27.2

A Robust Algorithm For Approximate Compatible
Observability Don’t Care (CODC) Computation

Nikhil Saluja
Dept ECE, University of Colorado
nikhil.saluja@colorado.edu

ABSTRACT

Compatible Observability Don’t Cares (CODCs) are a pow-
erful means to express the flexibility present at a node in
a multi-level logic network. Despite their elegance, the ap-
plicability of CODCs has been hampered by their computa-
tional complexity. The CODC computation for a network
involves several image computations, which require the con-
struction of global BDDs of the circuit nodes. The size of
BDDs of circuit nodes is unpredictable, and as a result, the
CODC computation is not robust. In practice, CODCs can-
not be computed for large circuits due to this limitation.

In this paper, we present an algorithm to compute ap-
proximate CODCs (ACODCs). This algorithm allows us to
compute compatible don’t cares for significantly larger de-
signs. Our ACODC algorithm is scalable in the sense that
the user may trade off time and memory against the accu-
racy of the ACODCs computed. The ACODC is computed
by considering a subnetwork rooted at the node of inter-
est, up to a certain topological depth, and performing its
don’t care computation. We prove that the ACODC is an
approximation of its CODC.

We have proved the soundness of the approach, and per-
formed extensive experiments to explore the trade-off be-
tween memory utilization, speed and accuracy. We show
that even for small topological depths, the ACODC com-
putation gives very good results. Our experiments demon-
strate that our algorithm can compute ACODCs for circuits
whose CODC computation has not been demonstrated to
date. Also, for a set of benchmark circuits whose CODC
computation yields an average 28% reduction in literals af-
ter optimization, our ACODC computation yields an aver-
age 22% literal reduction. Our algorithm has runtimes which
are about 25x and memory utilization which is 33x better
that of the CODC computation of SIS.

Categories and Subject Descriptors

B.6.3 [Logic Design]: [Automatic Synthesis, Optimization,
Design Aids]

General Terms
Algorithms, Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC 2004, June 7-11, 2004, San Diego, California, USA

Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

422

Sunil P. Khatri
Dept ECE, University of Colorado
spkhatri@ colorado.edu

Keywords
Compatible Observability Don’t Cares (CODC), Multi-level

Logic Optimization, Logic Synthesis

1. INTRODUCTION

Technology independent logic optimization of a multi-level
network is an important part of logic synthesis. During such
optimization, one of the operations involves the computation
of multi-level don’t cares of the circuit. These don’t cares
can take the form of Satisfiability Don’t Cares (SDCs), Ob-
servability Don’t Cares (ODCs) or External Don’t Cares
(XDCs). These are described further in [7].

After computing these don’t cares for any node in a net-
work, we find the image of the don’t cares of the node on its
local fanin space. Thus the node function can be considered
as an incompletely specified function (ISF) and traditional
2-level logic minimization of this ISF yields a reduction in
the number of literals in the node. This is the typical figure
of merit during technology independent logic optimization.

Although ODCs are extremely powerful in their optimiza-
tion ability, the minimization of a node n with respect to its
ODCs can potentially change the ODCs at all other nodes
in the circuit, resulting in a need to re-compute ODCs for
all circuit nodes. As a result, Compatible ODCs (CODCs)
- a subset of ODCs - are utilized. If a node n is minimized
with respect to its CODCs, then the CODCs of all other
circuit nodes are still valid (and therefore do not need to be
recomputed).

The CODC computation does not eliminate the need to
perform image computation to map the don’t care infor-
mation back to the local fanin space of the node being
optimized. This computation is highly memory intensive,
since it is typically done using ROBDDs [4]. ROBDDs can
exhibit highly irregular memory requirements, with unex-
pected blowup. As a result, the CODC computation, though
very elegant in its conception, is typically not feasible for
large circuits. Additionally, the computation is not robust
for medium-sized circuits either.

For these reasons, CODC based optimization is rarely ap-
plicable for large industrial circuits. Our goal in this paper is
to extend the applicability of CODCs by introducing an ap-
proximate variant which is easier to compute. Our algorithm
for approximate CODC (ACODC) computation allows the
user to trade off the accuracy of the computed don’t cares
against computational resources.

The rest of this paper is organized as follows. In Section 2,
we provide definitions along with a brief background on
CODC computation. Section 3 contains a summary of pre-

vious work in this area, while Section 4 details our ACODC
computation methodology. In Section 5, we report results of
our experiments comparing the ACODC and CODC meth-
ods. Finally we conclude in Section 6.

2. PRELIMINARIES AND TERMINOLOGY

DEFINITION 1. A Boolean network n is a directed acyclic
graph (DAG) in which every node has a Boolean function
fi associated with it. Also, fi has a corresponding Boolean
variable y; associated with it, such that y; = fi.

There is a directed edge e;; from y; to y; if f; depends
explicitly on y; or ;.

A node y; is a fanin (FI) of a node y; if there is a directed
edge e;;. Node y; is a fanout (FO) of y; if there is a directed
edge ejj.

A node y; is in the transitive fanin (TFI) of a node y;
if there is a directed path from y; to y;. Node y; is in the
transitive fanout (TFO) of node y; if there is a directed path
from y; to vi.

DEFINITION 2. Reduced Ordered Binary Decision
Diagrams (ROBDD’s) [}/ are a means to represent a
Boolean function f. They are modified Shannon decompo-
sitions of f in which any path from the root to the leaves
obeys the same variable ordering, and isomorphic nodes are
deleted from the decomposition.

For a given variable ordering, ROBDDs are canonical. In
other words, the ROBDDs of equivalent functions are iden-
tical.

DEFINITION 3. The consensus operator or universal
quantification of a function f with respect to a variable x;
18

DEFINITION 4. The existential quantification of a func-
tion f with respect to a variable x; is

if = foi + far

DEFINITION 5. The Observability Don’t Care (ODC) of
node y; (in a multi-level Boolean network) with respect to
output 2z, is

ODCjk = {:C € B" s.t. Zk(ic)|yj:0 = Zk(l')|yj:1}
In other words ODC)}y, is the set of minterms of the primary

inputs for which the value of y; is not observable at z, [13].
This can also be denoted as

0zp
ODCj, = (8_34])
where
D2 o (@)lyyo @ 2 (o)1 (1)
dy; ! !
2z

By is also known as the Boolean Difference of zp with
respect to y;.

Once a node function is changed by minimizing it against
its ODCs (using Espresso [3]), the ODCs of the other nodes
must be recomputed. To avoid re-computation of ODCs
during optimization, Compatible Observability Don’t Cares

423

Figure 1: Node y; and its fanins

(CODCs) [13] were developed. The CODC of a node is a
subset of the ODC for that node. Unlike ODCs, CODCs
have a property that one can simultaneously change the
function of all nodes in the network as long as each of the
modified functions are contained in their respective CODCs.
Compatibility is achieved by ordering the don’t care com-
putation in a manner that if node n precedes node m in the
order, then node n gets the most don’t cares. Also, while
computing the don’t cares of m, compatibility is maintained
with the don’t cares already assigned to node n.

The computation of CODCs [13] in SIS [15] is performed
in two phases.

e The first phase computes the CODC of a node using
node operations. The resulting CODC is a function of
arbitrary nodes in the network. However, we desire the
support of the CODC to be the support of the node
itself. For this reason, we need a second phase in the
computation to achieve this.

In the second phase, image computation needs to be
performed to map the CODC points to the local fanin
space of each node. This image computation uses
BDDs.

In the first phase, CODC computation for the network
n starts from the primary outputs and proceeds towards
primary inputs in a reverse topological order. The CODC
at each primary output is initialized to the external don’t
care (XDC) at that node.

The CODC at node y; (denoted as CODCY) is found
by using the CODC for each fanout edge e;; of y;. This
compatible don’t care of edge e; is denoted by CODC} .
The CODC for y; is obtained by intersecting the CODCs
computed for its fanout edges.

Suppose, as shown in Figure 1, that we have a node with
function yr = fi, and ordered fanins y1 < y2 < -+ < y;.
Given CODC}!, we can compute the CODCs of the fanin
edges of yx as follows.

Ofk Ofr
Oyi—1 Oyi

Note that in the above computation, we assume that CODC’;’
have already been computed (for j < i). Also, C,; is the
consensus operator. For the first input in the ordered list

of fanins, we have CODCY, = (§%) + CODCY, indicating
that this node obtains maximum hexibility. The intuition
behind the correctness of the above computation in general

is that the new edge e;r should have its don’t care condition

Ofr

8y1

CODCznk = (+Cy1)(+Cyi—1)

as the conjunction of % with the condition that other in-
puts j < ¢ are not insensitive to the input y; (245), or are

independent of y; (Cy;) indicating that the node i is free

+CODC! (2)

to use such terms independently of how y; was simplified.
Finally, the CODCs of the fanout node y; are also CODCs
of the edge e;;. As a result, the computation of CODC],
using the formula above, performed in the specified order,
results in the Compatible set of ODCs of the edges e;.

copcy = [[cobpcy, (3)

kEFO;

The intuition of the above method of computing the CODC
of y; based on its edge CODCs (CODC?}) is that CODCY
must not be greater than any CODC],. Note also that all
terms in CODC], from Equation 2 except CODC]! have a
support which is the support of yi. However, CODC] has
a support which includes its fanout’s fanins, and in general,
we have to do an image computation to convert this CODC
to a function which is on the support of y;.

In the second phase, we perform this image computation.
Using the ordering heuristics of [10], global BDDs at each
node of the Boolean network are computed in terms of the
primary inputs. BDDs are also built for each primary output
in the external don’t care network using this same ordering.
We next compute the CODC at y; in terms of primary in-
puts, using a BDD based computation. This is done by
substituting each literal of the CODC of y; by its global
BDD function (which was computed earlier). From this we
find all the points that are reachable in the local space of
y; by a BDD based image computation. The functions used
for image computation are the global functions at the fanins
of y;. In most cases the number of primary outputs is much
less than the number of primary inputs; therefore the re-
cursive image computation method [17] is used to do the
computation.

3. PREVIOUS WORK

Previous work in the area of computing approximate don’t
cares has been somewhat scarce. In [9], the authors describe
a method to compute don’t cares using overlapping subnet-
works, computed using a varying window size. Their method
does not optimize wires, but only gates in a design, in con-
trast to our technique, which frequently removes wires in a
circuit. Further, this technique uses [8] to optimize a single
subnetwork. In [8], optimization is done by manipulating
a cover of the subnetwork explicitly. The authors indicate
that this requires large amounts of runtime for small net-
works. As a consequence, the technique of [9], in many
examples, requires run-times which are dramatically larger
than MIS [2]. In [6], the authors partition the circuit into
subnetworks, each of which is flattened and optimized us-
ing ESPRESSO [3]. Our technique uses implicit ROBDD
methods to control the runtime and memory utilization of
the computation. We instead perform CODC computation
on overlapping subnetworks, and demonstrate that our tech-
nique is significantly faster than the full CODC computation
with comparable literal reductions.

In [11, 5], the authors compute subsets of the ODC, but
compatibility is not guaranteed. In [16], techniques to com-
pute the projection of ODCs on some subset of nodes are re-
ported, but compatibility is not guaranteed. Finally in [12]
the authors discuss the simplification of non-deterministic
MYV networks and their internal nodes using internal flexibil-
ities. They provide a new scheme to compute the complete
(maximum) don’t care in an MV network, however, once

424

again, the don’t care computed is not compatible. Although
compatibility is sometimes not useful (eg. when nodes are
processed one at a time), it is required in many instances
(eg. performing any logic optimization step using the don’t
cares of the network). In contrast, our method computes a
subset of the CODC [13], and therefore the don’t-cares we
compute may be used in an optimization setting without the
need for re-computation of the don’t cares for node y; after
optimizing the node y; using its don’t cares.

In [1], the CODC computation of [14] was shown to be
dependent on the current implementation of a node, and
an implementation-independent computation was proposed.
These local don’t cares are orthogonal to our proposed ap-
proach, and it would be an interesting exercise to demon-
strate them in tandem with our method.

4. APPROXIMATE CODC COMPUTATION

Consider a Boolean network nxz with X as primary in-
puts and Z as primary outputs. Let us also define two cuts
of this network, with cut variables W and V. These cuts de-
fine new subnetworks nxw, nvz and nyw. Let the CODC
of a node yi, as computed by equation 3, be denoted as
CODCY"? where P can be either X or V. Likewise, @
can be either Z or W. Let the CODC of node yx, mapped
back to its support after image computation, be denoted as
coDCIT ™! In this context, CODCIXZ " is the tradi-
tional CODC of node yy.

In Section 4.1 we prove that a CODC computation that
utilizes a cut W as the primary outputs yields CODC]*W I
C’ODC;’XZ’FI. Next, in Section 4.2 we prove that a CODC
computation that utilizes a cut V' as the primary inputs for
the don’t care computation yields

copcyv#r ¢ cope*# ™! Finally, we show, in Sec-
tion 4.3, that an ODC computation that utilizes a cut V
as the primary inputs and a cut W as the primary out-
puts for the don’t care computation yields C’ODC’ZVW’FI C
copopxzrt,

Figures 2, 3 and 4 illustrate the corresponding circuits.

4.1 Case 1: Cutset used as Primary Output

Suppose we partition the network as shown in Figure 2.

z

Figure 2: Partition network 1

THEOREM 4.1. If the CODC of a node yi, is computed in
terms of cut nodes W in the TFO of yi, then C’ODCZXW’FI -

copopxzrt
ProOF. Consider the case of computing the full CODC of

yi. The computation proceeds in a reverse topological order
from the POs. For any PO z, we have CODCIX2 1 — .

Computing CODCs as described in Section 2, suppose we
reach a node w € W. In general CODC’ZXZ’FI #+ Q.

Now consider the case that W nodes are considered POs.
The CODC computation proceeds in reverse topological or-
der from nodes in W. As a result, CODCIXW¥! = &,

In the CODC computation for yi, both the above cases
yield identical functions for Equation 2 (except for the last
term). The last term for a node in the first case in general
contains the last term for the same node in the latter case
since CODCT*2 T > copCIxW T = @. Hence, for an
arbitrary y, we have C’ODCZXW’FI - C’ODC]ZXZ’FI O

Note that in general, for a PO 2z, we may have CODC7X% =
XDC?# (X) (the external don’t care of the output z). The
proof in that case is similar. We still have copexwFL —
@, whereas in general CODCIX2F" £ o,

4.2 Case 2: Cutset used as Primary Input

Consider the network as partitioned in Figure 3. Let
R(V,X) = [l;cy vi®vi(X). In other words, R(V,X) is
the relation between the X and V cuts. Let us define also
I = 3x(R(V, X)), the image of the PIs on the V cut. Note
that I # @ in general.

z

Figure 3: Partition network 2

THEOREM 4.2. If the CODC of a node yi, is computed in
terms of cut nodes V' in the TFI of yy,, then CODC’ZVZ’FI -

copoyxzrt

PROOF. In the case of computing the ACODC at yi, we
first compute CODC)V# as discussed in Section 2. Now we
compute the image I1 of this on the V space and project
this image back to the fanin space of yx.

Now consider the case of computing the full CODC at
yr. We first compute CODC}*Z in the normal manner,
and then compute the image I» of this on the PI space.
Projecting this back to the fanin space of yx, we obtain
C’ODC’ZXZ’FI. Consider the projection I3 of Iz on V. We
can write Is = I + Ix ((R(V, X))(I2(X))). Therefore, I3 D
I, which yields the result. [

4.3 Case 3: Cutset used as Primary Output
and Primary Input

Consider a network with two cuts as shown in Figure 4.

THEOREM 4.3. Suppose the CODC of a node yi is com-
puted in terms of cut nodes W in the TFO of yr and cut

nodes V in the TFI of y,. Then CODC{VW-"*'' c copCyxz-*!

ProoF. This follows directly from Theorems 4.1 and 4.2
since their proofs are orthogonal. [

425

Figure 4: Partition network 3

In our experiments, we checked for the containment of
our ACODC in the CODC for each node in the design, and
verified the correctness of our implementation.

4.4 Implementation

In our implementation, we generate ACODCs by creating
dynamic cutsets of the given Boolean network. We ensure
that for any node in the computation, ACODCs are com-
puted ezactly once. The ACODC algorithm is shown in
Algorithm 1.

Clprimary inputs Aprimary output

Figure 5: Dynamic cutsets

Algorithm 1 Compute ACODC using dynamic cutset
method
Traverse n in reverse topological order
for (each node n € network n) do
Nn = extract_subnetwork(n, k)
ACODC(n) = compute_acodc(n,,n)
optimize(n, ACODC(n))
end for

For every node n in the network 7, extract_subnetwork(n, k)
constructs a subnetwork 7, rooted at n such that if node m
€ TFO(n, k), then m € n,, and if node p € TFI(n,k), then
p € nn. Here k is a user-specified parameter, and TFO(n, k)
includes all nodes in the transitive fanout of node n up
to a forward depth k, and TFI(n,k) includes all nodes in
the transitive fanin of node n up to a backward depth of
k. Node m € n, is designated as primary input of 7, if

FI(m € n,) = @, and primary output if FO(m € n,) = @.
FI(m) and FO(m) represent the immediate fanins and im-
mediate fanouts of m respectively. Next we include in our
subnetwork all nodes m € TFI(v,k), where v is a primary
output of the subnetwork 7,,. A sample subnetwork is shown
in Figure 5. Note that we could also include in 7,, nodes
m € TFO(v,k), where v is a primary input of 7,. This is
currently not implemented.

After constructing 7,, we run compute_acodc(nn, n). This
subroutine performs the CODC computation for node n
using Equations 2 and 3. Note that the computation of
CODCs of nodes m € n, | m € TFO(n) is not required, since
a prior call to compute_acodc(nm, m) performed this compu-
tation. Therefore the only computations that are performed
are the computations of edge CODCs for edges en,, where
m € FO(n). We find the image of the resulting CODC
of n on the space of the primary inputs of 7,, and project
this image back to the fanins of n to get the ACODC of n.
Note that in this method, ACODCs of any node are com-
puted ezxactly once. Further these computations are on small
subnetworks, resulting in a fast, robust computation. The
ACODC of n so obtained is a subset of the actual CODC
of n (by the result of Section 4.3) since the primary inputs
and primary outputs of 7, are nodes on some two cuts' of

7.

The function optimize(n, ACODC(n)) runs Espresso [3]
on the node n with respect to its ACODC, after which the
node n is replaced by its minimized version.

The entire process is iterated over all the nodes n of the
network 7 (in reverse topological order). In this way we ob-
tain the ACODC:s for all nodes in the network n. Note that
the size of each subcircuit 7, is limited by the depth param-
eter k. Hence by suitably choosing k, we ensure that the
subcircuits are never too large and ACODCs can be com-
puted quickly and with low memory utilization for extremely
large circuits.

S. EXPERIMENTAL RESULTS

We have implemented our technique in SIS [15]. For our
experiments we have used circuits from the mcnc91 and
1tc99 benchmarks. Our experiments consisted of reading in
a design and computing ACODCs for the circuit using our
dynamic cutset approach. Next we optimized the circuit
nodes with respect to their ACODCs and then ran sweep to
remove the redundant nodes after optimization. We com-
pared our results with the CODCs generated in SIS by run-
ning full_simplify followed by sweep. In both cases, we used
the -snocomp option. The experiments were run on an IBM
IntelliStation running Linux with a 1.7 GHz Pentium-4 CPU
and 1 GB of RAM.

Table 1 reports results for large circuits on which full_simplify

failed to complete due to memory blowup resulting from
large BDDs. Column 1 lists the circuits used while columns
2 and 3 list the number of nodes and literals in each cir-
cuit (before optimization) respectively. Columns 4 and 6
list the nodes and literals respectively after they have been
optimized with our method (with k = 4). Column 5 lists
the percentage reduction in the number of nodes after op-
timization and column 7 lists the percentage reduction in

! Actually, these nodes belong to some subnetwork in gen-
eral, but the addition of nodes (to the PIs and POs of the
subnetwork) to construct cuts would not change the compu-
tation.

426

the number of literals. Columns 8 and 9 report the runtime
and the peak number of ROBDD nodes for the computation
respectively. On average, a healthy 19% node reduction and
about 10% literal reduction is achieved with our technique.
The runtime never exceeded 2 minutes, and the memory
utilization was below 100K ROBDD nodes. We expect that
with larger values of k, the quality of these results may show
improvement.

| Circuit || Original [Our Method |

[nodes | Tits]| nodes | % [lits | % [time (s) | mem |
C6288 2416 4800 2310 4.39 1623 3.69 3.65 1022
C7552 3466 6098 2056 | 40.68 | 4506 26.15 6.11 9198
b14 9768 18917 8093 17.15 | 17001 | 10.12 117.60 105582
b14_1 6570 12886 5254 20.03 | 11654 9.56 19.04 50078
520 19683 | 38213 16014 | 18.64 | 34895 5.68 65.39 69496
b20-1 13900 | 27074 11265 | 18.96 | 24652 8.95 39.34 34748
b21 20028 | 38993 16440 | 17.91 | 35689 8.48 66.37 65408
b21_1 13899 | 27164 11458 | 17.56 | 24595 9.45 38.32 34748

[AVG] | i [1877] [949] | |

Table 1: Results for Large Circuits

Table 2 provides a comparison between our ACODC method

and full_simplify (which is implemented in SIS [15]). Col-
umn 1 lists the experimental circuits used. Two measures of
effectiveness are defined to compare our results with those
generated by full_simplify. Effectiveness measure #1 com-
pares the number of minterms in the CODCs generated by
our method with those in full_simplify.

>, |[ACODC (n)|
2, [CODC(n)|

Here |ACODC(n)| represents the number of minterms
in the CODC of node n generated by our method, and
|CODC (n)| represents the number of minterms in the CODC
of node n generated by full_simplify.

Effectiveness measure #2 compares the number of nodes
for which ACODCs and CODCs are identical

effectiveness #1 =

#equal
F#total

where #equal represents the number of nodes for which
the ACODCs were identical as the CODCs produced by SIS,
and #total represents the total number of nodes in the cir-
cuit.

Both measures of effectiveness are expressed as percent-
ages in Table 2. Columns 2 and 3 report the value of the
effectiveness measure #1 for depth £ = 4 and 6 respectively,
whereas columns 4 and 5 provide the value of effectiveness
measure #2 for the same levels of depth. Column 6 gives the
original number of literals in the circuits considered. Col-
umn 7 gives the number of literals after running full_simplify
whereas column 8 gives the percentage reduction in literal
count after full_simplify. Columns 9 and 11 give the num-
ber of literals after optimizing the circuits with our method
for depth k& = 4 and 6 respectively. Finally, columns 10
and 12 give the percentage reduction in literal count for
the same levels of depth. Columns 13, 14 and 15 compare
the run-times for full_simplify against our method for k =
4 and 6 respectively, while columns 16, 17 and 18 compare
peak number of ROBDD nodes for full_simplify against our
method with k£ = 4 and 6 respectively.

When compared to the circuits on which full_simplify does
complete, we get a 23% reduction in literal count as com-
pared to 29% by full_simplify. The effectiveness measures

effectiveness #2 =

| circuit || eff # 1 [eff #2 [literals [run-time (s) [memory |

T | 6 [4 [©6 [orig [s | % [mnewd | % [mewo6 | % [fs £ B I Ts T £ T 5 |
C1355 08.04 | 98.04 0834 | 98.34 1032 984 1.65 992 3.88 992 3.88 39.28 1.66 1.80 312732 3066 3066
C1908 81.56 | 84.69 87.13 | 88.89 1497 941 37.14 | 1038 | 30.66 1026 31.46 54.68 2.40 2.50 106288 3066 3066
C2670 94.13 | 94.13 86.79 | 86.79 2043 | 1240 | 39.30 | 1370 | 32.94 1370 32.94 11.77 4.20 1.66 172718 1088 1088
C432 71.43 | 71.43 92.81 | 92.81 372 298 19.89 322 9.95 322 9.95 4.01 1.25 1.45 289226 6132 6132
C499 98.56_| 98.56 97.34 | 97.34 616 568 7.79 572 6.50 572 6.50 241 1.20 1.31 99134 8176 8176
C880 80.00 | 84.44 9456 | 95.77 703 625 11.10 635 9.67 630 10.38 2.05 0.70 0.72 73584 2044 3066
C3540 85.43 | 97.81 84.15 | 97.51 2934 | 1943 | 33.78 | 2145 | 26.89 2100 28.42 835.64 25.25 27.45 321746 8176 8176
dalu 78.00 | 79.86 7578 | 79.55 3588 | 2164 | 39.68 | 3240 9.70 3240 9.70 210.09 6.23 712 499758 11242 12264
il0 99.34 | 99.34 85.45 | 85.45 5376 | 3787 | 29.55 | 3899 | 27.47 3899 27.47 332.22 5.56 9.21 507934 1088 1088
b01_C 92.68 | 92.68 83.33 | 83.33 80 44 45.00 45 43.75 45 43.75 0.03 0.05 0.05 1022 1022 1022
b03-C 68.89 | 75.56 87.23 | 89.43 254 101 60.00 154 39.37 149 41.34 0.19 0.20 0.20 1022 1022 1022
b04_C 63.42 | 63.42 85.35 | 85.35 1267 562 31.96 904 28.65 904 28.65 12.15 1.47 1.66 117530 2044 3066
b05-C 7470 | 84.85 76.38 | 88.02 1858 | 1007 | 45.80 | 1580 | 14.96 1580 14.96 24.50 2.43 2.50 25550 5110 5110
b06_C 9211 | 92.11 87.10 | 87.10 83 40 51.80 45 45.78 45 45.78 0.04 0.04 0.04 1022 1022 1022
b07-C 69.52 | 81.90 91.02 | 95.21 749 660 11.88 666 11.08 666 11.08 4.04 0.84 0.86 26572 2044 2044
b08_C 98.33 | 98.33 96.09 | 96.09 306 276 9.80 277 9.48 277 9.48 0.30 0.30 0.30 2044 2044 2044
b09_C 79.00 | 95.00 83.04 | 90.18 277 108 61.00 155 44.04 150 45.85 0.37 0.26 0.27 1022 1022 1022
b10-C 80.65 | 83.87 92.90 | 94.19 353 309 12.39 312 11.05 312 11.05 0.40 0.30 0.32 2044 1022 1022
b11_C 83.44 | 85.94 89.50 | 91.65 1378 | 1065 | 22.71 | 1180 | 14.36 1180 14.36 9.97 0.26 0.34 22484 2044 2044
b12_C 67.10 | 79.04 87.17 | 90.92 1967 | 1494 | 24.05 | 1853 5.80 1853 5.80 81.72 3.23 3.55 15330 4088 4088
b13_C 65.08 | 65.08 91.53 | 91.53 558 453 18.81 499 10.57 499 10.57 0.28 0.20 0.21 2044 1022 1022

[AVG [81.97 [85.52][87.85 | 89.52] [[28.36] [22.34] [22.82 [0.0365 [0.0412] [0.0283 [0.0322 |

Table 2: Results for Medium Circuits

show an increase with k, especially measure #1. However,
the well established figure of merit of technology indepen-
dent optimization, literal count, shows little variation with
k. As a result, our recommendation is to use smaller values
of k. Our method, with a value of k = 4 gives about 80%
of the literal reduction of full_simplify, with an average run-
time and memory utilization which is 25x and 33X better
than that of full_simplify.

6. CONCLUSIONS

We have presented a technique to compute approximate
CODCs (ACODCs) for any network by dynamically extract-
ing substantially smaller sub-networks from the original one
and computing the CODCs on the smaller sub-networks. We
formally showed that the ACODCs thus obtained are sub-
sets of the actual CODCs. Since the size of the extracted
sub-network can be controlled by the user-specified depth
parameter k, we can compute CODCs for arbitrarily large
circuits in our technique. By keeping k relatively small, we
can ensure that the BDDs which are built during the CODC
computation (for image computation) never exceed a certain
size and do not cause memory overflow. Our method com-
putes the ACODC of any node ezactly once, resulting in a
fast and efficient don’t care computation.

Our results show that we can obtain very reasonable op-
timization of large circuits for which CODCSs can’t be com-
puted by the resident method in SIS, full_simplify. This op-
timization results in a reduction of 19% in the node count
and a reduction of 9.5% in literal count. Also, for smaller
circuits which can be optimized by the resident technique in
SIS (full_simplify), our technique obtains an average reduc-
tion of 23% in literal count as compared to a 29% reduction
by full_simplify. Our technique respectively demonstrates
average runtimes and memory utilization about 25x and
33x better than full_simplify.

7. REFERENCES

[1] R. Brayton. Compatible output don’t cares revisited. In
IEEE/ACM International Conference on Computer Aided
Design, pages 618—623, Nov 2001.

R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and

A. Wang. Mis: A multiple-level logic optimization system.
IEEE Trans. on CAD/ICAS, CAD-6(6):1062-1082, Nov 1987.
R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, 1984.

(2]

(3]

427

(4]

5]

(6]

[7]
8]

19l

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

R. E. Bryant. Graph based algorithms for Boolean function
representation. IEEE Transactions on Computers,
C-35:677-690, August 1986.

M. Damiani and G. D. Micheli. Observability don’t care sets
and boolean relations. In IEEE/ACM International
Conference on Computer Aided Design, Nov 1990.

S. Dey, F. Brglez, and G. Kedem. Circuit partitioning and
resynthesis. In Proceedings of the IEEE Custom Integrated
Circuits Conference, pages 29.4/1 —29.4/5, May 1990.

S. Hassoun, editor. Logic Synthesis and Verification. Kluwer
Academic Publishers, Nov 2001.

J. C. Limqueco and S. Muroga. SYLON-REDUCE: an MOS
network optimization algorithms using permissible functions. In
Proceedings, IEEE International Conference on Computer
Design, pages 282—285, Sept 1990.

J. C. Limqueco and S. Muroga. Optimizing large networks by
repeated local optimization using windowing scheme. In IEEE
International Symposium on Circuits and Systems, ISCAS,
volume 4, pages 1993-1996, May 1992.

S. Malik, A. R. Wang, R. K. Brayton, and

A. Sangiovanni-Vincentelli. Logic verification using binary
decision diagrams in a logic synthesis environment. In IEEE
International Conference on Computer-Aided Design, pages
6-9, November 1998.

P. C. McGeer and R. K. Brayton. The observability don’t care
set and its approximations. In IEEE International Conference
on Computer Design, Sept. 1990.

A. Mishchenko and R. Brayton. Simplification of
non-deterministic multi-valued networks. In IEEE/ACM
International Conference on Computer Aided Design, pages
557-562, Nov 2002.

H. Savoj and R. Brayton. The use of observability and external
don’t cares for the simplification of multi-level networks. In
27th ACM/IEEE Design Automation Conference, Orlando,
June 1990.

H. Savoj, R. Brayton, and H. Touati. Extracting local don’t
cares for network optimization. In IEEE/ACM International
Conference on Computer Aided Design, pages 514-517, Nov
1991.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and

A. L. Sangiovanni-Vincentelli. SIS: A System for Sequential
Circuit Synthesis. Technical Report UCB/ERL M92/41,
Electronics Research Lab, Univ. of California, Berkeley, CA
94720, May 1992.

T. Stanion and C. Sechen. Maximum projections of don’t care
conditions in a boolean network. In IEEE/ACM International
Conference on Computer Aided Design, pages 674—679, Nov
1993.

H. Touati, H. Savoj, B. Lin, R. Brayton, and

A. Sangiovanni-Vincentelli. Implicit state enumeration of finite
state machines using BDDs. In IEEE International Conference
on Computer-Aided Design, November 1990.

