possible combinations are specified by c1, c2, c3 and c4

(for inputs 00, 01, 10 and 11 respectively). Thus, the soft clauses for the

example circuit will be written using x1, x2, c1, c2, c3 and c4. The weight

202

of a soft clause is computed using the above expression. The soft clauses

for the example circuit are: wt1INV x1, wt0INV x2, wt00NAND2 c1, wt01NAND2 c2,

wt10NAND2 c3, wt
11
NAND2 c4. Note that the weight of all hard clauses (clauses

in S and T) should be more than the sum of the weights of all the soft

clauses. The weight of each of the S and T clauses is same, and is given

by the sum of the weights of all the soft clauses plus one.

The effect of PVT variations on circuit leakage can be elegantly

incorporated in this approach by using µ + 3*σ as the leakage value for

a given input combination, in the weight formula for soft clauses. If the

objective is to optimize the nominal circuit leakage, the nominal leakage

is used while computing the weights of soft clauses.

C. Post processing

For MLV computation, the WPMax-SAT instance of a circuit is created

as the conjunction of the S, T and soft clauses as explained in Section III-

A and III-B. This instance is provided as an input to the IncWMaxSatz

solver. The solver is run for L seconds, which is a user defined input to

the solver. For some large circuits, the solver is not able to find the optimal

MLV assignment within L seconds, and it times out. In such cases, the

vector reported at the end of timeout (which we refer to as vec1) may

not be the best leakage vector. Therefore we perform a post processing

step, in which we search for a better leakage vector through a guided

random search, by using the vector computed by the solver at timeout, as

explained next.

Consider a circuit having k primary inputs, which times out after L

seconds. Let us assume that the best vector computed by the IncWMaxSatz

solver at timeout is vec1 = v1v2 · · ·vk, where vi ∈ {0,1}. Now, 10000/k
random vectors are generated for each primary input xi (1 ≤ i ≤ k),

such that the value of xi is set to vi, but all other primary inputs are

randomly generated. Note that the total number of vectors generated in

the post processing step is 10,000. The vector vec2 which gives the lowest

leakage value over the 10,000 vectors (in the post processing step) is

retained. Finally, the algorithm returns vec2 if its leakage is lower than

vec1, otherwise it returns vec1.

If the cost function to be minimized is µ + 3*σ leakage then the leakage

values computed in the post processing step use the µ + 3*σ leakage of

the individual gate’s input combinations.

IV. Experimental Results

We tested our proposed algorithm on ISCAS85 and MCNC91 benchmark

circuits. A 100nm [19] technology library consisting of INV, NAND2,

NAND3, NOR2, NOR3, AND2, AND3, OR2, OR3 gates was used

for mapping the circuits. After running technology independent logic

optimizations, the circuits were mapped for minimum area using SIS [20].

Each input combination of every cell in the cell library was precharac-

terized for subthreshold leakage (nominal, mean and standard deviation)

at a supply voltage of 1.2V. To generate these statistics, Monte Carlo

(MC) simulations were run in SPICE using random PVT variations for

30,000 samples. These simulations were run with a 3σ variation of 15% in

the channel length, 10% in the power supply and 12.7% in the threshold

voltages of devices. The mean and standard deviation of the PVT variables

used in MC simulations are listed in Table I. The software code for

generating the WPMax-SAT instance of a circuit was written using the

Tcl scripting language. IncWMaxSatz [18] was used as the WPMax-

SAT solver. The source code of the solver was modified to timeout after

L seconds (which is a user defined input). All the experiments were

conducted on a Linux computer with a 2.6 GHz Intel processor and 4GB

RAM.

Parameter µ σ

Channel length 0.1µm 0.05µm

Power supply 1.2V 0.04V

VT PMOS 0.3030V 0.0127V

VT NMOS 0.2607V 0.0110V

Temperature 30◦C 1◦C

TABLE I

PVT PARAMETER VARIATIONS

We conducted two set of experiments. In the first set, we compare the

performance of our approach against the random vector based approach

with nominal leakage and µ + 3*σ leakage, as our cost functions respec-

tively. In the second set, we compare the performance of our approach

against the random vector based technique using µ + 3*σ as our cost

function with total runtime of our approach constrained to be the same as

that of random vector based approach.

In all the experiments reported in this paper, for the random vector

based approach, the MLV was obtained after 10K random simulations.

According to [3], this statistically yields a higher than 99% confidence

that we will obtain a leakage vector which is 0.5% from the minimum

leakage value.

Also, in all the experiments reported in this paper, after we obtain the

MLV for any circuit using any of the competing methods, we perform

10K Monte Carlo simulations and compute the µ, σ and µ + 3*σ leakage

from these MC simulations.

A. Comparing against random vector for different cost

functions

In this set of experiments, we enforced a timeout of 600 seconds. Note

that no post processing step was required for these circuits, since our MLV

approach found an exact minimum solution within the timeout duration.

Detailed results are not provided due to lack of space. We used both

cost functions (nominal leakage as well as µ + 3*σ leakage) for our

approach. Over 22 examples (with between 25 and 477 gates, and between

14 and 199 inputs), our approach with nominal leakage as cost function,

gives a 7.32% (7.33%) improvement in mean leakage (µ + 3*σ leakage).

With µ + 3*σ as the cost function, our approach gives a 7.17% (7.74%)

improvement in mean leakage (µ + 3*σ leakage). With µ + 3*σ as the

cost function (as opposed to nominal leakage), the average improvement in

standard deviation over the random vector based approach increases from

7.08% to 8.61%. A higher improvement in the µ + 3*σ value ensures

a lower worst case circuit leakage variation under PVT variations. The

remaining results in this paper use µ + 3*σ leakage as the cost function.

Table II contains the circuits for which our approach timed out, and post

processing was used for further improvement. Column 1 lists the circuit

name, number of logic gates in the circuit, and the number of primary

inputs, Columns 2, 3 and 4 show the mean, standard deviation and µ +

3*σ value of the leakage obtained by the random vector based approach,

after running Monte Carlo simulations on the MLV that was returned.

%Imp t refers to the percentage improvements at timeout and %Imp p

refers to the percentage improvements after post processing. Columns 5,

6 and 7 show the percentage improvement in the mean, standard deviation

and µ + 3*σ value of the leakage of our technique over the random vector

based approach (at timeout). Columns 8, 9 and 10 list the percentage

improvement in the mean, standard deviation and µ + 3*σ value of the

leakage of our approach (after post-processing) over the random vector

based approach. Columns 11 and 12 report the runtimes for the random

vector based approach and our algorithm respectively. From the results

shown in Table II, the average reduction in mean, standard deviation and

µ + 3*σ leakage is 4.03%, 4.85% and 4.08% respectively.

B. Comparing against random vector based technique

for µ + 3*σ cost function with same total runtime

In this experiment, we compare the performance of our proposed algorithm

with the random vector based approach, when the total runtime of our

approach is kept the same as that of the random vector based approach

using 10K vectors, for larger circuits only.

Let the runtime to generate 10K random vectors for a circuit be τ.

The WPMax-SAT solver is run for ατ seconds where 0 ≤ α ≤ 1 and

post processing is done for (1-α)*τ seconds. Post processing for (1-α)*τ

seconds is equivalent to generating (1-α)*10000 post processing vectors

instead of 10000 vectors. We experimented with different values of α (0.5

to 0.9) and found that α=0.7 gave best results. Table III shows results with

α=0.7, for µ + 3*σ leakage as the cost function. The average improvement

in mean is 3.62%, improvement in standard deviation is 4.20%, and in µ +

3*σ leakage, the average improvement is 3.67% (over the random vector

203

Circuit (#Gates / #Inputs) Random µ Random σ Random µ + 3*σ %Imp t µ %Imp t σ %Imp t µ + 3*σ %Imp p µ %Imp p σ %Imp p µ + 3*σ Random T(s) Our T(s)

i3 (106 / 132) 941.0 105.2 1256.6 22.97 24.85 23.44 22.97 24.85 23.44 20.27 620.61

i5 (132 / 133) 1332.3 140.0 1752.5 -0.10 3.91 0.86 -0.10 3.91 0.86 24.17 624.41

i4 (158 / 192) 892.8 121.0 1255.9 1.78 1.86 1.80 1.78 1.86 1.80 30.88 631.38

i2 (182 / 201) 1038.8 109.3 1366.8 39.69 23.13 35.72 39.69 23.13 35.72 34.26 634.93

x1 (238 / 51) 1436.2 144.9 1870.9 -2.36 4.86 -0.68 -1.21 1.39 -0.61 37.98 637.20

example2 (245 / 85) 1380.1 146.0 1818.1 6.94 0.99 5.51 6.94 0.99 5.51 40.45 639.87

x4 (307 / 94) 1975.5 177.4 2507.9 -2.64 0.86 -1.9 0.32 -0.20 0.21 48.71 648.52

c880 (330 / 60) 1996.3 168.7 2502.5 -6.19 -0.74 -5.09 0.92 4.78 1.70 52.35 652.10

c1908 (408 / 33) 2567.5 193.5 3148.2 2.14 1.94 2.10 2.14 1.94 2.10 62.32 661.74

c499 (447 / 41) 2691.6 191.7 3266.9 -0.99 1.78 -0.50 -0.04 2.20 0.35 68.26 666.56

c1355 (447 / 41) 2663.3 187.5 3225.9 -1.84 -0.65 -1.63 -1.84 -0.65 -1.63 68.1 667.39

rot (539 / 135) 3318.7 212.3 3955.9 -10.82 -9.46 -10.60 -1.87 -1.34 -1.78 85.10 683.87

frg2 (640 / 143) 4234.0 249.6 4983.0 -6.15 -2.98 -5.67 -0.49 -1.44 -0.64 99.60 698.82

apex6 (646 / 135) 4407.1 270.6 5219.0 4.92 14.97 6.49 4.92 14.97 6.49 100.07 700.06

x3 (662 / 135) 4690.9 270.3 5502.1 4.10 7.50 4.60 4.10 7.50 4.60 101.68 701.66

c3540 (1014 / 50) 7134.4 338.5 8150.1 -1.37 -1.72 -1.41 -0.38 1.82 -0.10 155.33 752.75

c5315 (1496 / 178) 9526.1 383.6 10676.9 -0.52 6.16 0.20 -0.52 6.16 0.20 229.54 827.61

c7552 (2002 / 207) 12712.5 427.9 13996.5 -3.12 -2.43 -3.05 0.10 1.11 0.19 306.39 901.98

c6288 (2942 / 32) 17126.6 482.5 18574.4 -15.92 -11.61 -15.58 -0.81 -0.77 -0.80 443.25 1038.53

AVG 1.60 3.32 1.82 4.03 4.85 4.08

TABLE II

LEAKAGE RESULTS WITH µ + 3*σ LEAKAGE AS COST FUNCTION (USING POST PROCESSING)

Circuit (#Gates / #Inputs) Random µ Random σ Random µ + 3*σ %Imp t µ %Imp t σ %Imp t µ + 3*σ %Imp p µ %Imp p σ %Imp p µ + 3*σ

i3 (106 / 132) 941.0 105.2 1256.6 23.12 23.98 23.34 23.12 23.98 23.34

i5 (132 / 133) 1332.3 140.0 1752.5 -1.40 1.63 -0.67 -1.57 4.04 -0.22

c432 (144 / 36) 924.1 124.3 1297.2 -5.38 1.10 -3.52 4.75 7.64 5.58

i4 (158 / 192) 892.8 121.0 1255.9 1.42 2.81 1.82 1.42 2.81 1.82

i2 (182 / 201) 1038.8 109.3 1366.8 39.47 23.32 35.59 39.47 23.32 35.59

x1 (238 / 51) 1436.2 144.9 1870.9 -13.32 -4.19 -11.20 0.01 -1.02 -0.23

example2 (245 / 85) 1380.1 146.0 1818.1 7.19 2.90 6.16 7.19 2.90 6.16

x4 (307 / 94) 1975.5 177.4 2507.9 -2.71 0.27 -2.08 -2.71 0.27 -2.08

c880 (330 / 60) 1996.3 168.7 2502.5 -10.24 -5.94 -9.37 0.06 0.43 0.14

c1908 (408 / 33) 2567.5 193.5 3148.2 0.42 -0.68 0.22 0.42 -0.68 0.22

c499 (447 / 41) 2691.6 191.7 3266.9 -2.11 1.11 -1.54 -2.11 1.11 -1.54

c1355 (447 / 41) 2663.3 187.5 3225.9 -3.24 -0.49 -2.76 -0.67 -0.56 -0.65

rot (539 / 135) 3318.7 212.3 3955.9 -12.02 -10.79 -11.82 -1.64 -4.56 -2.11

frg2 (640 / 143) 4234.0 249.6 4983.0 -6.59 -3.72 -6.16 0.30 0.59 0.35

apex6 (646 / 135) 4407.1 270.6 5219.0 3.97 12.02 5.22 3.97 12.02 5.22

x3 (662 / 135) 4690.9 270.3 5502.1 3.43 7.22 3.99 3.43 7.22 3.99

c3540 (1014 / 50) 7134.4 338.5 8150.1 -1.89 0.31 -1.62 -0.57 0.91 -0.39

c5315 (1496 / 178) 9526.1 383.6 10676.9 -0.49 4.91 0.09 -0.49 4.91 0.09

c7552 (2002 / 207) 12712.5 427.9 13996.5 -3.07 -1.58 -2.93 -0.54 0.55 -0.44

c6288 (2942 / 32) 17126.6 482.5 18574.4 -19.03 -14.36 -18.67 -1.34 -1.71 -1.37

AVG -0.12 1.99 0.20 3.62 4.20 3.67

TABLE III

OUR APPROACH WITH µ + 3*σ COST FUNCTION WITH TOTAL RUNTIME SAME AS THAT OF RANDOM VECTOR BASED APPROACH USING 10K VECTORS AND α = 0.7

based approach). Thus, given the same runtime as the random vector based

technique, our algorithm ensures lower worst case leakage under the effect

of process variations.

C. Comparison with previous work

To the best of our knowledge, [11] is the only existing work on MLV

computation which includes the effect of PVT variations. All other

previous approaches ignore within-die variations and only focus on MLV

with nominal leakage as the cost function. As we noted in Section I, this

MLV may not be optimal under PVT variations. In [11], the authors report

an average improvement of 2.07% in mean circuit leakage and 3.08%

improvement in µ + 6*σ leakage compared to a random vector based

approach. In contrast, for larger circuits, our approach yields an average

improvement of 4.03% in mean circuit leakage and 4.14% improvement

in µ + 6*σ leakage.

References

[1] F. Fallah and M. Pedram, “Standby and Active Leakage Current Control and Minimization

in CMOS VLSI Circuits,” IEICE Trans. on Electronics, Special Section on Low-Power

LSI and Low-Power IP, pp. 509–519, 2005.

[2] “The International Technology Roadmap for Semiconductors.”

http://public.itrs.net/, 2003.

[3] J. Halter and F. Najm, “A Gate Level Leakage Power Reduction Method for Ultra Low

Power CMOS Circuits,” Proceedings of CICC, pp. 475–478, 1997.

[4] M. Johnson, D. Somasekhar, and K. Roy, “Models and algorithms for bounds on leakage

in CMOS circuits,” IEEE Transactions on Computer aided design of Integrated circuits

and systems, pp. 714–725, 1999.

[5] R. M. Rao, F. Liu, J. L. Burns, and R. B. Brown, “A Heuristic to Determine Low Leakage

Sleep State Vectors for CMOS Combinational Circuits,” Proceedings of ICCAD’03,

p. 689, 2003.

[6] F. Aloul, S. Hassoun, K. Sakallah, and D. Blaauw, “Robust SAT-Based Search Algorithm

for Leakage Power Reduction,” Proceedings, Power and Timing Models and Simulations

(PATMOS), pp. 167–177, 2002.

[7] N. Jayakumar and S. P. Khatri, “An algorithm to minimize leakage through simultaneous

input vector control and circuit modification,” Design Automation and Test in Europe

Conference, pp. 618–623, 2007.

[8] K. Chopra and S. Vrudhula, “Implicit Pseudo Boolean Enumeration Algorithms for Input

Vector Control,” Proceedings, Design automation conference, pp. 767–772, 2004.

[9] S. B. et al., “Maximum Leakage Power Estimation for CMOS Circuits,” In proceedings

IEEE, AVWLPD, p. 116, 1999.

[10] S. Narendra, V. De, S. Borkar, D. Antoniadis, and A. Chandrakasan, “Full-chip Sub-

threshold Leakage Power Prediction for sub-0.18um CMOS,” Proceedings, ISLPED, 2002,

pp. 501–510, 2002.

[11] K. Gulati, N. Jayakumar, S. P. Khatri, and D. Walker, “A Probabilistic Method to

Determine the Minimum Leakage Vector for Combinational Designs in the Presence of

Random PVT Variations,” Integration, The VLSI Journal, vol. 41, pp. 399–412, 2007.

[12] J. Marques-Silva and K. A. Sakallah, “Boolean Satisfiability in Electronic Design

Automation,” Proceedings of the 37th conference on design automation, pp. 675–680,

2000.

[13] H. Zhang, H. Shen, and F. Manya, “Exact Algorithms for MAX-SAT,” In Electronic Notes

on Theoretical Computer Science, 86(1), 2003.

[14] Z. Xing and W. Zhang, “Efficient Strategies for (weighted) Maximum Satisfiability,” In

Proceedings of CP-2004, pp. 690–705, 2004.

[15] Fu, Z., Malik, and S., “On Solving the Partial Max-SAT Problem,” In Proceedings of

SAT’06, 2006.

[16] F. Gao and J. Hayes, “Exact and heuristic approaches to input vector control for leakage

power reduction,” in Proceedings, International Conference on Computer-aided Design,

pp. 527–532, Nov 2004.

[17] S. R. Naidu and E. Jacobs, “Minimizing stand-by leakage power in static CMOS circuits,”

Design, Automation and Test in Europe, 2001.

[18] H. Lin, K. Su, C. M. Li, and J. Argelich, “IncWMaxSatz,” Max-SAT Evaluation, 2008.

[19] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “New paradigm of pre-

dictive MOSFET and interconnect modeling for early circuit design,” in Proc. of

IEEE Custom Integrated Circuit Conference, pp. 201–204, Jun 2000. http://www-

device.eecs.berkeley.edu/ ptm.

[20] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. Stephan, R. Brayton, and A. S. Vincentelli, “SIS: A System for Sequential Circuit

Synthesis,” University of California-Berkeley, UCB/ERL M92/41, 1992.

204

