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ABSTRACT
Compatible Observability Don’t Cares (CODCs) are a pow-
erful means to express the flexibility present at a node in
a multi-level logic network. Despite their elegance, the ap-
plicability of CODCs has been hampered by their computa-
tional complexity. The CODC computation for a network
involves several image computations, which require the con-
struction of global BDDs of the circuit nodes. The size of
BDDs of circuit nodes is unpredictable, and as a result, the
CODC computation is not robust. In practice, CODCs can-
not be computed for large circuits due to this limitation.

In this paper, we present an algorithm to compute ap-
proximate CODCs (ACODCs). This algorithm allows us to
compute compatible don’t cares for significantly larger de-
signs. Our ACODC algorithm is scalable in the sense that
the user may trade off time and memory against the accu-
racy of the ACODCs computed. The ACODC is computed
by considering a subnetwork rooted at the node of inter-
est, up to a certain topological depth, and performing its
don’t care computation. We prove that the ACODC is an
approximation of its CODC.

We have proved the soundness of the approach, and per-
formed extensive experiments to explore the trade-off be-
tween memory utilization, speed and accuracy. We show
that even for small topological depths, the ACODC com-
putation gives very good results. Our experiments demon-
strate that our algorithm can compute ACODCs for circuits
whose CODC computation has not been demonstrated to
date. Also, for a set of benchmark circuits whose CODC
computation yields an average 28% reduction in literals af-
ter optimization, our ACODC computation yields an aver-
age 22% literal reduction. Our algorithm has runtimes which
are about 25× and memory utilization which is 33× better
that of the CODC computation of SIS.
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1. INTRODUCTION
Technology independent logic optimization of a multi-level

network is an important part of logic synthesis. During such
optimization, one of the operations involves the computation
of multi-level don’t cares of the circuit. These don’t cares
can take the form of Satisfiability Don’t Cares (SDCs), Ob-
servability Don’t Cares (ODCs) or External Don’t Cares
(XDCs). These are described further in [7].

After computing these don’t cares for any node in a net-
work, we find the image of the don’t cares of the node on its
local fanin space. Thus the node function can be considered
as an incompletely specified function (ISF) and traditional
2-level logic minimization of this ISF yields a reduction in
the number of literals in the node. This is the typical figure
of merit during technology independent logic optimization.

Although ODCs are extremely powerful in their optimiza-
tion ability, the minimization of a node n with respect to its
ODCs can potentially change the ODCs at all other nodes
in the circuit, resulting in a need to re-compute ODCs for
all circuit nodes. As a result, Compatible ODCs (CODCs)
- a subset of ODCs - are utilized. If a node n is minimized
with respect to its CODCs, then the CODCs of all other
circuit nodes are still valid (and therefore do not need to be
recomputed).

The CODC computation does not eliminate the need to
perform image computation to map the don’t care infor-
mation back to the local fanin space of the node being
optimized. This computation is highly memory intensive,
since it is typically done using ROBDDs [4]. ROBDDs can
exhibit highly irregular memory requirements, with unex-
pected blowup. As a result, the CODC computation, though
very elegant in its conception, is typically not feasible for
large circuits. Additionally, the computation is not robust
for medium-sized circuits either.

For these reasons, CODC based optimization is rarely ap-
plicable for large industrial circuits. Our goal in this paper is
to extend the applicability of CODCs by introducing an ap-
proximate variant which is easier to compute. Our algorithm
for approximate CODC (ACODC) computation allows the
user to trade off the accuracy of the computed don’t cares
against computational resources.

The rest of this paper is organized as follows. In Section 2,
we provide definitions along with a brief background on
CODC computation. Section 3 contains a summary of pre-
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vious work in this area, while Section 4 details our ACODC
computation methodology. In Section 5, we report results of
our experiments comparing the ACODC and CODC meth-
ods. Finally we conclude in Section 6.

2. PRELIMINARIES AND TERMINOLOGY

Definition 1. A Boolean network η is a directed acyclic
graph (DAG) in which every node has a Boolean function
fi associated with it. Also, fi has a corresponding Boolean
variable yi associated with it, such that yi = fi.

There is a directed edge eij from yi to yj if fj depends
explicitly on yi or yi.

A node yi is a fanin (FI) of a node yj if there is a directed
edge eij . Node yi is a fanout (FO) of yj if there is a directed
edge eji.

A node yi is in the transitive fanin (TFI) of a node yj

if there is a directed path from yi to yj . Node yi is in the
transitive fanout (TFO) of node yj if there is a directed path
from yj to yi.

Definition 2. Reduced Ordered Binary Decision
Diagrams (ROBDD’s) [4] are a means to represent a
Boolean function f . They are modified Shannon decompo-
sitions of f in which any path from the root to the leaves
obeys the same variable ordering, and isomorphic nodes are
deleted from the decomposition.

For a given variable ordering, ROBDDs are canonical. In
other words, the ROBDDs of equivalent functions are iden-
tical.

Definition 3. The consensus operator or universal
quantification of a function f with respect to a variable xi

is

Cxif = fxi · fxi

Definition 4. The existential quantification of a func-
tion f with respect to a variable xi is

∃xif = fxi + fxi

Definition 5. The Observability Don’t Care (ODC) of
node yj (in a multi-level Boolean network) with respect to
output zk is

ODCjk = {x ∈ Bn s.t. zk(x)|yj=0 = zk(x)|yj=1}
In other words ODCjk is the set of minterms of the primary
inputs for which the value of yj is not observable at zk [13].
This can also be denoted as

ODCjk = (
∂zk

∂yj
)

where

∂zk

∂yj
= zk(x)|yj=0 ⊕ zk(x)|yj=1 (1)

∂zk
∂yj

is also known as the Boolean Difference of zk with

respect to yj .
Once a node function is changed by minimizing it against

its ODCs (using Espresso [3]), the ODCs of the other nodes
must be recomputed. To avoid re-computation of ODCs
during optimization, Compatible Observability Don’t Cares
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Figure 1: Node yk and its fanins

(CODCs) [13] were developed. The CODC of a node is a
subset of the ODC for that node. Unlike ODCs, CODCs
have a property that one can simultaneously change the
function of all nodes in the network as long as each of the
modified functions are contained in their respective CODCs.
Compatibility is achieved by ordering the don’t care com-
putation in a manner that if node n precedes node m in the
order, then node n gets the most don’t cares. Also, while
computing the don’t cares of m, compatibility is maintained
with the don’t cares already assigned to node n.

The computation of CODCs [13] in SIS [15] is performed
in two phases.

• The first phase computes the CODC of a node using
node operations. The resulting CODC is a function of
arbitrary nodes in the network. However, we desire the
support of the CODC to be the support of the node
itself. For this reason, we need a second phase in the
computation to achieve this.

• In the second phase, image computation needs to be
performed to map the CODC points to the local fanin
space of each node. This image computation uses
BDDs.

In the first phase, CODC computation for the network
η starts from the primary outputs and proceeds towards
primary inputs in a reverse topological order. The CODC
at each primary output is initialized to the external don’t
care (XDC) at that node.

The CODC at node yi (denoted as CODCη
i ) is found

by using the CODC for each fanout edge eik of yi. This
compatible don’t care of edge eik is denoted by CODCη

ik.
The CODC for yi is obtained by intersecting the CODCs
computed for its fanout edges.

Suppose, as shown in Figure 1, that we have a node with
function yk = fk, and ordered fanins y1 < y2 < · · · < yi.
Given CODCη

k , we can compute the CODCs of the fanin
edges of yk as follows.

CODCη
ik ≡ (

∂fk

∂y1
+ Cy1)...(

∂fk

∂yi−1
+ Cyi−1)

∂fk

∂yi
+ CODCη

k (2)

Note that in the above computation, we assume that CODCη
j

have already been computed (for j < i). Also, Cyj is the
consensus operator. For the first input in the ordered list

of fanins, we have CODCη
1k = ( ∂fk

∂y1
) + CODCη

k , indicating
that this node obtains maximum flexibility. The intuition
behind the correctness of the above computation in general
is that the new edge eik should have its don’t care condition

as the conjunction of ∂fk
∂yi

with the condition that other in-

puts j < i are not insensitive to the input yj ( ∂fk
∂yj

), or are

independent of yj (Cyj ) indicating that the node i is free
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to use such terms independently of how yj was simplified.
Finally, the CODCs of the fanout node yk are also CODCs
of the edge eik. As a result, the computation of CODCη

ik

using the formula above, performed in the specified order,
results in the Compatible set of ODCs of the edges eik.

CODCη
i ≡

�

k∈F Oi

CODCη
ik (3)

The intuition of the above method of computing the CODC
of yi based on its edge CODCs (CODCη

ik) is that CODCη
i

must not be greater than any CODCη
ik. Note also that all

terms in CODCη
ik from Equation 2 except CODCη

k have a
support which is the support of yk. However, CODCη

i has
a support which includes its fanout’s fanins, and in general,
we have to do an image computation to convert this CODC
to a function which is on the support of yi.

In the second phase, we perform this image computation.
Using the ordering heuristics of [10], global BDDs at each
node of the Boolean network are computed in terms of the
primary inputs. BDDs are also built for each primary output
in the external don’t care network using this same ordering.
We next compute the CODC at yi in terms of primary in-
puts, using a BDD based computation. This is done by
substituting each literal of the CODC of yi by its global
BDD function (which was computed earlier). From this we
find all the points that are reachable in the local space of
yi by a BDD based image computation. The functions used
for image computation are the global functions at the fanins
of yi. In most cases the number of primary outputs is much
less than the number of primary inputs; therefore the re-
cursive image computation method [17] is used to do the
computation.

3. PREVIOUS WORK
Previous work in the area of computing approximate don’t

cares has been somewhat scarce. In [9], the authors describe
a method to compute don’t cares using overlapping subnet-
works, computed using a varying window size. Their method
does not optimize wires, but only gates in a design, in con-
trast to our technique, which frequently removes wires in a
circuit. Further, this technique uses [8] to optimize a single
subnetwork. In [8], optimization is done by manipulating
a cover of the subnetwork explicitly. The authors indicate
that this requires large amounts of runtime for small net-
works. As a consequence, the technique of [9], in many
examples, requires run-times which are dramatically larger
than MIS [2]. In [6], the authors partition the circuit into
subnetworks, each of which is flattened and optimized us-
ing ESPRESSO [3]. Our technique uses implicit ROBDD
methods to control the runtime and memory utilization of
the computation. We instead perform CODC computation
on overlapping subnetworks, and demonstrate that our tech-
nique is significantly faster than the full CODC computation
with comparable literal reductions.

In [11, 5], the authors compute subsets of the ODC, but
compatibility is not guaranteed. In [16], techniques to com-
pute the projection of ODCs on some subset of nodes are re-
ported, but compatibility is not guaranteed. Finally in [12]
the authors discuss the simplification of non-deterministic
MV networks and their internal nodes using internal flexibil-
ities. They provide a new scheme to compute the complete
(maximum) don’t care in an MV network, however, once

again, the don’t care computed is not compatible. Although
compatibility is sometimes not useful (eg. when nodes are
processed one at a time), it is required in many instances
(eg. performing any logic optimization step using the don’t
cares of the network). In contrast, our method computes a
subset of the CODC [13], and therefore the don’t-cares we
compute may be used in an optimization setting without the
need for re-computation of the don’t cares for node yk after
optimizing the node yj using its don’t cares.

In [1], the CODC computation of [14] was shown to be
dependent on the current implementation of a node, and
an implementation-independent computation was proposed.
These local don’t cares are orthogonal to our proposed ap-
proach, and it would be an interesting exercise to demon-
strate them in tandem with our method.

4. APPROXIMATE CODC COMPUTATION
Consider a Boolean network ηXZ with X as primary in-

puts and Z as primary outputs. Let us also define two cuts
of this network, with cut variables W and V . These cuts de-
fine new subnetworks ηXW , ηV Z and ηV W . Let the CODC
of a node yk, as computed by equation 3, be denoted as
CODC

ηP Q

k where P can be either X or V . Likewise, Q
can be either Z or W . Let the CODC of node yk, mapped
back to its support after image computation, be denoted as

CODC
ηP Q,F I

k . In this context, CODCηXZ ,F I
k is the tradi-

tional CODC of node yk.
In Section 4.1 we prove that a CODC computation that

utilizes a cut W as the primary outputs yields CODCηXW ,F I
k ⊆

CODCηXZ ,F I
k . Next, in Section 4.2 we prove that a CODC

computation that utilizes a cut V as the primary inputs for
the don’t care computation yields

CODCηV Z ,F I
k ⊆ CODCηXZ ,F I

k . Finally, we show, in Sec-
tion 4.3, that an ODC computation that utilizes a cut V
as the primary inputs and a cut W as the primary out-
puts for the don’t care computation yields CODCηV W ,F I

k ⊆
CODCηXZ ,F I

k .
Figures 2, 3 and 4 illustrate the corresponding circuits.

4.1 Case 1: Cutset used as Primary Output
Suppose we partition the network as shown in Figure 2.

......
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y3

yi−1

yi

yk

Z

W

Figure 2: Partition network 1

Theorem 4.1. If the CODC of a node yk is computed in
terms of cut nodes W in the TFO of yk, then CODCηXW ,F I

k ⊆
CODCηXZ ,F I

k

Proof. Consider the case of computing the full CODC of
yk. The computation proceeds in a reverse topological order
from the POs. For any PO z, we have CODCηXZ ,F I

z = �.
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Computing CODCs as described in Section 2, suppose we
reach a node w ∈ W . In general CODCηXZ ,F I

w �= �.
Now consider the case that W nodes are considered POs.

The CODC computation proceeds in reverse topological or-
der from nodes in W . As a result, CODCηXW ,F I

w = �.
In the CODC computation for yk, both the above cases

yield identical functions for Equation 2 (except for the last
term). The last term for a node in the first case in general
contains the last term for the same node in the latter case
since CODCηXZ ,F I

w ⊇ CODCηXW ,F I
w = �. Hence, for an

arbitrary yk, we have CODCηXW ,F I
k ⊆ CODCηXZ ,F I

k

Note that in general, for a PO z, we may have CODCηXZ
z =

XDCZ (X) (the external don’t care of the output z). The

proof in that case is similar. We still have CODCηXW ,F I
w =

�, whereas in general CODCηXZ ,F I
w �= �.

4.2 Case 2: Cutset used as Primary Input
Consider the network as partitioned in Figure 3. Let

R(V, X) =
�

i∈V vi⊕vi(X). In other words, R(V,X) is
the relation between the X and V cuts. Let us define also
I = ∃X(R(V,X)), the image of the PIs on the V cut. Note
that I �= � in general.
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Figure 3: Partition network 2

Theorem 4.2. If the CODC of a node yk is computed in
terms of cut nodes V in the TFI of yk, then CODCηV Z ,F I

k ⊆
CODCηXZ ,F I

k

Proof. In the case of computing the ACODC at yk, we
first compute CODCηV Z

k as discussed in Section 2. Now we
compute the image I1 of this on the V space and project
this image back to the fanin space of yk.

Now consider the case of computing the full CODC at
yk. We first compute CODCηXZ

k in the normal manner,
and then compute the image I2 of this on the PI space.
Projecting this back to the fanin space of yk, we obtain
CODCηXZ ,F I

k . Consider the projection I3 of I2 on V . We
can write I3 = I1 + ∃X((R(V, X))(I2(X))). Therefore, I3 ⊇
I1, which yields the result.

4.3 Case 3: Cutset used as Primary Output
and Primary Input

Consider a network with two cuts as shown in Figure 4.

Theorem 4.3. Suppose the CODC of a node yk is com-
puted in terms of cut nodes W in the TFO of yk and cut
nodes V in the TFI of yk. Then CODCηV W ,F I

k ⊆ CODCηXZ ,F I
k

Proof. This follows directly from Theorems 4.1 and 4.2
since their proofs are orthogonal.
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Figure 4: Partition network 3

In our experiments, we checked for the containment of
our ACODC in the CODC for each node in the design, and
verified the correctness of our implementation.

4.4 Implementation
In our implementation, we generate ACODCs by creating

dynamic cutsets of the given Boolean network. We ensure
that for any node in the computation, ACODCs are com-
puted exactly once. The ACODC algorithm is shown in
Algorithm 1.

k

k

η

n

n

η

n

primary inputs primary output

Figure 5: Dynamic cutsets

Algorithm 1 Compute ACODC using dynamic cutset
method

Traverse η in reverse topological order
for (each node n ∈ network η) do

ηn = extract subnetwork(n, k)
ACODC(n) = compute acodc(ηn, n)
optimize(n,ACODC(n))

end for

For every node n in the network η, extract subnetwork(n, k)
constructs a subnetwork ηn rooted at n such that if node m
∈ TFO(n, k), then m ∈ ηn and if node p ∈ TFI(n, k), then
p ∈ ηn. Here k is a user-specified parameter, and TFO(n, k)
includes all nodes in the transitive fanout of node n up
to a forward depth k, and TFI(n, k) includes all nodes in
the transitive fanin of node n up to a backward depth of
k. Node m ∈ ηn is designated as primary input of ηn if
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FI(m ∈ ηn) = �, and primary output if FO(m ∈ ηn) = �.
FI(m) and FO(m) represent the immediate fanins and im-
mediate fanouts of m respectively. Next we include in our
subnetwork all nodes m ∈ TFI(v, k), where v is a primary
output of the subnetwork ηn. A sample subnetwork is shown
in Figure 5. Note that we could also include in ηn, nodes
m ∈ TFO(v, k), where v is a primary input of ηn. This is
currently not implemented.

After constructing ηn, we run compute acodc(ηn, n). This
subroutine performs the CODC computation for node n
using Equations 2 and 3. Note that the computation of
CODCs of nodes m ∈ ηn | m ∈ TFO(n) is not required, since
a prior call to compute acodc(ηm, m) performed this compu-
tation. Therefore the only computations that are performed
are the computations of edge CODCs for edges enm where
m ∈ FO(n). We find the image of the resulting CODC
of n on the space of the primary inputs of ηn, and project
this image back to the fanins of n to get the ACODC of n.
Note that in this method, ACODCs of any node are com-
puted exactly once. Further these computations are on small
subnetworks, resulting in a fast, robust computation. The
ACODC of n so obtained is a subset of the actual CODC
of n (by the result of Section 4.3) since the primary inputs
and primary outputs of ηn are nodes on some two cuts1 of
η.

The function optimize(n, ACODC(n)) runs Espresso [3]
on the node n with respect to its ACODC, after which the
node n is replaced by its minimized version.

The entire process is iterated over all the nodes n of the
network η (in reverse topological order). In this way we ob-
tain the ACODCs for all nodes in the network η. Note that
the size of each subcircuit ηn is limited by the depth param-
eter k. Hence by suitably choosing k, we ensure that the
subcircuits are never too large and ACODCs can be com-
puted quickly and with low memory utilization for extremely
large circuits.

5. EXPERIMENTAL RESULTS
We have implemented our technique in SIS [15]. For our

experiments we have used circuits from the mcnc91 and
itc99 benchmarks. Our experiments consisted of reading in
a design and computing ACODCs for the circuit using our
dynamic cutset approach. Next we optimized the circuit
nodes with respect to their ACODCs and then ran sweep to
remove the redundant nodes after optimization. We com-
pared our results with the CODCs generated in SIS by run-
ning full simplify followed by sweep. In both cases, we used
the -snocomp option. The experiments were run on an IBM
IntelliStation running Linux with a 1.7 GHz Pentium-4 CPU
and 1 GB of RAM.

Table 1 reports results for large circuits on which full simplify
failed to complete due to memory blowup resulting from
large BDDs. Column 1 lists the circuits used while columns
2 and 3 list the number of nodes and literals in each cir-
cuit (before optimization) respectively. Columns 4 and 6
list the nodes and literals respectively after they have been
optimized with our method (with k = 4). Column 5 lists
the percentage reduction in the number of nodes after op-
timization and column 7 lists the percentage reduction in

1Actually, these nodes belong to some subnetwork in gen-
eral, but the addition of nodes (to the PIs and POs of the
subnetwork) to construct cuts would not change the compu-
tation.

the number of literals. Columns 8 and 9 report the runtime
and the peak number of ROBDD nodes for the computation
respectively. On average, a healthy 19% node reduction and
about 10% literal reduction is achieved with our technique.
The runtime never exceeded 2 minutes, and the memory
utilization was below 100K ROBDD nodes. We expect that
with larger values of k, the quality of these results may show
improvement.

Circuit Original Our Method
nodes lits nodes % lits % time (s) mem

C6288 2416 4800 2310 4.39 4623 3.69 3.65 1022
C7552 3466 6098 2056 40.68 4506 26.15 6.11 9198
b14 9768 18917 8093 17.15 17001 10.12 117.60 105582

b14 1 6570 12886 5254 20.03 11654 9.56 19.04 50078
b20 19683 38213 16014 18.64 34895 8.68 65.39 69496

b20 1 13900 27074 11265 18.96 24652 8.95 39.34 34748
b21 20028 38993 16440 17.91 35689 8.48 66.37 65408

b21 1 13899 27164 11458 17.56 24595 9.45 38.32 34748

AVG 18.77 9.49

Table 1: Results for Large Circuits

Table 2 provides a comparison between our ACODC method
and full simplify (which is implemented in SIS [15]). Col-
umn 1 lists the experimental circuits used. Two measures of
effectiveness are defined to compare our results with those
generated by full simplify. Effectiveness measure #1 com-
pares the number of minterms in the CODCs generated by
our method with those in full simplify.

effectiveness #1 ≡
�

n |ACODC(n)|�
n |CODC(n)|

Here |ACODC(n)| represents the number of minterms
in the CODC of node n generated by our method, and
|CODC(n)| represents the number of minterms in the CODC
of node n generated by full simplify.

Effectiveness measure #2 compares the number of nodes
for which ACODCs and CODCs are identical

effectiveness #2 ≡ #equal

#total

where #equal represents the number of nodes for which
the ACODCs were identical as the CODCs produced by SIS,
and #total represents the total number of nodes in the cir-
cuit.

Both measures of effectiveness are expressed as percent-
ages in Table 2. Columns 2 and 3 report the value of the
effectiveness measure #1 for depth k = 4 and 6 respectively,
whereas columns 4 and 5 provide the value of effectiveness
measure #2 for the same levels of depth. Column 6 gives the
original number of literals in the circuits considered. Col-
umn 7 gives the number of literals after running full simplify
whereas column 8 gives the percentage reduction in literal
count after full simplify. Columns 9 and 11 give the num-
ber of literals after optimizing the circuits with our method
for depth k = 4 and 6 respectively. Finally, columns 10
and 12 give the percentage reduction in literal count for
the same levels of depth. Columns 13, 14 and 15 compare
the run-times for full simplify against our method for k =
4 and 6 respectively, while columns 16, 17 and 18 compare
peak number of ROBDD nodes for full simplify against our
method with k = 4 and 6 respectively.

When compared to the circuits on which full simplify does
complete, we get a 23% reduction in literal count as com-
pared to 29% by full simplify. The effectiveness measures
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circuit eff # 1 eff #2 literals run-time (s) memory
4 6 4 6 orig fs % new4 % new 6 % fs 4 8 fs 4 6

C1355 98.04 98.04 98.34 98.34 1032 984 4.65 992 3.88 992 3.88 39.28 1.66 1.80 312732 3066 3066
C1908 81.56 84.69 87.13 88.89 1497 941 37.14 1038 30.66 1026 31.46 54.68 2.40 2.50 106288 3066 3066
C2670 94.13 94.13 86.79 86.79 2043 1240 39.30 1370 32.94 1370 32.94 11.77 4.20 4.66 172718 4088 4088
C432 71.43 71.43 92.81 92.81 372 298 19.89 322 9.95 322 9.95 4.91 1.25 1.45 289226 6132 6132
C499 98.56 98.56 97.34 97.34 616 568 7.79 572 6.50 572 6.50 2.41 1.20 1.31 99134 8176 8176
C880 80.00 84.44 94.56 95.77 703 625 11.10 635 9.67 630 10.38 2.05 0.70 0.72 73584 2044 3066
C3540 85.43 97.81 84.15 97.51 2934 1943 33.78 2145 26.89 2100 28.42 835.64 25.25 27.45 321746 8176 8176
dalu 78.00 79.86 75.78 79.55 3588 2164 39.68 3240 9.70 3240 9.70 210.09 6.23 7.12 499758 11242 12264
i10 99.34 99.34 85.45 85.45 5376 3787 29.55 3899 27.47 3899 27.47 332.22 8.56 9.21 507934 4088 4088

b01 C 92.68 92.68 83.33 83.33 80 44 45.00 45 43.75 45 43.75 0.03 0.05 0.05 1022 1022 1022
b03 C 68.89 75.56 87.23 89.43 254 101 60.00 154 39.37 149 41.34 0.19 0.20 0.20 1022 1022 1022
b04 C 63.42 63.42 85.35 85.35 1267 862 31.96 904 28.65 904 28.65 12.15 1.47 1.66 117530 2044 3066
b05 C 74.70 84.85 76.38 88.02 1858 1007 45.80 1580 14.96 1580 14.96 24.50 2.43 2.50 25550 5110 5110
b06 C 92.11 92.11 87.10 87.10 83 40 51.80 45 45.78 45 45.78 0.04 0.04 0.04 1022 1022 1022
b07 C 69.52 81.90 91.02 95.21 749 660 11.88 666 11.08 666 11.08 4.04 0.84 0.86 26572 2044 2044
b08 C 98.33 98.33 96.09 96.09 306 276 9.80 277 9.48 277 9.48 0.30 0.30 0.30 2044 2044 2044
b09 C 79.00 95.00 83.04 90.18 277 108 61.00 155 44.04 150 45.85 0.37 0.26 0.27 1022 1022 1022
b10 C 80.65 83.87 92.90 94.19 353 309 12.39 312 11.05 312 11.05 0.40 0.30 0.32 2044 1022 1022
b11 C 83.44 85.94 89.50 91.65 1378 1065 22.71 1180 14.36 1180 14.36 9.97 0.26 0.34 22484 2044 2044
b12 C 67.10 79.04 87.17 90.92 1967 1494 24.05 1853 5.80 1853 5.80 81.72 3.23 3.55 15330 4088 4088
b13 C 65.08 65.08 91.53 91.53 558 453 18.81 499 10.57 499 10.57 0.28 0.20 0.21 2044 1022 1022

AVG 81.97 85.52 87.85 89.52 28.36 22.34 22.82 0.0365 0.0412 0.0283 0.0322

Table 2: Results for Medium Circuits

show an increase with k, especially measure #1. However,
the well established figure of merit of technology indepen-
dent optimization, literal count, shows little variation with
k. As a result, our recommendation is to use smaller values
of k. Our method, with a value of k = 4 gives about 80%
of the literal reduction of full simplify, with an average run-
time and memory utilization which is 25× and 33× better
than that of full simplify.

6. CONCLUSIONS
We have presented a technique to compute approximate

CODCs (ACODCs) for any network by dynamically extract-
ing substantially smaller sub-networks from the original one
and computing the CODCs on the smaller sub-networks. We
formally showed that the ACODCs thus obtained are sub-
sets of the actual CODCs. Since the size of the extracted
sub-network can be controlled by the user-specified depth
parameter k, we can compute CODCs for arbitrarily large
circuits in our technique. By keeping k relatively small, we
can ensure that the BDDs which are built during the CODC
computation (for image computation) never exceed a certain
size and do not cause memory overflow. Our method com-
putes the ACODC of any node exactly once, resulting in a
fast and efficient don’t care computation.

Our results show that we can obtain very reasonable op-
timization of large circuits for which CODCs can’t be com-
puted by the resident method in SIS, full simplify. This op-
timization results in a reduction of 19% in the node count
and a reduction of 9.5% in literal count. Also, for smaller
circuits which can be optimized by the resident technique in
SIS (full simplify), our technique obtains an average reduc-
tion of 23% in literal count as compared to a 29% reduction
by full simplify. Our technique respectively demonstrates
average runtimes and memory utilization about 25× and
33× better than full simplify.
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