Minimum Leakage Vector Computation using Weighted Partial MaxSAT

Amrinder Singh’

Kanupriya Gulati*

Sunil P Khatri'

 Department of Electrical & Computer Engineering, Texas A&M University, College Station TX 77843.
* Strategic CAD Laboratories, Intel Corporation, Hillsboro OR 97124

Abstract— Aggressive scaling of CMOS technology has enabled faster and
smaller designs but has posed new challenges. In the deep-submicron era,
leakage power has become a major contributor to the overall power dissipation
of an IC. In this paper, we present a weighted partial Max-SAT (WPMax-SAT)
based approach to find the minimum leakage vector (MLV) of a combinational
design. In its exact form, this technique computes the input vector which
gives the lowest leakage for a combinational design. For large designs, the
exact WPMax-SAT based technique may require large runtimes. Therefore,
for such designs, the exact technique is run for a fixed amount of time followed
by a guided random search around the best leakage vector computed by the
WPMax-SAT solver. We also present a variant of our approach in which the
MLV is generated by including the effect of random variations in leakage
due to variations in process, voltage and temperature (PVT). Experimental
results on ISCAS85 and MCNC91 benchmark circuits show that for larger
circuits on average, our method reports a 3.62% improvement in mean, 4.20%
improvement in standard deviation and 3.67 % improvement in i + 3*c leakage
of the circuit under PVT variations, compared to a random vector based MLV
determination approach (with the same runtime as the random vector based
approach).

I. Introduction

In deep-submicron designs, power dissipation is becoming a major concern
for chip designers. Along with high performance, low power has emerged
as a first order design goal. Static power consumption is caused by the
leakage currents when there is no switching activity in the circuit, and
constitutes a large fraction of the total power consumption of a design.
Leakage currents can be further classified into subthreshold leakage,
reverse-biased junction leakage, gate induced drain leakage and gate
direct-tunneling leakage [1]. In this paper, we concentrate on reducing the
subthreshold leakage of a combinational design in standby mode, although
our approach can be extended to model the other forms of leakage as well.
The expression for the subthreshold leakage current is given by Equation 1,
where Iy and Vs are constants, Vr is the threshold voltage, v, is the
thermal voltage (26mV at 300 K) and # is the subthreshold slope factor.
Note that the subthreshold leakage current increases exponentially with a
decrease in V7.
Ves=Vr—Vyrr Vo

iy =lo e (1) M

Dynamic power is proportional to the square of supply voltage, therefore
lower supply voltages have been used in recent process generations.
However, in order to maintain the performance of the circuit, the threshold
voltage (Vr) is also scaled proportionally. Due to this, in deep-submicron
devices, the contribution of the leakage power to the total power is
significant [2]. This is a matter of concern for portable devices which
spend most of their time in the standby mode. Thus, it is crucial to reduce
the leakage power in order to extend battery life. In this paper, we focus
on subthreshold leakage reduction in combinational designs using input
vector control.

A low leakage design technique which involves minimal design over-
head or change in design methodology is input vector control (IVC). In this
approach, the design is “parked” in its lowest leakage state during standby
mode [3] [4] [5] [6] [7] [8]. If the design is scan enabled, the minimum
leakage vector (MLV) can be scanned in using scan chains, else the inputs
of the circuit can be forced to the MLV using MUXes (with the standby
signal used as the MUX select line). The motivation behind this technique
is that the subthreshold leakage current of a logic gate (combinational
design) in the standby mode heavily depends upon the state of it’s inputs
(primary inputs). Although it may not be possible to have all the gates
of a circuit in their lowest leakage state (due to the connectivity of these
gates within the circuit), we can apply an input vector which minimizes
the total leakage of the combinational design. However, the problem of

978-1-4244-7773-9/10/$26.00 ©2010 IEEE

finding the minimum leakage vector (MLV) is NP-complete [9]. In this
paper, we propose a weighted partial Max-SAT based algorithm for the
MLV computation for combinational circuits. Additionally, the effect of
random variations in leakage due to PVT variations has been incorporated
in our formulation.

In the deep-submicron era, the effects of PVT variations have become
significant. Since subthreshold leakage has an exponential dependence
on temperature, threshold voltage and power supply, PVT variations
heavily influence the circuit leakage and correspondingly the MLV of
the circuit. In [10], the authors highlighted the importance of considering
within-die variations of channel length and threshold voltage for accurate
subthreshold leakage current estimation. They showed that subthreshold
leakage power can be overestimated or underestimated by 1.5x-6.5x if
these within-die variations are ignored. To account for the significant de-
pendence of circuit leakage on PVT variations, our approach incorporates
the effect of random PVT variations while computing MLV of a circuit.

It can be conjectured that considering PVT variations just leads to
an increased mean value, but the best leakage state remains unaltered.
According to this reasoning, finding the MLV without PVT variations
would lead to the same result. In fact, this conjecture has been proven
false [11]. Thus, finding the MLV with nominal leakage as the cost
function might not be the best in the presence of PVT variations, since this
might result in a higher worst case (u + 3*c) leakage of the combinational
circuit.

Boolean Satisfiability (SAT) is the problem of finding a satistying
assignment of the variables of a Boolean formula expressed in Conjunctive
Normal Form (CNF), if such an assignment exists. There can be multiple
satisfying assignments which satisfy a given Boolean formula, and SAT
returns one such assignment. SAT based approaches are widely used
in VLSI design for equivalence checking, software-verification, timing
analysis and model checking [12]. A Boolean formula expressed in
Conjunctive Normal Form is a conjunction (AND) of various clauses.
Each clause consists of literals (a variable or its complement are both
referred to as literals), which are ORed together.

A variant of SAT is Max-SAT [13], where the objective is to find an
assignment which maximally satisfies the set of clauses of a given CNF.
If the clauses are assigned individual weights, then finding the assignment
which maximizes the sum of the weights of the clauses that are satisfied
is called weighted Max-SAT [14]. Yet another variant of SAT is weighted
partial Max-SAT (WPMax-SAT) [15] in which the set of clauses are
divided into hard clauses and soft clauses. All the hard clauses must be
satisfied. The soft clauses need to be satisfied such that the sum of the
weights of the satisfied soft clauses is maximized. In this paper, we use
WPMax-SAT to compute MLV for a combinational design.

The key contributions of this paper are:

e We propose a novel WPMax-SAT based algorithm for exact MLV
computation.

e For larger circuits, we further propose a post processing technique
which performs a guided random search around the best leakage vector
computed by WPMax-SAT, in order to obtain the MLV.

e We also incorporate the effect of leakage variations due to PVT
variations, while computing MLV.

e QOur results show that in comparison with a random vector [3] based
method (using 10K random vectors), for larger circuits, our approach
provides an average improvement of 3.62% in the mean circuit leakage,
4.20% in the standard deviation of the circuit leakage and 3.67% in the
u + 3*c leakage of the circuit with identical runtimes as the random
vector based approach.

201

The remainder of the paper is organized as follows. Section II discusses
previous work in the field of determining the minimum leakage vector. In
Section 111, we discuss the motivation behind computing PVT aware MLV
for a circuit. In Section IV, we describe our approach of MLV computation.
In Section V, we present our experimental results on ISCAS85 and
MCNC91 benchmark circuits, while conclusions are drawn in Section VI.

II. Previous Work

In the past, various techniques have been proposed for MLV computation.
It was reported [3] that a random search over 10,000 vectors gives 99%
confidence that less than 0.5% of the vectors would have a leakage lower
than the minimum leakage value obtained from random search. The major
shortcoming of this technique is that for a higher degree of confidence,
a large number of random vectors are required, which leads to higher
runtime. In [5], the authors propose a greedy heuristic to guide the search.
However, for small circuits (< 20 gates) the leakage for the computed
MLV is worse than that of a random vector based technique [3].

The authors of [16] model the leakage of logic gates using pseudo
Boolean functions, which are linearized and used to formulate an integer
linear programming (ILP) based model for MLV computation. A faster
heuristic using mixed integer linear programming is presented, which
shows better runtime than the ILP based approach, but with an average
degradation of 5.3% in the leakage value.

In [6], the authors make use of an incremental SAT solver to find the
MLYV, after a random vector generation step. The problem is formulated
using pseudo Boolean constraints. A runtime of the order of a few hours
has been reported for some circuits having more than 500 gates. In
contrast, our approach is significantly faster.

In [8], the authors use pseudo Boolean enumeration which makes use of
integer valued decision diagrams. The authors report that their technique
failed on 15 out of 75 (ISCAS85 and MCNC91) benchmark circuits.
In [17], the problem of computing MLV is formulated as an integer linear
program (ILP) and a linear relaxation of the formulated ILP is solved.
The authors report very large runtimes for larger circuits. In such cases,
their approach cannot generate a partial or suboptimal MLV result. Our
approach, on the other hand, successfully computes the MLV for all the
benchmark circuits, as described in the sequel.

The technique of [11] is the only other MLV computation technique
which incorporates the effect of PVT variations on the leakage of the
circuit. They report a 3.08% reduction in u + 6*c leakage of a circuit
compared to the random vector based approach. On the other hand, for
larger circuits, our technique obtains a 4.14% reduction in the u + 6*c
leakage (over 10,000 Monte Carlo runs) over the random vector based
approach.

Several WPMax-SAT solvers have been developed to date. In our
approach, we use a WPMax-SAT solver called IncWMaxSatz [18]. It
makes use of a dynamic variable selection heuristic, advanced inference
rules and lower bound computation based on unit propagation and failed
literals detection.

III. Approach

We cast the problem of determining the exact minimum leakage vector
of a combinational design as a WPMax-SAT problem. A WPMax-SAT
solver takes two sets of weighted clauses as inputs, namely hard clauses
and soft clauses. The WPMax-SAT solver is required to satisfy all the hard
clauses. The soft clauses are satisfied such that the sum of the weights
of the satisfied soft clauses is maximized. The weight of a hard clause
should be more than the sum of the weights of all the soft clauses.

The hard clauses of our WPMax-SAT instance are further classified into
S clauses and 7 clauses. A detailed description of these clauses is given
next.

A. Hard clauses

1) S clauses

S clauses are the circuit clauses which describe the functional behavior
of the circuit (these must be satisfied by the solver). Let us consider a

2 input AND gate having a, b as input and y as output. The logical
relation between y and a, b can be expressed in CNF form as y < ab =
(' +a)(y) +b)(y+d +b'). In a similar manner, we can write S clauses
for a logic gate having an arbitrary number of inputs.

Consider the circuit having an INV and a NAND2 gate, described by
the two equations x = INV (a), and ¢ = NAND(x,b). It has 2 inputs a, b
and a single output c. The S clauses for this circuit are (x' +d’)(x+a)(c+
b)(c+x)(c"+b +X).

2) T clauses

T clauses describe the leakage of the gates for their different input
combinations. For example, consider a 2 input logic gate. The possible
input combinations are 00, 01, 10 and 11. Let each combination be
represented by the variables yl, y2, y3 and y4 respectively. They can be
expressed in CNF form using following clauses:

yl & db =yl +d)yl' + b))yl +a + b)
2 edb=02 +d)y2 + b2 +a+b)
y3 < ab = (3 +)3 +)3 +d +b)
v4 & ab = (4 + a)yd + b)yd +d + b)

The above idea can be generalized to any logic gate, with an arbitrary
number of inputs. For our example circuit consisting of an INV and a
NAND?2 gate, the T clauses are shown below. For the INV, x1 and x2
represent the 2 possible input combinations (1 and 0). For the NAND2
gate, cl, ¢2, ¢3 and c4 represent the 4 possible input combinations (00,
01, 10 and 11).

xl" + a)(x1 + d)

*x2 +d)x2 + a)
(1" + X)cl” + B)(cl + x + b)
2 +xX)c2 +b)(2+x+ D)
(3" + x)(c3 + b')c3 + X + b)
(4 + x)(c4 +Db)chd +x + 1)

In order to ensure that an assignment obtained from the WPMax-SAT
solver selects only one input combination for any gate, additional 7" clauses
are required. The additional 7' clauses for our example circuit are shown
below:
(x1 + x2)(x1” + x2')
(cl + 2 + 3 + cd)(cl” + 2l + 3l + c4)
(2 + 32" + c4)(c3 + c4)

We refer to the S and T clauses generated above as hard clauses. We next
model the leakage corresponding to each input combination for a given
logic gate, as explained next.

B. Soft clauses and weights of clauses

The weight of any input combination for a logic gate G is determined by
the leakage of G for the corresponding input combination. For example,
for a NAND?2 gate, the weight corresponding to input combination 00 is
determined by the leakage of the NAND2 gate with 00 as inputs. The input
combination with a small leakage value is assigned a higher weight, and
the input combination having a higher leakage value is assigned a lower
weight. In our gate library (which was implemented using a BPTM 100nm
model card [19]), the leakage values over all the gates for all the input
combinations was less than 200nA. The weight for an input combination
was therefore obtained by subtracting it’s corresponding leakage number
from a sufficiently large number (to avoid weights < 0). The result was
then multiplied by a large number to increase the resolution between the
weights of any two input combinations having comparable leakage values.
In particular, we used the formula)

wtl, = (500nA - leakage[)*1000 for weights. Where leakage; is the
leakage (in nA) for gate G for input combination j. For our example
circuit, the possible input combinations for the INV gate are specified
by x1 and x2 (for input 1 and O respectively). Similarly, for the NAND2
gate, the four possible combinations are specified by cl, ¢2, ¢3 and c4
(for inputs 00, 01, 10 and 11 respectively). Thus, the soft clauses for the
example circuit will be written using x1, x2, c1, ¢2, ¢3 and c4. The weight

202

of a soft clause is computed using the above expression. The soft clauses
for the example circuit are: thle x1, wt})NV x2, wt}\),% Np2 €L, wz‘l(\),}4 ND2 €2,
wt]{,g ND2 €3, wtl{,ix N2 ¢4. Note that the weight of all hard clauses (clauses
in S and 7T') should be more than the sum of the weights of all the soft
clauses. The weight of each of the S and T clauses is same, and is given
by the sum of the weights of all the soft clauses plus one.

The effect of PVT variations on circuit leakage can be elegantly
incorporated in this approach by using u + 3*c as the leakage value for
a given input combination, in the weight formula for soft clauses. If the
objective is to optimize the nominal circuit leakage, the nominal leakage
is used while computing the weights of soft clauses.

C. Post processing

For MLV computation, the WPMax-SAT instance of a circuit is created
as the conjunction of the S, 7' and soft clauses as explained in Section III-
A and III-B. This instance is provided as an input to the IncWMaxSatz
solver. The solver is run for £ seconds, which is a user defined input to
the solver. For some large circuits, the solver is not able to find the optimal
MLV assignment within £ seconds, and it times out. In such cases, the
vector reported at the end of timeout (which we refer to as vecy) may
not be the best leakage vector. Therefore we perform a post processing
step, in which we search for a better leakage vector through a guided
random search, by using the vector computed by the solver at timeout, as
explained next.

Consider a circuit having k primary inputs, which times out after L
seconds. Let us assume that the best vector computed by the IncWMaxSatz
solver at timeout is vec; = vjvy---vg, where v; € {0,1}. Now, 10000/k
random vectors are generated for each primary input x; (I < i < k),
such that the value of x; is set to v;, but all other primary inputs are
randomly generated. Note that the total number of vectors generated in
the post processing step is 10,000. The vector vecy which gives the lowest
leakage value over the 10,000 vectors (in the post processing step) is
retained. Finally, the algorithm returns vec; if its leakage is lower than
vecy, otherwise it returns vecy.

If the cost function to be minimized is i + 3*c leakage then the leakage
values computed in the post processing step use the u + 3*c leakage of
the individual gate’s input combinations.

IV. Experimental Results

We tested our proposed algorithm on ISCAS85 and MCNC91 benchmark
circuits. A 100nm [19] technology library consisting of INV, NAND2,
NAND3, NOR2, NOR3, AND2, AND3, OR2, OR3 gates was used
for mapping the circuits. After running technology independent logic
optimizations, the circuits were mapped for minimum area using SIS [20].
Each input combination of every cell in the cell library was precharac-
terized for subthreshold leakage (nominal, mean and standard deviation)
at a supply voltage of 1.2V. To generate these statistics, Monte Carlo
(MC) simulations were run in SPICE using random PVT variations for
30,000 samples. These simulations were run with a 3¢ variation of 15% in
the channel length, 10% in the power supply and 12.7% in the threshold
voltages of devices. The mean and standard deviation of the PVT variables
used in MC simulations are listed in Table I. The software code for
generating the WPMax-SAT instance of a circuit was written using the
Tcl scripting language. IncWMaxSatz [18] was used as the WPMax-
SAT solver. The source code of the solver was modified to timeout after
L seconds (which is a user defined input). All the experiments were
conducted on a Linux computer with a 2.6 GHz Intel processor and 4GB
RAM.

Parameter 1% c
Channel length 0.1um 0.05um
Power supply 1.2v 0.04V

Vi PMOS 0.3030V 0.0127V

Vr NMOS 0.2607V 0.0110V

Temperature 30°C 1°C
TABLE 1

PVT PARAMETER VARIATIONS

We conducted two set of experiments. In the first set, we compare the

performance of our approach against the random vector based approach
with nominal leakage and u + 3*c leakage, as our cost functions respec-
tively. In the second set, we compare the performance of our approach
against the random vector based technique using u + 3*c as our cost
function with total runtime of our approach constrained to be the same as
that of random vector based approach.

In all the experiments reported in this paper, for the random vector
based approach, the MLV was obtained after 10K random simulations.
According to [3], this statistically yields a higher than 99% confidence
that we will obtain a leakage vector which is 0.5% from the minimum
leakage value.

Also, in all the experiments reported in this paper, after we obtain the
MLV for any circuit using any of the competing methods, we perform
10K Monte Carlo simulations and compute the u, 6 and u + 3*c leakage
from these MC simulations.

A. Comparing against random vector for different cost
functions

In this set of experiments, we enforced a timeout of 600 seconds. Note
that no post processing step was required for these circuits, since our MLV
approach found an exact minimum solution within the timeout duration.
Detailed results are not provided due to lack of space. We used both
cost functions (nominal leakage as well as u + 3*c leakage) for our
approach. Over 22 examples (with between 25 and 477 gates, and between
14 and 199 inputs), our approach with nominal leakage as cost function,
gives a 7.32% (7.33%) improvement in mean leakage (u + 3*c leakage).
With u + 3*c as the cost function, our approach gives a 7.17% (7.74%)
improvement in mean leakage (1 + 3*c leakage). With u + 3*c as the
cost function (as opposed to nominal leakage), the average improvement in
standard deviation over the random vector based approach increases from
7.08% to 8.61%. A higher improvement in the y + 3*c value ensures
a lower worst case circuit leakage variation under PVT variations. The
remaining results in this paper use u + 3*c leakage as the cost function.

Table II contains the circuits for which our approach timed out, and post
processing was used for further improvement. Column 1 lists the circuit
name, number of logic gates in the circuit, and the number of primary
inputs, Columns 2, 3 and 4 show the mean, standard deviation and u +
3*c value of the leakage obtained by the random vector based approach,
after running Monte Carlo simulations on the MLV that was returned.
J%Imp_t refers to the percentage improvements at timeout and %Imp_p
refers to the percentage improvements after post processing. Columns 5,
6 and 7 show the percentage improvement in the mean, standard deviation
and u + 3*c value of the leakage of our technique over the random vector
based approach (at timeout). Columns 8, 9 and 10 list the percentage
improvement in the mean, standard deviation and y + 3*c value of the
leakage of our approach (after post-processing) over the random vector
based approach. Columns 11 and 12 report the runtimes for the random
vector based approach and our algorithm respectively. From the results
shown in Table II, the average reduction in mean, standard deviation and
1 + 3*%c leakage is 4.03%, 4.85% and 4.08% respectively.

B. Comparing against random vector based technique
for u + 3*c cost function with same total runtime

In this experiment, we compare the performance of our proposed algorithm
with the random vector based approach, when the total runtime of our
approach is kept the same as that of the random vector based approach
using 10K vectors, for larger circuits only.

Let the runtime to generate 10K random vectors for a circuit be T.
The WPMax-SAT solver is run for ot seconds where 0 < o < 1 and
post processing is done for (1-ct)*T seconds. Post processing for (1-a)*t
seconds is equivalent to generating (1-0t)*10000 post processing vectors
instead of 10000 vectors. We experimented with different values of a (0.5
to 0.9) and found that o=0.7 gave best results. Table III shows results with
a=0.7, for u + 3*c leakage as the cost function. The average improvement
in mean is 3.62%, improvement in standard deviation is 4.20%, and in u +
3*c leakage, the average improvement is 3.67% (over the random vector

203

[[Circuit___ (#Gates / #Inputs) [Random | Random ¢ [Random u + 3*c [%Imptyu | %Imptc | %Imptu+3*c | %Imppu | %Imppc | %Imppu+3*c | Random T(s) [Our T(s) |
i3 (106 / 132) 941.0 105.2 1256.6 2297 24.85 23.44 2297 24.85 23.44 20.27 620.61
5 (132/133) 13323 140.0 17525 0.10 301 0.86 0,10 301 0.86 2417 62441
i4 (158 /192) 892.8 121.0 1255.9 1.78 1.86 1.80 1.78 1.86 1.80 30.88 631.38
T (1827201) 10388 1093 1366.8 39.60 2313 3572 39.60 2313 3572 346 3403
x1 (238 /51) 1436.2 144.9 1870.9 -2.36 4.86 -0.68 -1.21 1.39 -0.61 37.98 637.20
cxample? (245 / 85) 1380.1 126.0 TS18.1 6.04 0.9 551 6.04 0.99 551 1045 639.87
x4 (307 / 94) 1975.5 177.4 2507.9 -2.64 0.86 -1.9 0.32 -0.20 0.21 48.71 648.52
880 (3307 60) 1996.3 1637 25005 619 074 500 092 178 170 5235 652.10
1908 (408 / 33) 2567.5 193.5 3148.2 2.14 1.94 2.10 2.14 1.94 2.10 62.32 661.74
c499 (447 / 41) 2691.6 191.7 3266.9 -0.99 1.78 -0.50 -0.04 2.20 0.35 68.26 666.56
<1355 (A47741) 26633 1875 32259 184 0.65 163 T84 0.65 163 8.1 667.39
rot (539 /135) 3318.7 2123 3955.9 -10.82 -9.46 -10.60 -1.87 -1.34 -1.78 85.10 683.87
fra2 (6407 143) 12340 2496 19830 615 293 567 2049 144 20.64 99.60 693.82
apex6 (646 / 135) 4407.1 270.6 5219.0 4.92 14.97 6.49 4.92 14.97 6.49 100.07 700.06
X3 (6627135) 76909 2703 5502.1 710 750 7,60 710 750 7,60 101.68 701.66
3540 (1014 / 50) 7134.4 338.5 8150.1 -1.37 -1.72 -1.41 -0.38 1.82 -0.10 155.33 752.75
5315 (14967 178) 9526.1 383.6 10676.9 052 6.16 0.20 052 6.16 0.20 22954 327.61
¢7552 (2002 / 207) 12712.5 4279 13996.5 -3.12 -2.43 -3.05 0.10 1.11 0.19 306.39 901.98
6288 (2942 / 32) 17126.6 482.5 18574.4 -15.92 -11.61 -15.58 -0.81 -0.77 -0.80 443.25 1038.53
[AVG I I T [160 [332] 182 [403 | 4%]| 208 T]
TABLE IT
LEAKAGE RESULTS WITH u + 3*G LEAKAGE AS COST FUNCTION (USING POST PROCESSING)
[Circuit (#Gates / #Inputs) | Random u | Random 6 [Random u + 3*c [%Imptu | %Imptc [%Imptu+3*c | %lmppu | %lmppc [%Imppu+3*c |
i3 (106 / 132) 941.0 105.2 1256.6 23.12 23.98 23.34 23.12 23.98 23.34
i5 (132/133) 1332.3 140.0 1752.5 -1.40 1.63 -0.67 -1.57 4.04 -0.22
c432 (144 / 36) 924.1 124.3 1297.2 -5.38 1.10 -3.52 4.75 7.64 5.58
i4 (158 /192) 892.8 121.0 1255.9 1.42 2.81 1.82 1.42 2.81 1.82
i2 (1827 201) 1038.8 109.3 1366.8 39.47 23.32 35.59 39.47 23.32 35.59
x1 (238 /51) 1436.2 144.9 1870.9 -13.32 -4.19 -11.20 0.01 -1.02 -0.23
example2 (2457 85) 1380.1 146.0 1818.1 7.19 2.90 6.16 7.19 2.90 6.16
x4 (307 / 94) 1975.5 177.4 2507.9 -2.71 0.27 -2.08 -2.71 0.27 -2.08
c880 (330 / 60) 1996.3 168.7 2502.5 -10.24 -5.94 -9.37 0.06 0.43 0.14
c1908 (408 / 33) 2567.5 193.5 3148.2 0.42 -0.68 0.22 0.42 -0.68 0.22
c499 (447 1 41) 2691.6 191.7 3266.9 -2.11 1.11 -1.54 -2.11 1.11 -1.54
c1355 (447 1 41) 2663.3 187.5 32259 -3.24 -0.49 -2.76 -0.67 -0.56 -0.65
rot (539 /135) 3318.7 212.3 3955.9 -12.02 -10.79 -11.82 -1.64 -4.56 -2.11
frg2 (640 / 143) 4234.0 249.6 4983.0 -6.59 -3.72 -6.16 0.30 0.59 0.35
apex6 (646 / 135) 4407.1 270.6 5219.0 3.97 12.02 522 3.97 12.02 5.22
x3 (662 / 135) 4690.9 270.3 5502.1 3.43 7.22 3.99 343 7.22 3.99
¢3540 (1014 / 50) 7134.4 338.5 8150.1 -1.89 0.31 -1.62 -0.57 091 -0.39
c5315 (1496 / 178) 9526.1 383.6 10676.9 -0.49 491 0.09 -0.49 491 0.09
c7552 (2002 / 207) 12712.5 4279 13996.5 -3.07 -1.58 -2.93 -0.54 0.55 -0.44
6288 (29427 32) 17126.6 482.5 18574.4 -19.03 -14.36 -18.67 -1.34 -1.71 -1.37
| AVG [[[[012 [19] 0.20 [362 [420] 367 |
TABLE III

OUR APPROACH WITH u + 3%G COST FUNCTION WITH TOTAL RUNTIME SAME AS THAT OF RANDOM VECTOR BASED APPROACH USING 10K VECTORS AND o = 0.7

based approach). Thus, given the same runtime as the random vector based
technique, our algorithm ensures lower worst case leakage under the effect
of process variations.

C. Comparison with previous work

To the best of our knowledge, [11] is the only existing work on MLV
computation which includes the effect of PVT variations. All other
previous approaches ignore within-die variations and only focus on MLV
with nominal leakage as the cost function. As we noted in Section I, this
MLV may not be optimal under PVT variations. In [11], the authors report
an average improvement of 2.07% in mean circuit leakage and 3.08%
improvement in u + 6*c leakage compared to a random vector based
approach. In contrast, for larger circuits, our approach yields an average
improvement of 4.03% in mean circuit leakage and 4.14% improvement
in 4 + 6*%c leakage.

References
[1] F Fallah and M. Pedram, “Standby and Active Leakage Current Control and Minimization

in CMOS VLSI Circuits,” IEICE Trans. on Electronics, Special Section on Low-Power

LSI and Low-Power IP, pp. 509-519, 2005.

“The International Technology

http://public.itrs.net/, 2003.

J. Halter and F. Najm, “A Gate Level Leakage Power Reduction Method for Ultra Low

Power CMOS Circuits,” Proceedings of CICC, pp. 475-478, 1997.

M. Johnson, D. Somasekhar, and K. Roy, “Models and algorithms for bounds on leakage

in CMOS circuits,” [EEE Transactions on Computer aided design of Integrated circuits

and systems, pp. 714-725, 1999.

R. M. Rao, E. Liu, J. L. Burns, and R. B. Brown, “A Heuristic to Determine Low Leakage

Sleep State Vectors for CMOS Combinational Circuits,” Proceedings of ICCAD’03,

p. 689, 2003.

F. Aloul, S. Hassoun, K. Sakallah, and D. Blaauw, “Robust SAT-Based Search Algorithm

for Leakage Power Reduction,” Proceedings, Power and Timing Models and Simulations

(PATMOS), pp. 167-177, 2002.

2] Roadmap for Semiconductors.”

[3

[4]

[5]

[6

[71

[8]
(9]

[10]

[11]

[12]

[13]
[14]
[15]

[16]

[17]

[18]
[19]

[20]

204

N. Jayakumar and S. P. Khatri, “An algorithm to minimize leakage through simultaneous
input vector control and circuit modification,” Design Automation and Test in Europe
Conference, pp. 618-623, 2007.

K. Chopra and S. Vrudhula, “Implicit Pseudo Boolean Enumeration Algorithms for Input
Vector Control,” Proceedings, Design automation conference, pp. 767-772, 2004.

S. B. et al., “Maximum Leakage Power Estimation for CMOS Circuits,” In proceedings
IEEE, AVWLPD, p. 116, 1999.

S. Narendra, V. De, S. Borkar, D. Antoniadis, and A. Chandrakasan, “Full-chip Sub-
threshold Leakage Power Prediction for sub-0.18um CMOS.” Proceedings, ISLPED, 2002,
pp- 501-510, 2002.

K. Gulati, N. Jayakumar, S. P. Khatri, and D. Walker, “A Probabilistic Method to
Determine the Minimum Leakage Vector for Combinational Designs in the Presence of
Random PVT Variations,” Integration, The VLSI Journal, vol. 41, pp. 399412, 2007.

J. Marques-Silva and K. A. Sakallah, “Boolean Satisfiability in Electronic Design
Automation,” Proceedings of the 37th conference on design automation, pp. 675-680,
2000.

H. Zhang, H. Shen, and F. Manya, “Exact Algorithms for MAX-SAT,” In Electronic Notes
on Theoretical Computer Science, 86(1), 2003.

Z. Xing and W. Zhang, “Efficient Strategies for (weighted) Maximum Satisfiability,” In
Proceedings of CP-2004, pp. 690-705, 2004.

Fu, Z., Malik, and S., “On Solving the Partial Max-SAT Problem,” In Proceedings of
SAT 06, 2006.

F. Gao and J. Hayes, “Exact and heuristic approaches to input vector control for leakage
power reduction,” in Proceedings, International Conference on Computer-aided Design,
pp. 527-532, Nov 2004.

S. R. Naidu and E. Jacobs, “Minimizing stand-by leakage power in static CMOS circuits,”
Design, Automation and Test in Europe, 2001.

H. Lin, K. Su, C. M. Li, and J. Argelich, “IncWMaxSatz,” Max-SAT Evaluation, 2008.

Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, “New paradigm of pre-
dictive MOSFET and interconnect modeling for early circuit design,” in Proc. of
IEEE Custom Integrated Circuit Conference, pp. 201-204, Jun 2000. http://www-
device.eecs.berkeley.edu/ ptm.

E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,
P. Stephan, R. Brayton, and A. S. Vincentelli, “SIS: A System for Sequential Circuit
Synthesis,” University of California-Berkeley, UCB/ERL M92/41, 1992.

